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ABSTRACT
The sparse triangular solve (SpTRSV) kernel is an important build-

ing block for a number of linear algebra routines such as sparse

direct and iterative solvers. The major challenge of accelerating

SpTRSV lies in the difficulties of finding higher parallelism. Existing

work mainly focuses on reducing dependencies and synchroniza-

tions in the level-set methods. However, the 2D block layout of the

input matrix has been largely ignored in designing more efficient

SpTRSV algorithms.

In this paper, we implement three block algorithms, i.e., column

block, row block and recursive block algorithms, for parallel Sp-

TRSV on modern GPUs, and propose an adaptive approach that

can automatically select the best kernels according to input spar-

sity structures. By testing 159 sparse matrices on two high-end

NVIDIA GPUs, the experimental results demonstrate that the re-

cursive block algorithm has the best performance among the three

block algorithms, and it is on average 4.72x (up to 72.03x) and 9.95x

(up to 61.08x) faster than cuSPARSE v2 and Sync-free methods,

respectively. Besides, our method merely needs moderate cost for

preprocessing the input matrix, thus is highly efficient for multiple

right-hand sides and iterative scenarios.
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• Mathematics of computing→ Solvers; Mathematical soft-
ware performance; • Computing methodologies → Shared
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KEYWORDS
sparse matrix, sparse triangular solve, block algorithm, GPU

ACM Reference Format:
Zhengyang Lu, YuyaoNiu, andWeifeng Liu. 2020. Efficient BlockAlgorithms

for Parallel Sparse Triangular Solve. In 49th International Conference on Par-
allel Processing - ICPP (ICPP ’20), August 17–20, 2020, Edmonton, AB, Canada.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3404397.3404413

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8816-0/20/08. . . $15.00

https://doi.org/10.1145/3404397.3404413

1 INTRODUCTION
The sparse triangular solve (SpTRSV) operation solves a linear

system of the form Lx = b (orUx = b), where L (orU ) is a sparse

lower (or upper) triangular matrix, b is a dense right-hand side

vector, and x is the dense resulting vector to solve. In a number of

algorithms for linear solvers, the SpTRSV kernel is extensively used

for completing the solve phase of sparse direct solvers [1, 4, 5, 27,

28, 33, 38, 46] and for accelerating convergence of preconditioned

sparse iterative solvers [8, 9, 11, 13, 25, 45, 62, 73].

Compared with other sparse basic linear algebra subprograms

(BLAS) [48] such as sparse transposition [77], sparse matrix-vector

multiplication (SpMV) [52, 53] and sparse matrix-matrix multiplica-

tion (SpGEMM) [41, 47, 51, 83], SpTRSV is in general more difficult

to parallelize due to the possible dependencies between the compo-

nents of the solution vector. Such dependencies lead to that solving

a component xi may have to wait until its previous components

x0, . . . ,xi−1 have been solved. Such inherent sequential execution

makes SpTRSV one of the most crucial performance bottlenecks

of direct solvers with multiple right-hand sides [30, 54, 65] and

incomplete factorization preconditioners [13, 26, 45].

Fortunately, much research has demonstrated that it is possi-

ble to parallelize SpTRSV. Anderson and Saad [7] and Saltz [64]

have seen SpTRSV as a graph problem, and proposed the level-set

methods that divide the components into multiple sets in which

components can be solved in parallel. But because of the depen-

dencies between the sets, costly global barrier synchronizations

have to be added between the process of the level-sets. To reduce

the overhead of the synchronizations, Park et al. [60] developed

point-to-point synchronizations for CPUs, and Liu et al. [49, 50]

proposed synchronization-free algorithms for replacing the syn-

chronizations with atomic operations on GPUs. Besides, several

colour-set methods [43, 59, 67] and iterative methods [8, 11, 25]

have also been developed for achieving higher parallelism.

Moreover, another direction of research focused on exploiting

the spatial structure of the input matrix. The basic idea is that a

triangular matrix can be divided into multiple smaller triangular

sub-matrices and rectangular/square sub-matrices. The triangular

ones still need triangular solves, but the rectangular/square parts

could be processed by matrix-vector multiplication with possibly

much better parallelism. For better accelerating dense triangular

solve on GPUs, Hogg [40] and Charara et al. [20, 21] demonstrated

that column and recursive block formulations perform very well

due to higher parallelism from dense matrix multiplications.

