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ABSTRACT
With the increasing complexity of integrated circuits, it is becoming
cumulatively challenging to solve the entire large-scale nonlinear
algebraic system in DC analysis within reasonable simulation time
and without accuracy lost. For this reason, we present an efficient
parallel arclength approach called PALBBD to solve DC problems
for large capacity and full accuracy in this paper. We process the
𝑚+1 dimensions equation of the Newton-Raphson (NR) iteration in
an alternative way, which maintains the Jacobian matrix structure.
Besides, we exploit the bordered block diagonal (BBD) form to
save the matrix for parallel computing. Moreover, we check the
convergence of each sub-partition and bypass the calculations of
converged ones to reduce the amount of unnecessary computations
during the iteration. In order to ensure the accuracy, we use a
correction equation to replace the Schur complement updating for
the bypassed sub-partitions. The proposed PALBBD is implemented
and integrated to the SPICE simulator and verified by 72 real-world
circuits. It outperforms the conventional serial arclength method
with up to 73.93X speedup and 45% bypass ratio.

CCS CONCEPTS
• Hardware → Software tools for EDA.

KEYWORDS
Parallel DC analysis, circuit simulation, arclength, bypassing, bor-
dered block diagonal

ACM Reference Format:
Zhou Jin1, Tian Feng1, Yiru Duan1, Xiao Wu2, Minghou Cheng2, Zhenya
Zhou2, Weifeng Liu1. 2021. PALBBD: A Parallel ArcLength Method Using
Bordered Block Diagonal Form for DC Analysis. In Proceedings of the Great
Lakes Symposium on VLSI 2021 (GLSVLSI ’21), June 22–25, 2021, Virtual Event,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3453688.
3461526

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’21, June 22–25, 2021, Virtual Event, USA.
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8393-6/21/06. . . $15.00
https://doi.org/10.1145/3453688.3461526

1 INTRODUCTION
SPICE-like circuit simulator is the most widely used computer-
aided tool for circuit designs[2]. It provides several analysis types
to evaluate designer’s circuits from various viewpoints before tape
out. Among them, computing DC operating points is the most es-
sential task, since it is performed prior to any other simulation
mode. It provides initial solution for transient analysis and deter-
mines linearized, small signal models for all nonlinear devices in
AC analysis[2–4]. With the rapid progress of VLSI (Very Large Scale
Integration) circuits, the feature size is greatly scaling down and
the amount of devices can easily reach several millions especially
after post-layout extraction[7]. It makes SPICE-like simulators quite
time-consuming to compute DC operating points. Thus, parallel
DC analysis which maintains the SPICE accuracy is becoming a
critical part of circuit simulators for handling large-scale circuits.

However, there are three main challenges. Firstly, though sev-
eral parallel techniques have been proposed for circuit simulation
in some literatures, the strategies mainly focus on parallel model
evaluation[12] or solving the linear system[5–7, 12, 14, 15]. How
to solve the DC problem efficiently in parallel is a major challenge.
Secondly, determining DC operating points needs to solve a series
of nonlinear algebraic equations. The arclength method is an ef-
fective approach to trace the solution curve, and in general has a
strong ability to eliminate the non-convergence problem compared
with other continuation methods[10]. However, it needs to enlarge
the Jacobian matrix structure. How to provide a good interface to
the existing software is a major problem. Thirdly, as the number of
calculations required continues to increase, the computational pres-
sure becomes greater, and how to remove unnecessary calculations
has become an important challenge.

In response to the three difficulties mentioned above, we propose
the following solutions. Firstly, a parallel arclength approach utiliz-
ing the bordered block diagonal form matrix (PALBBD) is presented
for accurate and fast DC analysis. Secondly, the proposed method
processes the𝑚+1 dimensions equation of the NR iteration in an
alternative way, which does not need to enlarge the Jacobian matrix
structure. Thus the proposed method can be easily integrated into
any current existing SPICE-like simulators without changing the
data structure. Thirdly, we propose a new bypassing strategy for
each sub-partition to minimize the amount of computation. The
new bypassing strategy is proposed with a correction equation to
replace the top-layer’s Schur complement and ensure the accuracy.
We proved the lossless accuracy. Different from all conventional
bypassing approaches, substitution for converged sub-partitions
and even part device evaluation for not-converged sub-partitions
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could also be bypassed in our approach. Besides, an initial solution
method is used for better convergence.

