
Segmented Merge: A New Primitive for Parallel Sparse
Matrix Computations

Haonan Ji1 • Shibo Lu1 • Kaixi Hou2 • Hao Wang3 • Zhou Jin1 •

Weifeng Liu1 • Brian Vinter4

Received: 26 November 2020 / Accepted: 27 February 2021
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Segmented operations, such as segmented sum, segmented scan and segmented sort,

are important building blocks for parallel irregular algorithms. We in this work

propose a new parallel primitive called segmented merge. Its function is in parallel

merging q sub-segments to p segments, both of possibly nonuniform lengths which

easily cause the load balancing and the vectorization problems on massively parallel

processors, such as GPUs. Our algorithm resolves these problems by first recording

the boundaries of segments and sub-segments, then assigning roughly the same

number of elements for GPU threads, and finally iteratively merging the sub-seg-

ments in each segment in the form of binary tree until there is only one sub-segment

in each segment. We implement the segmented merge primitive on GPUs and

demonstrate its efficiency on parallel sparse matrix transposition (SpTRANS) and

sparse matrix–matrix multiplication (SpGEMM) operations. We conduct a com-

parative experiment with NVIDIA vendor library on two GPUs. The experimental

results show that our algorithm achieve on average 3.949 (up to 13.099) and 2.899

(up to 109.159) speedup on SpTRANS and SpGEMM, respectively.

Keywords Parallel computing � Segmented merge � Sparse matrix � GPU

1 Introduction

Since Blelloch et al. [1] reported that segmented operations can achieve better load

balancing than row-wise approaches in parallel sparse matrix-vector multiplication

(SpMV), several new parallel segmented primitives, such as segmented sum [2],

segmented scan [3] and segmented sort [4] have been developed for replacing their

ordinary counterparts, i.e., sum, scan and sort, in a few irregular sparse matrix

algorithms on many-core platforms such as GPUs.
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However, merge, another important fundamental routine in computer science,

has not received much attention from the view point of segmented operation.

Actually, it can be quite useful when both the input and the output matrices are

stored with indirect indices. One important higher level algorithm example is sparse

matrix–matrix multiplication (SpGEMM). It multiplies two sparse matrices A and B,
and generates one resulting sparse matrix C. When the nonzeros in each row of the

input sparse matrix B are sorted in the ascending order according to their column

indices, the basic operation needed is actually merge [5–11].

We in this paper first define a new primitive called segmented merge. It merges

q sub-segments to p segments, both of nonuniform lengths. The elements in each

sub-segment are ordered in advance. When all the sub-segments in one segment are

merged into one sub-segment of the same length as the segment containing it, the

operation is completed. In the SpGEMM scenario, the rows of B involved can be

seen as the sub-segments, and the rows of C can be seen as the segments.

Although the definition and a serial code of the segmented merge can be both

straightforward, designing an efficient parallel algorithm is not trivial. There are two

major challenges. The first one is the load balancing problem. It happens when the

lengths of the sub-segments and the segments are nonuniform, meaning that roughly

evenly assigning them to tens of processing units can be difficult. The second

challenge is the vectorization problem. It can be also hard to carefully determine a

similar amount of elements processed by thousands of SIMD lanes on many-core

processors such as GPUs.

To address the two challenges, we design an efficient parallel algorithm for the

segmented merge operation on GPUs. The algorithm first preprocesses the segments

and sub-segments, and records the boundaries of them for dividing the tasks. Then

our method uses a binary tree for merging sub-segments in a bottom-up manner.

The algorithm works in an iterative way and completes when each segment only has

one sub-segment. In the procedure, each pair of sub-segments are merged

independently by utilizing SIMD lanes, i.e., threads running on CUDA GPUs,

and each SIMD lane merges a similar amount of elements with serial merge.

We benchmark two sparse kernels, sparse matrix transposition (SpTRANS) and

SpGEMM, utilizing the segmented merge primitive on two NVIDIA Turing GPUs,

an RTX 2080 and a Titan RTX. By testing 956 sparse matrices downloaded from

the SuiteSparse Matrix Collection [12], the experimental results show that compared

to the NVIDIA cuSPARSE library, our algorithm accelerates performance of

SpTRANS and SpGEMM operation by a factor of on average 3.94 and 2.89 (and up

to 13.09 and 109.15), respectively.