However, for the sparse cases, the block methods have not been

seen as an effective way to improve SpTRSV. Mayer [56] showed

that none of the various blocking methods tested for SpTRSV can

https://doi.org/10.1145/3404397.3404413
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give noticeable performance gain. The Sparse Level Tile format

proposed by Wang et al. [78] utilized irregular 2D tiles and was

optimized for specific register communications on Sunway proces-

sors, but is not necessarily generalizable to a wide range of parallel

devices such as GPUs. Bradley [14] developed a blocking method,

but only worked best for relatively dense triangular matrices factor-

ized from LU decomposition. On distributed memory systems, Liu

et al. [54] developed a new method for the 2D cyclic block layout

in the SuperLU_DIST direct solver package. But its shared memory

part still calls level-set methods.

Because of the aforementioned concerns, we in this paper de-

velop efficient block algorithms for parallel SpTRSV. We first imple-

ment three block algorithms for accelerating SpTRSV on modern

GPUs. The three algorithms divide the input triangular matrix into

a number of column blocks (each including a triangular sub-matrix

and a rectangular sub-matrix), row blocks (each including a rectan-

gular sub-matrix and a triangular sub-matrix), and recursive blocks

(each including two triangular sub-matrices and a square or near-

square sub-matrix), respectively. Through a theoretical analysis

and running some experiments, we find that the recursive block

algorithm gives the best performance among the three block al-

gorithms. Thus we further improve its performance by using a

new data format. In addition, we propose an adaptive method that

automatically selects the best SpTRSV and SpMV kernels for the di-

vided triangular sub-matrices and square sub-matrices, respectively,

depending on their sparsity structures.

The recursive block algorithm we proposed have obvious advan-

tages over the level-set and Sync-free parallel SpTRSV methods on

GPUs. We implement our approaches on NVIDIA GPUs, and com-

pare them with the existing fastest algorithms including NVIDIA

cuSPARSE v2 in CUDA 10.2 [58] and the Sync-free method [50]. We

use all 159 matrices, of the number of rows/columns no less than

500,000 and of the number of nonzero entries between 5,000,000

and 500,000,000, from the SuiteSparse Matrix Collection [29] as

our dataset. The GPU platforms used include an NVIDIA Titan

X (Pascal) and an NVIDIA Titan RTX (Turing). The experimental

results demonstrate that our method brings on average 4.72x (up to

72.03x) and 9.95x (up to 61.08x) speedups over the latest cuSPARSE

v2 and Sync-free algorithms, respectively. Also, the preprocessing

cost of our method takes only on average 9.16x execution time of a

single SpTRSV operation. When a large amount of SpTRSV is called

after the preprocessing, this cost can be easily amortized.

This work makes the following contributions:

• We implement three (i.e., column, row and recursive) block

algorithms for parallel SpTRSV on GPUs.

• We propose an adaptive method to automatically select the

best SpTRSV and SpMV kernels to maximize performance.

• We evaluate our approach by using 159 matrices and obtain

significant speedups over cuSPARSE and Sync-free methods.

2 BACKGROUND
2.1 Preliminaries
2.1.1 Serial SpTRSV. Because of the inherently sequential char-

acteristic, it is natural to solve a triangular system in serial. Algo-

rithm 1 lists a typical serial implementation for solving Lx = b.
The input matrix L is stored in the compressed sparse row (CSR)

format, which consists of three arrays row_ptr, col_idx and val.
The array left_sum stores the sums of the products of the com-

ponents of x already calculated with their corresponding nonzero

entries in the rows (lines 3–5). After that, the current xi is solved
by dividing (bi - left_sumi ) with the diagonal entry (line 7). It can

be seen that the solution of each single component xi depends on
its previous components x0, . . . ,xi−1. Therefore SpTRSV cannot be

simply parallelized based on Algorithm 1.

Algorithm 1 A serial algorithm for CSR-SpTRSV.

1: function sptrsv-serial()

2: for i = 0 to n − 1 do
3: for j = row_ptr[i] to row_ptr[i + 1]−2 do
4: left_sum[i]← left_sum[i] + val[j] × x[col_idx[j]]
5: end for
6: x[i]← (b[i]-left_sum[i])/val[row_ptr[i + 1]−1]
7: end for
8: end function

2.1.2 Level-set Parallel SpTRSV. The level-set algorithm proposed

by Anderson and Saad [7] and Saltz [64] is a typical method for

exploiting possible parallelism in the input matrix. This method

sees a matrix as a graph and divides its components into multiple

sets. The components in each set do not depend on each other, so

they can be solved in parallel. Algorithm 2 shows the procedure

including a preprocessing stage for finding the level-sets (lines

1–11) and an execution stage for consuming the parallelizable level-

sets one by one (lines 12–22). Taking the problem in Figure 1 as an

example, the input matrix L of 15 nonzeros can generate a graph

of four level-sets. Due to the dependencies, the components in a

level must wait for the calculation of other components in its upper

levels. For example, x2, x3 and x4 can be solved in parallel after x0,
x1 and x6 are completed. In the whole process, levels 0 and 1 can

utilize parallelism, and levels 2 and 3 still have to run in serial.