In this paper, we mainly have the following three contributions:
(1) We present a fast parallel arclength approach for accurate and
fast DC analysis, (2) The proposed method provides a simple in-
terface and is easy to be integrated to SPICE simulators, (3) The
proposed bypassing strategy decreases unnecessary computations
without accuracy loss. Experimental results on 72 real-world large-
scale circuits show that the proposed PALBBD method achieves
10.2X speedup on 16 threads over conventional serial method on av-
erage and up to 73.93X maximum. The proposed bypassing method
further provides up to 45% reduction of the computation.

2 PRELIMINARY
2.1 Arclength Method
Finding DC operating points needs to solve a set of nonlinear alge-
braic equations as shown in (1) that describes the DC behavior of a
nonlinear circuit.

𝑭 (𝒙) = 0, 𝒙 ∈ 𝑹𝒎, 𝑭 (𝒙) ∈ 𝑹𝒎 → 𝑹𝒎, (1)

where 𝒙 is the unknown vector of node voltages and internal cur-
rents of independent voltage sources, and 𝒎 is the number of un-
knowns. The fixed point homotopy method[3, 4, 13] is globally
convergent and in general has a strong ability to achieve bifurca-
tion free with a simple form as shown in (2), in which 𝑭 (𝒙) is the
original system to solve, 𝑮 is an incidence matrix with constant
entries 1e-3 in the diagonal position.

𝑯 (𝒙, _) = _𝑭 (𝒙) + (1 − _)𝑮 · 𝒙 = 0. (2)

There are a number of methods for tracing the solution-curve of
homotopy functions[10, 11]. The arclength is considered as one of
the most efficient algorithms, since it can trace the solution-curve
continuously[10]. It considers _ as a one-dimensional unknown
variable and all the variables are regarded as a function of 𝑠 , where
𝑠 satisfies

𝑚∑
𝑖=1

(𝑑𝑥𝑖
𝑑𝑠

)2 + (𝑑_
𝑑𝑠

)2 = 1. (3)

The _ is solved at each time point with the nonlinear system to-
gether.

2.2 BBD Form
BBD is an efficient method for solving linear system in parallel[8,
14]. Apply hypergraph partitioning to the circuit to yield several
non-overlapping sub-partitions. Sub-partitions are stored in the
diagonal bordered blocks in the matrix as shown in Fig. 1 and
can be computed completely in parallel. Also, a top partition is
constructed which contains the adjacency node information with all
other sub-partitions. For each sub-partition, the Schur complement
for top matrix is formed by equation (4), where ¤TOP_𝐵𝑖

is the
corresponding Schur complement of 𝐵𝑖 for top matrix.[

B𝑖 C𝑖

0 ¤TOP_𝐵𝑖

] [
ΔX𝐵𝑖

ΔX𝑇𝑂𝑃𝐵𝑖

]
=

[
RHS_𝐵𝑖
¤RHS𝑇𝑂𝑃_𝐵𝑖

]
¤TOP_𝐵𝑖

= TOP_𝐵𝑖
− D𝑖 · B−1

𝑖
· C𝑖

¤RHS𝑇𝑂𝑃_𝐵𝑖
= RHS1𝑇𝑂𝑃_𝐵𝑖

− D𝑖 · B−1
𝑖

· C𝑖 .

(4)

After accumulating the Schur complement, the top level partition
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Figure 1: (a) The circuit is partitioned into several sub-
partitions and stored as a BBD form matrix. (b) When inter-
nal nodes and external nodes of some sub-partitions are sta-
ble, these partitions are regarded as convergent and do not
need to be updated and calculated. The NR iteration of these
partitions can be bypassed in PALBBD, and the remaining
not-convergent sub-partitions will continue to iterate until
all of them are converged.

can be solved firstly, and then each sub-partition can be solved.