2 Related Work

In this section, we introduce three existing segmented primitives: segmented sum

[1, 2], segmented scan [3] and segmented sort [4].
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2.1 Parallel Segmented Sum

When a parallel algorithm processes irregular data such as sparse matrices, it is

quite common to in parallel deal with arrays of different lengths. For example, in the

SpMV operation, multiplying a sparse matrix A and a dense vector x basically

equals computing the dot product of every sparse row of A with x. When the number

of nonzero entries in the rows are nonuniform, it is easy to encounter the load

imbalance issue on parallel processors, and thus to degrade performance [13].

To make the parallel SpMV operation more balanced, Blelloch et al. [1] proposed

the segmented sum primitive. The parallel operation has five steps: (1) first gathers

intermediate products into an array, (2) labels the indices and values in the same row

as a segment, (3) equally assigns the entries to independent threads, (4) then sums

the values belonging to the same segment up into one value and saves it, and (5)

finally sums the values across multiple threads to finish the operation. Figure 1 plots

an example of the parallel segmented sum. To further make the segmented sum

suitable for sparse matrices with empty rows, Liu and Vinter proposed a speculative

segmented sum [2].

2.2 Parallel Segmented Scan

The scan (also known as prefix-sum) operation sums all prefixes. For example, the

row pointer array of a sparse matrix in the compressed sparse row (CSR) format is

the result of scanning an array storing the number of nonzeros of the rows. Parallel

segmented scan is to scan multiple segments in parallel, and the result of each

segment is the same as that of a single scan. Besides the same load balancing

problem as the segmented sum, segmented scan is relatively more complex because

of dependencies between the prefixes.

Dotsenko et al. [3] proposed a relatively load balanced segmented scan algorithm

by using a novel data structure and reduced the consumption of shared memory on

GPU. This algorithm is divided into three steps: (1) stores the segments in an array

Fig. 1 An example of Blelloch’s algorithm using five threads (each processes one column) to find the
sum of eight segments (filled with the same color), and uses SUM and PRESENT arrays to store the
intermediate results of the split segments (Color figure online)
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and divides it into blocks of the same size, (2) each thread scan one segment and

rescans when it encounters a new segment, (3) if there is a segment spanning blocks,

the result of this segment is propagated. Figure 2 plots an example of the parallel

segmented scan.

2.3 Parallel Segmented Sort

The parallel segmented sort operation simultaneously makes keys or key-value pairs

in multiple segments ordered. It uses two arrays for storing a list of keys and a group

of header pointers of segments. In the procedure, each processing unit obtains the

information of the corresponding segment by accessing the segment pointer array,

then sorts each segment in serial or in parallel. Because of the nonuniform lengths of

the segments, load balancing issues often restrict the efficiency of the algorithm.

Hou et al. [4] presented an adaptive segmented sort mechanism on GPUs. It

proposed a differentiated method for eliminating irregularity in data distribution and

a register-based sorting method for accelerating short segments. The register-based

sorting algorithm has four steps: (1) gets the amount of tasks per thread, (2) converts

data into specific sequence by using shuffle functions, (3) stores data in threads into

different registers to perform swap operations, and (4) swaps the data in registers to

make them ordered. Figure 3 plots an example of the segmented sort.

3 Segmented Merge and Its Parallel Algorithm

3.1 Definition of Segmented Merge

We first define the segmented merge primitive here. Assuming we have a key-value

array

S ¼ fS1; S2; . . .; Spg; ð1Þ

Fig. 2 An example of Dotsenko’s algorithm using four threads (each for one block) to find the scan of six
segments (filled with the same color) (Color figure online)
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that includes p segments (i.e., sub-arrays1), and further a segment

Si ¼ fSi;1; Si;2; . . .; Si;qig; i 2 ½1; p�; ð2Þ

contains qi sub-segments. So we have

S ¼ fS1;1; S1;2; . . .; S1;q1 ; S2;1; S2;2; . . .S2;q2 ; . . .; Sp;1; Sp;2; . . .; Sp;qpg ð3Þ

Each sub-segment Si;j includes ni;j key-value pairs already sorted according to their

keys. The objective of the segmented merge operation is to let ni ¼
Pqi

j¼1 ni;j key-

value pairs in each segment Si ordered. Thus S eventually consists of p sorted

segments.