Algorithm 2 A simplified level-set algorithm for CSR-SpTRSV.

1: function preprocess-levelset()

2: for l i = 0 to n − 1 do
3: for i = 0 to n − 1 do
4: if dependencies(i )= 0 then
5: level_ptr[l i]++
6: insert(level_item, i )
7: end if
8: end for
9: end for
10: prefix-sum(level_ptr, n + 1)
11: end function
12: function sptrsv-levelset()

13: for l i = 0 to nlevel − 1 do
14: for i =level_ptr[l i] to level_ptr[l i + 1]−1 in parallel do
15: for j = row_ptr[level_item[i]] to row_ptr[level_item[i]+1]−1 do
16: left_sum[i]← left_sum[i] + val[j] × x[col_idx[j]]
17: end for
18: x[i]← (b[i]-left_sum[i])/val[row_ptr[i + 1]−1]
19: end for
20: //barrier synchronization
21: end for
22: end function

2.1.3 Synchronization-Free Parallel SpTRSV. The main objective of

the Synchronization-free approach, or Sync-free for short, proposed

by Liu et al. [49, 50] is to reduce the cost of generating level-sets

(lines 1–11 in Algorithm 2) and to eliminate the costly barrier syn-

chronizations between the sets at runtime (line 20 in Algorithm 2)

by using fast atomic operations on GPUs. Algorithm 3 explains a
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Figure 1: An example of an 8-by-8 sparse lower triangular
matrix L and its corresponding level-set form.

simplified Sync-free process. Through a light-weight preprocess-

ing stage (lines 1–5 in Algorithm 3), each component knows how

many entries have to be computed in advance (i.e., the number

of dependent entries, or the in-degree of the component, or the

number of nonzero entries of the row excluding the diagonal entry).

Then in the solve phase, each component xi is processed by a GPU

working unit (e.g., a 32-thread warp in CUDA). It firstly busy-waits

until its dependencies are removed (lines 8–10), then starts to com-

pute xi (line 11) and notifies all the later entries that depend on

xi by atomic updates (lines 12–15). As can be seen, compared to

the level-set methods calling multiple GPU kernels (lines 13–21 in

Algorithm 2), Sync-free method only issues one GPU kernel (lines

6–17 in Algorithm 3), and no explicit synchronizations are needed.

Note that Algorithm 3 processes the input matrix in the compressed

sparse column (CSC) format, and a CSR version of the Sync-free

method is given by Dufrechou and Ezzatti [36].

Algorithm 3 A simplified Sync-free algorithm for CSC-SpTRSV.

1: function preprocess-syncfree()

2: for i = 0 to nnz − 1 in parallel do
3: atomic-incr(&in_degree[row_idx[i]])
4: end for
5: end function
6: function sptrsv-syncfree()

7: for i = 0 to n − 1 in parallel do
8: while in_degree[i] , 1 do
9: //busy wait
10: end while
11: x[i]← (b[i]-left_sum[i])/val[col_ptr[i]]
12: for j = col_ptr[i]+1 to col_ptr[i + 1]−1 in parallel do
13: atomic-add(&left_sum[row_idx[j]], val[j] × x[i])
14: atomic-decr(&in_degree[row_idx[j]])
15: end for
16: end for
17: end function

2.2 Motivation
In spite of the success in achieving parallelism and reducing syn-

chronizations, the level-set and Sync-free algorithms overly focused

on the graph form of the input matrix, but largely ignored its 2D

spatial structure. As a result, some critical performance issues, such

as low data locality, load imbalance and inadequate parallelism, are

hard to be addressed. Hence in this paper, we see the matrix as a

matrix and exploit its 2D spatial structure for improving SpTRSV

performance.