3 PALBBD METHOD
3.1 Parallel Arclength Approach
Considering homotopy function in (2), at each arclength iteration
step, the tangent vector 𝒗 = [𝑑𝑥1/𝑑𝑠, 𝑑𝑥2/𝑑𝑠, ...𝑑_/𝑑𝑠] can be calcu-
lated by solving a system of linear equations.[ (1 − _)𝑮 + _ · 𝑱 (𝒙) −𝑮 · 𝒙 + 𝑭 (𝒙)

(𝒗𝑝𝑥 )𝑇 𝑣
𝑝

_

] [
𝒗𝑥
𝑣_

]
=

[
0
1

]
. (5)

In order not to enlarge the matrix size, our PALBBD computes
𝑣_ firstly through (6).

𝑣_ =

{
𝑣
𝑝

_
− (𝒗𝑝𝑥 )𝑇 [_𝑱 (𝒙) + (1 − _)𝑮]−1 · [𝑭 (𝒙) − 𝑮 · 𝒙]

}−1
,

(6)
and then we can obtain the vector 𝒗𝑥 from

𝒗𝑥 = 𝑣_ · [_𝑱 (𝒙) + (1 − _)𝑮]−1 · [𝑮 · 𝒙 − 𝑭 (𝒙)] . (7)

With the normalization of vector 𝒗_ and 𝒗𝑥 , the unit tangent
vector at current time step can be obtained as 𝒗𝑘 at 𝑘th arclength
iteration. If we set h as the step size, the next time point’s predictor
�̃�𝑘+1 is determined by:

�̃�𝑘+1 = 𝒙𝑘 + 𝒗𝑘 · ℎ. (8)

Then in the corrector step, we need to solve nonlinear equations
in (9) by the NR method to obtain the intersection of the hyper-
plane, that is perpendicular to the tangent vector 𝒗 and through
the predictor �̃�𝑘+1, and the curve 𝑯 (𝒙) = 0.

𝑯 (𝒙, _) = _𝑭 (𝒙) + (1 − _)𝑮 · 𝒙 = 0
𝑮 (𝒙, _) = 𝒗𝑇𝑥 · (𝒙 − �̃�𝑘+1) + 𝑣_ · (_ − _̃𝑘+1) = 0.

(9)

Thus at each arclength step, the NR iteration can be written as:[
𝑱 (𝒙) + (1 − _) · _−1 · 𝑮 (𝑭 (𝒙) − 𝑮 · 𝒙) · _−1

𝒗𝑇𝑥 𝑣_

] [
𝑑𝒙
𝑑_

]
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Figure 2: The proposed PALBBD approach at each arclength step. Firstly, for each sub-partition, we have three sub-tasks: device
evaluation to form matrix and RHS in (12), the LU factorization and computing the Schur complement. Three sub-tasks are
merged as one for each sub-partition and can be done in parallel. Here the same color is used to indicate tasks on the same
processor as an example. After that, the Schur complements are accumulated to form the top-level matrix and RHS. Then we
solve the top-level matrix to obtain the solutions of external nodes and send them back to each sub-partition to obtain the
internal nodes solutions. Here, all the solutions mean the solutions of (12). Then the 𝑑_ can be computed by (11). Thus external
and internal solutions of (10) for each sub-partition can be obtained by (11) in parallel. Do the loop and from the second NR
iteration, three bypassing conditions are checked for each sub-partition. If the 𝑑_ is converged, internal solutions of a certain
sub-partition are converged, and its external solutions from top matrix equation are also converged, then this sub-partition
can be regarded as converged. Converged sub-partitions can be bypassed in the next iteration, such as B2 and B4 in the figure.
Different from conventional bypassing methods, substitution for each converged sub-partition and computations related to
RHS2 for not-converged sub-partitions can also be bypassed. Besides, a corrector 𝐵∗

𝑖
is exploited to form the RHS for top-level

matrix to maintain the accuracy. After bypassing, we redistribute the load for the rest of the work until final converge.