3.2 Serial Algorithm for Segmented Merge

A serial segmented merge algorithm can be represented as a multi-way merge,

meaning that each sub-segment of the same segment is regarded as a leaf node of a

binary tree and is merged in a bottom-up manner. Figure 4 shows an example of

merging eight sub-segments in to three segments using the segmented merge.

3.3 Simple Parallel Algorithm for Segmented Merge

Algorithm 1 shows a simple parallel pseudocode working in an iterative fashion

(lines 3–14): each segment (lines 4–12) can be processed in parallel, and each pair

of sub-segments (lines 7–11) can be also merged in parallel until each segment has

only one sub-segment.

Fig. 3 An example of Hou’s algorithm using four bins to store four segments (filled with the same color),
and calling reg-sort and smem-merge to sort the segments (Color figure online)

1 We in this paper call ‘‘sub-array’’ ‘‘segment’’, since each segment further includes at least one ‘‘sub-

segment’’. In this way, we can avoid using terms like ‘‘sub-array’’ and ‘‘sub-sub-array’’.
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Algorithm 1 A simple parallel segmented merge algorithm.
1: m split ← get split row num()
2: snum ← get seg num()
3: while m split = snum do
4: for each segment in parallel do
5: // Challenge 1: The combination of sub-segments of different
6: lengths in different segments may bring load imbalance
7: for each pair of sub-segments in segment in parallel do
8: // Challenge 2: Merging sub-segments of unequal length
9: is difficult to vectorize
10: serial merge(buff, segment info, segment id)
11: end for
12: end for
13: snum ← get seg num()
14: end while

It can be seen that there are two for loops in lines 4 and 7 respectively.

Although the two loops can be parallelized straightforward, their simple

implementation may bring suboptimal performance. In particular on many-core

processors running a large amount of threads, this approach may bring load

imbalance problem since the lengths of segments and sub-segments may be

imbalanced (see lines 5–6 and 8–9, respectively). This is the first challenge we face.

Such performance degradation from irregular data distribution is actually not

unusual in sparse matrix algorithms [7, 13, 14].

Fig. 4 An example showing the segmented merge algorithm. Here the segment pointer (including three
segments) points to the sub-segment pointer pointing to eight ordered sub-segments continuously stored
in the array. After the segmented merge, the eight sub-segments are merged into three ordered segments
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Algorithm 2 A parallel segmented merge algorithm
1: m split ← get split row num()
2: snum ← get seg num()
3: while m split = snum do
4: for each pair of sub-segments in segment in parallel do
5: tnum local ← get local thread num(segment ptr, sub-segment ptr)
6: tnum total ← get total thread num(tnum local)
7: end for
8: malloc(thread info, tnum total)
9: for each pair of sub-segments in segment in parallel do
10: thread id ← get thread id()
11: scatter thread info(thread info, thread id)
12: end for
13: for each thread in parallel do
14: gather thread info(thread info, thread id)
15: end for
16: for each thread in parallel do
17: serial merge using merge path(buff, thread info, thread id)
18: end for
19: snum ← get seg num()
20: free(thread info)
21: end while

3.4 Improved Parallel Algorithm for Segmented Merge on GPU

We propose a parallel algorithm for segmented merge. The main idea is to fix the

number of elements processed by a thread, and to merge the sub-segments in the

same segment in the form of binary tree until all sub-segments are merged. The

algorithm consists of three steps: (1) data preprocessing, (2) merging two sub-

sequences of each thread by using merge path, (3) merging sub-segments on binary

tree in an iterative way. Algorithm 2 shows a pseudocode of the parallel segmented

merge, and Fig. 5 gives an example.

The first step is data preprocessing (lines 4–15 in Algorithm 2). Its objective is to

record starting and ending positions of segments and sub-segments. We construct

two arrays of size pþ 1 and qþ 1, respectively, as two-level pointers (see the top

left of Figs. 4 and 5 ). Then, we set each thread’s workload to a fixed amount nnzpt,
and count the number of threads required in merging every pair of sub-segments

(line 5). As a result, each iterative step knows the total number of threads to be

issued (line 6). Then each sub-segment scatters a group of information, such as

global memory offset and segments size, to threads working on it (lines 9–12). After

that, each thread gathers information by running the partitioning strategy of the

standard merge path algorithm (lines 13–15).