Firstly, the locations of x and b can be accessed very randomly,

thus level-set and Sync-free methods are likely to encounter a high

cache miss rate. In particular when the input matrix becomes larger

and more irregular, the cache miss rate tends to worsen [22, 44, 85,

86]. According to the research by Wolf et al. [82] and Wittmann

et al. [81], bad cache locality can be the most crucial performance

bottleneck of SpTRSV. Thus we aim to make the data locality bet-

ter, through dividing the triangular matrix into a series of smaller

triangular and rectangular/square sub-matrices. Thus the nonzero

entries in each of the small parts are stored more tightly. This helps

a cache of limited size to store more usable entries of x and b for

better data locality.

Secondly, neither level-set nor Sync-free method considered

relieving the load balancing problem. Some sparse matrices, in

particular the ones from circuit simulation and network analysis

problems, obey the power-law distribution, meaning that some very

long rows or columns may dominate the execution time of SpTRSV.

This makes the performance even worse on modern massively

parallel processors such as GPUs. So we in this work will exploit

2D block layouts to naturally cut those long rows and columns

into shorter segments. This can better saturate GPUs and avoid

the performance degradation brought by the small number of very

long rows and columns.

Thirdly, it is well known that SpMV in general has better paral-

lelism than SpTRSV. However, if we see the input triangular matrix

as a graph, it is hard to exploit the potential parallelism inside its

matrix form. In studies on dense triangular solve, Hogg [40] and

Charara et al. [20, 21] already utilized various 2D blocking meth-

ods and converted part of the triangular solve computations to

matrix-vector multiplication. Also, it is easy to see that the finer the

triangular matrix is divided, the more nonzeros will be partitioned

into the rectangular/square parts. However, existing research using

this spatial characteristic for sparse matrices either brings little

performance gain [14, 56], or is specialized to specific architec-

tures [78]. Therefore, we in this paper will find the best formulation

from various blocking methods and their parameters, and accelerate

SpTRSV on modern GPUs.

3 BLOCK ALGORITHMS
In this section, we first implement three block algorithms (i.e., col-

umn block, row block and recursive block algorithms) for parallel

SpTRSV (Section 3.1). Then according to a comparison of the exe-

cution features, we find that the recursive block algorithm brings

the best performance among the three approaches (Section 3.2).

Therefore, we further optimize the recursive block algorithm by

rearranging nonzeros (Section 3.3). Finally we introduce an adap-

tive method that automatically selects the best SpTRSV and SpMV

kernels for executing the sub-matrices (Section 3.4).

3.1 Implementation of Three Block Algorithms
3.1.1 Column Block Algorithm. A matrix can be divided into a

number of column blocks, and each one consists of a triangular sub-

matrix on top and a rectangular sub-matrix on bottom. Figure 2(a)

shows an example matrix of four column blocks, and Algorithm 4

lists a solve pseudocode of the solve kernel. The resulting vector

x is solved segment by segment. Each segment xsi is solved by

executing an SpTRSV function on the sith triangular part (line 3).

Once xsi is solved, it is used to multiply the rectangular part with

an SpMV kernel, and a new right-hand side bsi is generated for the
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rest of the computation (lines 4–6). In the example, four SpTRSV

and three SpMV kernels are called.

Algorithm 4 A column block algorithm for SpTRSV.

1: function sptrsv-column-block(nseд)
2: for si = 0→ nseд − 1 do
3: xsi ← sptrsv( blk-trisi , bsi )
4: if si , nseд − 1 then
5: bsi+1 ← spmv(blk-recsi , xsi , bsi )
6: end if
7: end for
8: end function

Figure 2: Three block algorithms implemented. The arrows
indicate the processing order of the blocks. The bold blue
and red lines means reading x and updating b, respectively.

3.1.2 Row Block Algorithm. Similar to the column block algorithm,

the row block algorithm cuts a matrix horizontally. Now each row

block includes a rectangular sub-matrix on the left and a triangular

sub-matrix on the right. For each row block, the rectangular part

is first consumed by an SpMV, then an SpTRSV is issued for the

triangular part. Figure 2(b) gives an example of four row blocks,

and Algorithm 5 lists a pseudocode.

Algorithm 5 A row block algorithm for SpTRSV.

1: function sptrsv-row-block(nseд)
2: for si = 0→ nseд − 1 do
3: if si , 0 then
4: bsi ← spmv(blk-recsi , xsi−1 , bsi )
5: end if
6: xsi ← sptrsv( blk-trisi , bsi )
7: end for
8: end function

3.1.3 Recursive block Algorithm. Unlike the former column and

row block methods, recursive block approach divides a triangular

matrix into two smaller triangular and one square or near square

blocks, and the two triangular sub-matrices could be further recur-

sively divided into the three parts. For each triangular sub-matrix

divided, two SpTRSV and one SpMV kernels are executed. The

example matrix in Figure 2(c) is divided with a recursion depth

2, and gets four triangular and three square blocks to compute.