=

[
−𝑭 (𝒙) − (1 − _) · _−1 · 𝑮 · 𝒙
−𝒗𝑇𝑥 (𝒙 − �̃�𝑘+1) − 𝑣_ (_ − _̃𝑘+1)

]
. (10)

To construct the matrix in (10) needs to enlarge the Jacobian
matrix to𝑚+1 dimensions. In PALBBD, we conceptually save this
matrix as a BBD structure. Thus, we can obtain



𝑑_ =

[
−𝒗𝑇𝑥 (𝒙 − �̃�𝑘+1) − 𝑣_ (_ − _̃𝑘+1) − 𝒗𝑇𝑥𝑨

−1 · RHS1
]

·
(
𝑣_ − 𝒗𝑇𝑥 · 𝑨−1 · RHS2

)−1
𝑑𝒙 = 𝑨−1 · RHS1 − 𝑑_ · 𝑨−1 · RHS2
RHS1 = −𝑭 (𝒙) − (1 − _) · _−1 · 𝑮 · 𝒙
RHS2 = [𝑭 (𝒙) − 𝑮 · 𝒙] · _−1
𝑨 = 𝑱 (𝒙) + (1 − _) · _−1 · 𝑮 .

(11)
Therefore, in our PALBBD, firstly we solve the linear systems in

(12), where 𝑨 is a BBD form matrix as shown in Fig.1(a), and the

solution of (12) is exactly the value of 𝑨−1 · 𝑹𝑯𝑺1 and 𝑨−1 · 𝑹𝑯𝑺2.
A ∗

[
ΔX𝑅𝐻𝑆1 ΔX𝑅𝐻𝑆2

]
=
[
RHS1 RHS2

]
. (12)

Each sub-partition can be processed in parallel as shown in
Fig. 2. The top matrix does not contain any devices, and the Schur
complements from each sub-partition are accumulated to form
the top Jacobian matrix and two RHS, RHS1_𝑇𝑂𝑃 and RHS2_𝑇𝑂𝑃 .
Through the LU factorization and substitution of the top matrix,
we can get the solutions Δ𝑿𝑇𝑂𝑃_𝑅𝐻𝑆1 and Δ𝑿𝑇𝑂𝑃_𝑅𝐻𝑆2 of the
top matrix for each linear system. Then the solutions for each sub-
partition can be also obtained. Therefore, at each NR step, after
solving two sets of linear systems, through (11), 𝑑_ can be obtained,
and then we can get 𝑑𝑥 for each sub-partition as Δ𝑿𝐵𝑖

. This process
can be considered as step 0 of the NR iteration.

In the proposed scheme, we merge the device evaluation, LU
factorization, Schur complement computation and substitution for
each sub-partition as one task. Thus, only one synchronization
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is needed and a better load balance can be achieved due to less
synchronization and less waiting. It is easy to find that the data
structure of 𝑱 (𝒙) and RHS are maintained in PALBBD, and the size
of Jacobian matrix preserves as𝑚×𝑚. Because of this, the arclength
method can be easily integrated into the SPICE-like simulator.

Besides, in order to avoid the time step size to be reduced at
the first arclength iteration step, we fix the value of _ at the first
step instead of solving it together with the whole nonlinear system
to make it easier to converge for the NR iteration. That is, the
nonlinear equation H(x,_) with𝑚 unknowns is solved with a given
_. Since there is no prior tangent vector 𝒗, an initial 𝒗0𝑥 and 𝑣0

_
is set

as [0,1] in (5) to help guess the unit tangent vector at the first step.

3.2 Bypassing Process
In this section, we propose a bypassing strategy for sub-partitions
to significantly reduce the time-consuming computational tasks
during iteration. Moreover, we propose a correction equation for
Schur complement formulation to maintain the accuracy. In order
to minimize the computation as much as possible, from the second
NR iteration, we verify the following three conditions for each
sub-partition before the substitution.