The second step is merging sub-sequences of each thread by using merge path

(lines 16–18 in Algorithm 2). The merge operation of sub-segments is often

completed by multiple threads and these threads cooperate with each other and

merge sub-sequences through the merge path algorithm [15]. The merge path

algorithm is an efficient merge algorithm and has excellent parallelism. In its

procedure, each thread is responsible for processing partial sub-sequences without

123

International Journal of Parallel Programming



data correlation. First, the data in the sub-sequence corresponding to the thread is

compared multiple times to generate boundaries for splitting the two sub-sequences.

Then based on the target matrix, the data in the two sub-sequences are placed in the

output sequence according to the ‘path’ to complete the merge operation. In Fig. 5,

two examples of merging two groups of sub-sequences is shown in the pink dotted

box, and the two pairs of sub-sequences are merged with three threads.

The third step is merging sub-segments on the binary tree in an iterative way (the

while loop of lines 3–21 in Algorithm 2). According to the information obtained

from the above two steps, each sub-segment of the same segment can be seen as a

leaf node of a binary tree to merge, and multiple iterations may be needed. When the

pointers of segment and sub-segment are completely aligned, the iteration ends and

the sorting is completed. If there is a single sub-segment, it will not be processed at

all in the iteration (see the segment in light pink of Fig. 5). When the sub-segments

in the same segment are merged, they can be processed by the same warp of 32

threads in CUDA, but the sub segments in different segments can not cross different

warps. For example, when combining the blue and light blue sub-segments in

Fig. 5, although the thread elements do not reach a fixed number, they will not cross

warps. So, a large amount of threads can be saved for data in a power-law fashion

(i.e., several segments have much more sub-segments than the others). Moreover,

Fig. 5 An example showing the proposed segmented merge algorithm. Here the segment pointer
(including three segments) points to the sub-segment pointer pointing to eight ordered sub-segments
continuously stored in the array. There are two levels of arrays, with indexes on the top and values at the
bottom. After the segmented merge, the eight sub-segments are merged into three ordered segments. In
the computation, two thread blocks of two warps are used
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because all cores can be saturated, our segmented merge method can achieve good

load balancing on massively parallel GPUs.

4 Performance Evaluation

4.1 Experimental Setup

We on two NVIDIA Turing GPUs benchmark the SpTRANS and SpGEMM

functions calling the segmented merge primitive proposed, and compare them with

the corresponding functions in the NVIDIA cuSPARSE library v10.2. Table 1 lists

the two testbeds and the participating algorithms.

The matrix dataset is downloaded from the SuiteSparse Matrix Collection

(formerly known as the University of Florida Sparse Matrix Collection [12]). We

select all 956 relatively large matrices of no less than 100,000 and no more than

200,000,000 nonzero entries for the experiment.

4.2 Performance of SpTRANS using Segmented Merge

The SpTRANS operation transpose a sparse matrix A in the CSR format to its

transpose AT also in the CSR format. From the data structure point of view, the

operation is the same as converting A’s CSR format to its compressed sparse column

(CSC) format. In order to improve the performance of this operation, a lot of

optimization has been carried out [16–18].

To utilize higher computational power and bandwidth on GPUs, we design a new

SpTRANS algorithm using segmented merge proposed in this work. Specifically,

Table 1 The testbeds and participating SpTRANS and SpGEMM algorithms

The testbeds The participating SpTRANS and SpGEMM

algorithms

(1) An NVIDIA GeForce RTX 2080 (Turing TU104, 2944

CUDA cores @ 1.8 GHz, 10.59 SP TFlops, 331.2 DP

GFlops, 4 MB LLC, 8 GB GDDR6, 448 GB/s bandwidth,

driver v440.89)

(1) The SpTRANS function

cusparse?csr2csc() in cuSPARSE

v10.2

(2) An NVIDIA Titan RTX (Turing TU102, 4608 CUDA

cores @ 1.77 GHz, 16.31 SP TFlops, 509.76 DP GFlops,

6 MB LLC, 24 GB GDDR6, 672 GB/s bandwidth, driver

v440.89)

(2) The SpTRANS method using

segmented merge proposed in this work

(3) The SpGEMM function

cusparse?csrgemm() in cuSPARSE

v10.2

(4) The SpGEMM algorithm proposed by

Liu and Vinter [7]

(5) The SpGEMMmethod using segmented

merge proposed in this work
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the number of nonzeros are calculated firstly, then the nonzeros are inserted into the

transpose matrix in an unordered way using atomic operation. To keep the indices of

the nonzeros in each row of the transpose sorted, the segmented merge primitive is

called. For the long rows, they are cut into smaller pieces that can be sorted

independently by utilizing on-chip shared memory. Then the long rows can be seen

as segments, and the sorted pieces are processed as sub-segments. Thus the

segmented merge primitive can be used naturally.