Algorithm 6 shows a process of recursive block algorithm.

3.2 Comparison of the Three Block Algorithms
Even though the three block algorithms execute the same number

of SpTRSV and SpMV kernels and process the same number of

nonzero entries, the performance of them can be different. The

Algorithm 6 A recursive block algorithm for SpTRSV.

1: function sptrsv-recursive-block(depth)
2: if depth = 0 then
3: x← sptrsv(tri, b)
4: else
5: xdepth ← sptrsv-recursive-block(tri-topdepth , depth − 1) ▷ Recursion

6: bdepth ← spmv(recdepth , xdepth , bdepth )

7: xdepth ← sptrsv-recursive-block(tri-bottomdepth , depth − 1) ▷ Recursion

8: end if
9: end function

major difference is from the SpMV part. As can be seen from the

three examples in Figure 2, the total length of the bold blue lines

indicates that the right-hand sideb can be updated at different times,

and the total length of the bold red lines shows that the solved part

of the solution vector x will be loaded/cached at different times.

Tables 1 and 2 quantify the difference on updating b and reading

x , respectively (x in Tables 1 and 2 means iterations). It is clear to

see that the column block method has obvious disadvantage on

updatingb, and the row blockmethod spends significant longer time

on loading x . But fortunately, the recursive block algorithm achieves

a good tradeoff between the column and row block methods.

Table 1: The number of items updated to right-hand side b.

Method

Formula #triangular parts divided

(n is #rows) 4 16 256 65536

col. block 2
x−1n + 0.5n 2.5n 8.5n 128.5n 32768.5n

row block 2n − 2−xn 1.75n 1.94n 1.99n 1.99n

rec. block 0.5nx + n 2n 3n 5n 9n

Table 2: The number of items loaded from solution vector x .

Method

Formula #triangular parts divided

(n is #rows) 4 16 256 65536

col. block n − 2−xn 0.75n 0.94n 0.99n 0.99n

row block 2
x−1n − 0.5n 1.5n 7.5n 127.5n 32767.5n

rec. block 0.5nx n 2n 4n 8n

Although the above theoretical analysis is for dense cases, the

same trend is confirmed through benchmarking sparse matrices.We

evaluate the three block algorithms by running two representative

sparse matrices (see the third and fourth matrices in Table 4) on

an NVIDIA Titan RTX GPU (see Table 3) and plot their execution

time on SpMV in Figure 4. As can be seen, the SpMV kernels in

recursive block algorithm almost always take less overhead than

the column and row block methods. As a result, we in this paper

will focus on further accelerating the recursive block data structure

and algorithm.
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Figure 3: An example sparse matrix L is reordered, blocked, stored and executed in a fast recursive block algorithm.

Figure 4: The execution time (in milliseconds) of the SpMV
part of the three block algorithms on two sparse matrices.

3.3 Improved Recursive Block Data Structure
Although the standard recursive implementation listed in Algo-

rithm 6 can work well, it often takes more memory than a loop

implementation of the same function. Therefore we convert the

input matrix into a new representation optimized for a loop version

of the recursive block algorithm. The conversion is conducted in a

preprocessing stage for SpTRSV. Its main function is to alternately

store the triangular and square sub-matrices in the execution order

shown in Figure 2(c).

Besides, we sort the components, i.e., both rows and columns, of

any triangular matrix according to its level-set order. This means

that the components in the same level-set are “physically” (if not

consider virtual memory addressing) moved together. This will in

general bring better cache utilization, and may bring more nonzeros

into the square parts, since components with more nonzeros are

more likely to move backwards but not to the very end.

Figure 3(a) plots an original input matrix L. It is reordered accord-
ing to its level-set order and turned into Figure 3(b). Then its two

triangular parts are further reordered according to their level-set

orders, and the resulting matrix is the one shown in Figure 3(c).

It can be seen that the number of nonzeros in the square part of

Figure 3(b) is 11, which is higher than 8, i.e., the number of nonzeros

in the same area of Figure 3(a). Obviously, through the reordering,

more nonzeros are concentrated in square parts to achieve better

parallel performance.