• Condition 1: If 𝑑_ at previous time step is small enough,
that is 𝑑_ < 𝑡𝑜𝑙1, where 𝑡𝑜𝑙1 is a given tolerance.

• Condition 2: If for any sub-partition, the solutions of inter-
nal nodes are converged, that is Δ𝑿𝐵𝑖

< 𝑡𝑜𝑙2 and 𝑹𝑯𝑺1_𝐵𝑖
<

𝑡𝑜𝑙2, where 𝑡𝑜𝑙2 is a given tolerance.
• Condition 3: If for any sub-partition, the solutions of ex-
ternal nodes are converged, that is Δ𝑿𝑇𝑂𝑃_𝑅𝐻𝑆1_𝐵𝑖

< 𝑡𝑜𝑙3,
where Δ𝑿𝑇𝑂𝑃_𝑅𝐻𝑆1_𝐵𝑖

is the solution of top matrix that
related to sub-partition 𝐵𝑖 and 𝑡𝑜𝑙3 is a given tolerance.

From (10), we can find 𝑹𝑯𝑺1 is exactly the RHS of the original
homotopy function that corresponding to the 𝑑𝒙 . As if three condi-
tions are satisfied for one sub-partition, the internal and external
nodes and the globally parameter 𝑙𝑎𝑚𝑏𝑑𝑎 are all converged. Then
this sub-partition can be regarded as converged and can be treated
as a large linear device, as shown in Fig. 1(b). Therefore, substitu-
tion, device evaluation, LU factorization and Schur complement
computation can be bypassed for this sub-partition. Next, only the
other not-converged sub-partitions need to be solved at the next
step iteration. Moreover, for these not-converged sub-partitions,
computations related to 𝑹𝑯𝑺2 could also be bypassed according to
(11) since 𝑑_ tends to be 0.

Moreover, we propose a correction equation as shown in (13).
Note that, though a sub-partition has converged and been bypassed,
a corrector 𝐵∗

𝑖
should be updated as the Schur complement of this

sub-partition to maintain the accuracy.

𝑩∗
𝑖 = (𝑻𝑶𝑷𝐵𝑖

− 𝑫𝑩−1
𝑖 𝑪) · Δ𝑿𝑇𝑂𝑃_𝐵𝑖_𝑛𝑒𝑤 . (13)

Our proof is as follows. Equation (14) shows the sub-matrix
for sub-partition 𝐵𝑖 , where Δ𝑿𝐵𝑖

is the solution of internal node,
Δ𝑿𝑇𝑂𝑃_𝐵𝑖

is the solution of top matrix that related to 𝐵𝑖 .[
𝑩𝑖 𝑪
𝑫 𝑻𝑶𝑷_𝐵𝑖

] [
Δ𝑿𝐵𝑖

Δ𝑿𝑇𝑂𝑃_𝐵𝑖

]
=

[
−𝑹𝑯𝑺𝐵𝑖

−𝑹𝑯𝑺𝑇𝑂𝑃_𝐵𝑖

]
. (14)

If do not bypass this sub-partition, the RHS of top matrix that
corresponding to 𝐵𝑖 should be

𝑹𝑯𝑺𝑇𝑂𝑃_𝐵𝑖
= 𝑹𝑯𝑺𝑇𝑂𝑃_𝐵𝑖_𝑜𝑙𝑑 + Δ𝑹𝑯𝑺𝑇𝑂𝑃_𝐵𝑖

, (15)
where
Δ𝑹𝑯𝑺𝑇𝑂𝑃_𝐵𝑖

= 𝑫 · Δ𝑿𝐵𝑖_𝑛𝑒𝑤 + 𝑻𝑶𝑷_𝐵𝑖
· Δ𝑿𝑇𝑂𝑃_𝐵𝑖_𝑛𝑒𝑤 . (16)