Figure 6 shows the abstract performance (in GB/s) and relative speedups of

SpTRANS in cuSPARSE and using our segmented merge method on NVIDIA RTX

2080 and Titan RTX GPUs. It can be seen that in most cases our method is faster

than cuSPARSE. The average speedup on the two GPUs can reach 3.559 (up to

9.649) and 3.949 (up to 13.099), respectively. For matrices with many short rows

and balanced distribution, such as igbt3 matrix, our algorithm dynamically

determines the optimal number of threads to be used in each iteration. Therefore,

our algorithm has a good performance for igbt3 matrix and achieves the speedup of

13.099 over cuSPARSE.

4.3 Performance of SpGEMM Using Segmented Merge

The SpGEMM operation computes C ¼ AB, where the three matrices are all sparse.

The most used fundamental approach for SpGEMM is the row-row method

proposed by Gustavson [19]. Its parallel implementation can be straightforward.

Each thread traverses the nonzeros of a row of A, and uses the values to scale all

entries of the corresponding rows of B, then merges the scaled entries into the row

of C. The function for this procedure is also called sparse accumulator and has been

studied by much research [6, 7, 20–23].

(a) RTX 2080 (b) Titan RTX

Fig. 6 Comparison of two SpTRANS methods in cuSPARSE and using the segmented merge primitive
on two NVIDIA GPUs. The x-axis represents the density (the ratio of the number of nonzeros to the
multiply of the number of rows and columns) of the matrices tested
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The SpGEMM algorithm tested is an improved version of the SpGEMM

approach in bhSPARSE developed by Liu and Vinter [7]. In the original

implementation, the authors assign the workload for computing the rows of C to

37 bins according to the floating point operations needed for the rows. The first 36

bins process relatively short rows, and the last bin is designed to process the rows of

a large mount of nonzeros. For the rows in the last bin, the entries cannot be placed

into on-chip shared memories, thus global memory has to be used. Hence the

segmented merge is used for calculating the long rows, by first saving the scaled

rows from B (as sub-segments) onto global memory and then merging the sub-

segments belonging to the same row of C (as a segment). Note that all the rows, i.e.,

segments, in the last bin are involved in one segmented merge computation.

Figure 7 plots the performance of SpGEMM in cuSPARSE, bhSPARSE and

bhSPARSE with segmented merge on NVIDIA RTX 2080 and Titan RTX GPUs. It

can be seen that the performance of our method is significantly better than

cuSPARSE and bhSPARSE. On RTX 2080, the speedups over the two methods

reach on average 2.899 (up to 109.159) and 1.269 (up to 7.59), respectively. On

Titan RTX, the speedups are on average 2.539 (up to 81.859) and 1.229 (up to

17.389), respectively. Taking the webbase-1M matrix with many long rows as an

example, cuSPARSE cannot evenly distribute the data to cores, and bhSPARSE can

only use one thread block for each long row, meaning the two libraries actually

underuse the GPUs. But because our algorithm avoids dealing with a long row in a

thread by evenly dividing all elements to thread, our algorithm obtain 5.859 and

2.319 speedups over cuSPARSE and bhSPARSE, respectively.

(a) RTX 2080 (b) Titan RTX

Fig. 7 Comparison of three SpGEMM methods computing A2: cuSPARSE, bhSPARSE [7] and
bhSPARSE using segmented merge. The x-axis is compression rate, i.e., the ratio of the number of
intermediate nonzeros to nonzeros in C
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5 Conclusion

In this paper, we have defined a new primitive called segmented merge, and

presented an efficient parallel algorithm achieving good load balancing and SIMD

unit utilization on GPUs. The experimental results show that two sparse matrix

algorithms, SpTRANS and SpGEMM, using our parallel segmented merge are

greatly faster than existing methods in cuSPARSE and bhSPARSE.
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