After reordering the sparse triangular matrix, the next step is to

store it into a series of arrays. We assume the input matrix is in the

CSC format including col_ptr, row_idx and val arrays as shown

in the top three arrays in Figure 3(d). Once it is reordered and saved

as three sub-matrices, the triangular parts can be still saved in CSC,

but the square parts should be transposed into CSR for using faster

SpMV kernel. Although now the CSC and CSR are mixed together,

their arrays can be still stored continuously. As can be seen, the

blue items in the three arrays in the middle of Figure 3(d) store the

CSR data of the square part between the two CSC sub-matrices.

When the matrix is further blocked into seven sub-matrices, the

two CSC sub-matrices are further stored with the same layout. In

the bottom of Figure 3(d), two new squares are in light green and

purple, and the triangular parts are in orange and light yellow. Note

that for brevity, we assume the diagonal is saved separately.

In addition, the square blocks may be very sparse, meaning

that a large portion of rows are probably empty. In such case, we

use a method similar to the DCSC format proposed by Buluç and

Gilbert [15] and store the CSR data with a simplified row pointer
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Figure 5: Two heatmaps demonstrating the best matches of the areas and the fastest SpTRSV and SpMV kernels.

with an extra array saving the actual indices. We call this format

DCSR in the paper. The last array in Figure 3(d) shows an example

for saving the third square block of three nonzeros in DCSR.

3.4 Adaptive Kernel Selection for SpTRSV and
SpMV in Recursive Block Algorithm

After the input matrix is divided and stored, the next step is to com-

pute the small triangular and square blocks with SpTRSV and SpMV

kernels, respectively. There have been a number of data structures

and algorithms accelerating SpTRSV and SpMV on GPUs. Although

most of them demonstrated good performance, they often need to

convert the input matrix into a new and more complex format and

add several auxiliary arrays. To avoid introducing extra complexity,

we in this work use the most basic parallel implementations for

SpTRSV and SpMV in our recursive block algorithm.

However, even selecting a basic SpTRSV or SpMV implemen-

tation working best for a specific sparsity structure is non-trivial.

There are basically four kinds of sparsity structures in the smaller

triangular matrices: (1) diagonal structure that contains only a diag-

onal and gives perfect parallelism for SpTRSV, (2) highly parallel
structure that includes just a small number of level-sets and may

be good for calling basic level-set algorithm using a thread or a

32-thread warp for solving one component, (3) less highly parallel
structure of tens of or more than hundreds of levels, and the level-

set methods normally will not give good performance because of

inadequate parallelism. So the Sync-free algorithm using a warp

for one component can be utilized, and (4) near serial structure
that could not be well performed by level-set or Sync-free, but
is found to be working well with cuSPARSE. In this case, we call

cuSPARSE kernel for them.

As for the square matrices, we categorize them into two kinds

of sparsity structures: (1) structure with short rows, and (2) structure
with long rows. They are computed by scalar-CSR and vector-CSR
SpMV kernels, respectively. The difference is that the former uses

one thread for computing one row, and the latter uses one warp for

one row. Moreover, some very sparse square sub-matrices can be

saved in the DCSR format mentioned in Section 3.3. So when the

number of empty rows is high enough, two more SpMV kernels

named scalar-DCSR and vector-DCSR can be called.

We now have in total four kernels for SpTRSV and four kernels

for SpMV, and need to find critical parameters and thresholds to

decide which kernel should be called for a given sub-matrix. For

SpTRSV kernel selection, we introduce two critical parameters: (1)

nnz/row indicating the average row length of a sub-matrix, and

(2) nlevels giving the number of level-sets in the triangular part.

For SpMV kernel selection, we also use two parameters: (1) the

nnz/row mentioned above, and (2) emptyratio reflecting the ratio

of the number of empty rows and the total number of rows.

On the basis of the available kernels, we propose an adaptive ap-

proach to select the best thresholds for the parameters. Specifically,

we divide the 159 sparse matrices (see Section 4.1 for details) into

sub-matrices of various sizes, and run all kinds of kernels on the

Titan RTX GPU (see Table 3) to collect a large amount of perfor-

mance data. Specifically, 203,251 sets of SpTRSV performance data

and 170,563 sets of SpMV data are collected. Each set of the data

includes the two parameters (i.e., nnz/row and nlevels for SpTRSV,
and nnz/row and emptyratio for SpMV) and the performance in

GFlops of all kernels. Then it is easy to find the fastest kernel for

the corresponding parameter pair. For different sub-matrices with

the same parameter values, we select the kernel providing overall

fastest performance as the best kernel for matching the feature.

Figures 5(a) and (b) plot the best SpTRSV and SpMV kernels se-

lected, respectively, according to the 373,814 sets of performance

data.