Since condition 2 is satisfied, we have:
𝑩𝑖Δ𝑿𝐵𝑖_𝑛𝑒𝑤 + 𝑪Δ𝑿𝑇𝑂𝑃_𝐵𝑖_𝑛𝑒𝑤 ≈ 0. (17)

Then we can obtain:
𝑫 · Δ𝑿𝐵𝑖_𝑛𝑒𝑤 + 𝑻𝑶𝑷_𝐵𝑖

· Δ𝑿𝑇𝑂𝑃_𝐵𝑖_𝑛𝑒𝑤

= 𝑫 (−𝑩−1
𝑖 𝑪 · Δ𝑿𝑇𝑂𝑃_𝐵𝑖_𝑛𝑒𝑤) + 𝑻𝑶𝑷_𝐵𝑖

· Δ𝑿𝑇𝑂𝑃_𝐵𝑖_𝑛𝑒𝑤

= (𝑻𝑶𝑷_𝐵𝑖
− 𝑫𝑩−1

𝑖 𝑪) · Δ𝑿𝑇𝑂𝑃_𝐵𝑖_𝑛𝑒𝑤 .

(18)

Therefore, the value of the corrector 𝐵∗
𝑖
is the same as the Schur

complement without bypassing as shown in (15). From this proof,
it can be found that the accuracy is maintained by the proposed
approach.

4 NUMERICAL EXAMPLES
In this section, several industrial large-scale circuits from real-world
are tested to demonstrate the convergence and efficiency of our
proposed method. The proposed method is implemented in a SPICE

Figure 3: Solution curves solved by the PTA method. It fails
to converge due to oscillation.

Figure 4: Solution curves solved by the PALBBD. It reaches
the hyperplane _ = 1 and finally converged.
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Figure 5: Solution curves are folded with PALBBD, which
cannot be solved by NR, Gmin or source-stepping methods.

simulator using C++ with OpenMP. Firstly, the convergence perfor-
mance of the PALBBD is verified and compared with other contin-
uation methods. Secondly, the efficiency of PALBBD is compared
with the conventional serial arclength method. After that, the scal-
ability is confirmed through experiments on 2, 4, 8 and 16 threads.
Thirdly, the bypassing ratio is verified. All tests are executed on a
Linux workstation which has four 2.6GHz Intel Xeon E5-4627 v4
CPUs and 512GB main memory.

4.1 Convergence Performance
A large-scale circuit with 1901 devices including 523 MOSFET tran-
sistors and 1315 diodes is tested to verify the convergence perfor-
mance of the PALBBD approach. Due to the heavy positive feedback
and strong nonlinearity, the solution curve is folded up and differen-
tially discontinuous. These properties lead to convergence failure
in the NR method, source stepping and Gmin stepping method.
Moreover, almost all commercial circuit simulators fail to converge
in the DC analysis for this circuit. Though the PTA method has
been proven with a strong ability to deal with the discontinuous
problem, for this circuit, it fails to converge due to oscillation as
shown in Fig. 3. The PALBBD converges after 116 arclength itera-
tions. The solution curve of PALBBD is shown in Fig. 4 and the _
finally reaches 1. The main reason is that the arclength traces the
solution curve continuously and makes it possible for _ to fall back
as shown in Fig. 5.