Figure 5(a) shows that level-setworks best in two scenarios: (1)
nnz/row ≤ 15 and nlevels ≤ 20, or (2) nnz/row = 1 and nlevels
≤ 100. When nlevels> 20000, cuSPARSE is the fastest. In the other

area, Sync-free is almost always the best choice. Note that the

completely parallel case (i.e., only containing a diagonal) is easily

selected and not plotted in the figure.

In Figure 5(b), it can be seen that when nnz/row ≤ 12, the ker-

nels scalar-CSR and scalar-DCSR work best when emptyratio
≤ 50% and emptyratio > 50%, respectively. When nnz/row > 12,

vector-CSR and vector-DCSR should be used for emptyratio ≤
15% and emptyratio > 15%, respectively.
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Figure 6: The two sub-figures on top show performance (in GFlops) of the three SpTRSV methods on the two GPUs. The four
sub-figures on bottom show the speedups (in loд10 scale) of our block algorirthm over the cuSPARSE v2 and Sync-freemethods.

It is worth noting that the thresholds selected above are in gen-

eral not the optimal choice (i.e., not all cells in the selected areas in

Figures 5(a) and (b) have exactly the same color). But nevertheless

we still use the adaptive selection depending on the large amount of

test data for making our algorithm both simple and fast. According

to the thresholds, Algorithm 7 gives a decision tree for selecting

the best kernels in the improved recursive block algorithm.

Algorithm 7 An improved recursive block algorithm for SpTRSV.

1: function improved-recursive-block-algorithm(nseд)
2: for si = 0→ nseд − 1 do
3: if inf o[si].shape == tr ianдle then
4: if nlevels[si]== 1 then
5: xsi ← sptrsv-completelyparallel(bsi ,inf o[si])
6: else if nlevels[si]> 20000 then
7: xsi ← sptrsv-cusparse(bsi ,inf o[si])
8: else if (nnz/row[si]== 1 and nlevels[si]≤ 100) or (nnz/row[si]≤ 15 and

nlevels[si]≤ 20) then
9: xsi ← sptrsv-level-set(bsi ,inf o[si])
10: else
11: xsi ← sptrsv-sync-free(bsi ,inf o[si])
12: end if
13: else if inf o[si].shape == square then
14: if nnz/row[si]≤ 12 and emptyratio[si]≤ 50% then
15: bsi ← spmv-scalar-CSR(xsi ,bsi ,inf o[si])
16: else if nnz/row[si]≤ 12 and emptyratio[si]> 50% then
17: bsi ← spmv-scalar-DCSR(xsi ,bsi ,inf o[si])
18: else if nnz/row[si]> 12 and emptyratio[si]≤ 15% then
19: bsi ← spmv-vector-CSR(xsi ,bsi ,inf o[si])
20: else if nnz/row[si]> 12 and emptyratio[si]> 15% then
21: bsi ← spmv-vector-DCSR(xsi ,bsi ,inf o[si])
22: end if
23: end if
24: end for
25: end function

The last parameter should be decided is the depth of recursion.

We select to constantly divide the matrix until the number of rows

of the next smallest block is less than 20 times of the GPU core

counts (e.g., on Titan RTX of 4608 CUDA cores, the block size should

not be smaller than 92160), since we find that this is in general the

smallest problem size can well saturate the high-end GPUs tested.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
We on two NVIDIA GPUs, i.e., a Pascal architecture Titan X and a

Turing architecture Titan RTX, evaluate three SpTRSV algorithms,

i.e., a level-set method in cuSPARSE v2 of CUDA v10.2 [58], a Sync-

free method [50] and the recursive block algorithm proposed in

this paper. The platforms and the methods are listed in Table 3.

Table 3: The two GPUs and three algorithms evaluated.

Two NVIDIA GPUs Three algorithms

(1) Titan X (Pascal), 3072 CUDA cores (1) cuSPARSE v2 [58]

@ 1075 MHz, 12 GB, B/W 336.5 GB/s (2) Sync-free [50]

(2) Titan RTX (Turing), 4608 CUDA cores (3) Recursive block

@ 1770 MHz, 24 GB, B/W 672 GB/s algorithm (this work)

From the SuiteSparse Matrix Collection [29] we select 159 sparse

matrices. They are selected through three filter conditions: (1)

square matrices, (2) the number of rows should be no less than

500,000, and (3) the number of nonezeros should be no less than

5,000,000 and no greater than 500,000,000. Their lower triangular

parts (plus a diagonal to avoid singular) are tested in Lx = b. All
tests run 200 times, and the average performance is reported.