4.2 Parallel Speedup and Scalability
Comparisons are illustrated between a conventional serial arclength
method without BBD-form partition and the PALBBD with 1, 2, 4, 8
and 16 threads. Ten real-world circuits are tested, and the speedup
ratios are shown in Table 1. The total number of elements vary
from 12,586 to 3,159,178 and the average speedup ratio of serial
PALBBD over conventional serial arclength method is 1.95X (the
maximum speedup ratio is 3.72X). What’s more, the average speed-
up ratio of PALBBD on 16 (8, 4, 2) threads over serial version is
7.72X (5.52X, 3.36X, 1.63X) showing strong scalability, while the
maximum speedup ratio reaches 12.56X (6.73X, 3.94X, 1.78X). More-
over, another 62 large-scale circuits are also tested and results are
shown in Fig. 6, the average (maximum) speedup ratio of PALBBD
on 16 threads over conventional serial arclength is 10.2X (73.93X).
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Figure 6: Efficiency comparison of PALBBD on 16 threads
and conventional serial method for 62 different circuits.
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Figure 7: Comparisons of the proposed bypassing and the
conventional scheme on the total NR iteration numbers for
each sub-partition using a 512Kx40bit SRAM circuit.
4.3 Efficiency of Bypassing
A 512Kx40bit SRAM is shown here to demonstrate the accelerating
effect of the proposed bypassing method. This circuit has 1151188
resistors, 10 diodes and 135,129 MOSFETs. The circuit is partitioned
into 64 sub-partitions. After 84 arclength iterations, the circuit con-
verged to the solution. Fig. 7 shows the comparisons of total number
of NR iteration steps for each sub-partition between our proposed
bypassing scheme and the one without bypassing. As shown in
Fig. 8, many sub-partitions only need 1 or 2 NR iterations at each
arclength step. The top-partition and a few difficult sub-partitions
need 3 or 4 NR iterations. The speedup of the proposed bypassing
strategy relies on the type of circuit and the partitioning method.
As we tested, the memory, PLL, and some mixed analog/digital
circuits can achieve an average acceleration of 35% and a maximum
acceleration of 45%.
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Table 1: Performance of parallel DC analysis for industrial circuits on the 2.6 GHz Intel(R) Xeon(R) CPU

Circuit Scale1 Nonlinear devices2 Blocks3 Serial arclength (s)4 Serial PALBBD (s)5 Speedup ratio6 Scalability7
p2 p4 p8 p16

sram_512K 3159178 3159136 16 29 21.22 1.37 1.48 3.81 5.81 7.50
alter_post_RC 70474 10521 16 99 97.13 1.02 1.66 3.55 6.36 6.97

sram16k 114675 114646 64 254 121.25 2.09 1.45 2.72 4.90 8.19
PADC 12586 11372 16 369 194.66 1.90 1.60 3.94 6.48 10.51

Divider_post_RC 53101 3504 8 41 16.95 2.42 1.59 3.17 3.80 3.91
kp_mip 36277 34623 16 205 92.66 2.21 1.78 3.31 6.02 7.19

kp_yt16_case2 36405 34623 16 215 84.72 2.54 1.74 3.24 5.76 7.94
access_cmg_post_C 48326 24405 32 918 781.08 1.18 1.63 3.64 6.73 12.56

normalx5 20011 20010 128 255 68.50 3.72 1.68 3.29 5.96 8.83
testx3_post 78206 4303 32 54 52.13 1.04 1.73 2.95 3.37 3.64

Average speedup ratio 1.63 3.36 5.52 7.72
1The number of total elements (without capacitor and inductor). 2The number of nonlinear devices.
3The number of sub-partitions of every circuit. 4The wall time of conventional arclength method on single thread.
5The wall time of PALBBD on single thread. 6Speedup of serial PALBBD over conventional method.
7Speedup of parallel PALBBD using 2,4,8,16 threads over serial version.
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Figure 8: The number ofNR iterations for each sub-partition
at each arclength step by using the proposed bypassing
strategy. The four colors represent those sub-partitions con-
verged after 1, 2, 3 or 4 NR iterations respectively at current
arclength step.

5 CONCLUSIONS
We presented the PALBBD approach exploiting the BBD-form ma-
trix with an accurate bypassing technique. To our knowledge, this
is the first work on the parallel arclength continuation method
for fast and accurate DC analysis in circuit simulation. The per-
formance is verified by industrial large-scale post-layout circuits.
Compared with the serial method, PALBBD achieves up to 73.93
times of acceleration on 16 threads. The proposed approach could
provide the possibility of an adaptive DC approach in the future,
where each sub-partition has different parameters and algorithms.
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