We also selected six representative matrices of various sparsity

structures for more precise comparison. Detailed features and per-

formance data are listed in Table 4.

4.2 SpTRSV Performance Comparison
The performance data of the three methods on the two GPUs are

shown in Figure 6. For brevity, only the results in double precision

are plotted. As can be seen, our block algorithm performs much

better than cuSPARSE and Sync-free, and is almost never slower

than them. Specifically, on Titan X, compared to cuSPARSE, our

method obtains an average of speedup of 5.00x, and the best speedup

is 113.84x, occurs in matrix ‘mawi_201512012345’. Compared to

Sync-free, our method achieved an average speedup of 10.34x, and
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Table 4: Six representative matrices (from electromagnetic problems, optimization problems and circuit simulation in the
SuiteSparse Collection), the number of level-sets and parallelism (i.e., the number of components in level-sets), SpTRSV per-
formance of the three algorithms, and speedups of our recursive block algorithm over cuSPARSE and Sync-free on Titan RTX.

Matrix Plot n nnz
#level- Parallelism Performance (GFlops) Speedups of blk alg.

sets min ave. max cuSP. Sync. blk alg. vs. cuSP. vs. Sync.

nlpkkt200 16240000 232232816 2 8000000 8120000 8240000 13.26 18.09 45.75 3.45x 2.53x

mawi_201512020030 68863315 140570795 19 11 3624385 34544376 0.09 0.40 6.41 72.03x 16.02x

kkt_power 2063494 8545814 17 1090 121382 626597 3.67 5.81 23.77 6.48x 4.09x

FullChip 2987012 14804570 324 1 9219 468405 3.83 0.70 7.78 2.03x 11.05x

vas_stokes_4M 4382246 96836943 2815 1 1556 37519 15.39 0.28 17.35 1.13x 61.08x

tmt_sym 726713 2903837 726235 1 1 135 0.014 0.008 0.015 1.03x 1.77x

the best speedup is 57.97x, occurs in matrix ‘af_shell10’. On Titan

RTX, our method obtained the best speedups over cuSPARSE and

Sync-free on matrices ‘mawi_201512020030’ and ‘vas_stokes_4M’,

respectively. Overall, the best speedups over cuSPARSE and Sync-

free are 72.03x and 61.08x, and the average speedups are 4.72x and

9.95x, respectively.

Moreover, we can see that the performance on Titan RTX of

Turing architecture is in general around 40% faster than on Titan X

of Pascal architecture. Considering the GPU architecture improve-

ment and higher specifications of core counts and bandwidth (see

Table 3), our proposed recursive block algorithm scales quite well.

According to the above results, we can say that the recursive

block algorithm proposed in this paper makes SpTRSV significantly

faster on GPUs. To conduct a more detailed analysis, we further list

performance and speedups of six representative matrices in Table 4.

As can be seen, formatrices ‘nlpkkt200’ and ‘mawi_201512020030’

with very high parallelism, ourmethod is 3.45x and 72.03x, and 2.53x

and 16.02x faster than cuSPARSE and Sync-free, respectively. The

first reason is that the blocks are now much smaller than the whole

matrix, and only a small portion of vector x is accessed in each ker-

nel call. Thus better cache utilization can be achieved. In addition,

some small triangular sub-matrices now only have a diagonal, thus

can be perfectly parallelized for much higher performance.

For matrix ‘kkt_power’ with good but not very high parallelism,

our block algorithm gives 6.48x and 4.09x speedups over cuSPARSE

and Sync-free, respectively. That is because now most nonzeros are

moved to the square parts computed by the SpMV operations, so

better parallelism could be naturally obtained.

As for matrices ‘FullChip’ and ‘vas_stokes_4M’ with limited par-

allelism, our method is not only faster than cuSPARSE, but also

brings significant speedups (61.08x and 11.05x, respectively) over

Sync-free. The main reason is that the two matrices both have a

power-law distribution, and their long rows/columns are now cut

into smaller segments, thus the load imbalance problem is relieved.

Considering Sync-free uses atomic addition for accumulating inter-

mediate products (but our method uses parallel sum in SpMV), the

significant speedups are achieved as expected.

Even for matrix ‘tmt_sym’ with almost no parallelism (note that

its average parallelism is 1), our method still gives comparable

performance over cuSPARSE and is bit faster than Sync-free. This

implies that our method in general would not degrade performance

for such ‘serial’ problems.

Furthermore, the adaptive method for automatically selecting

the best SpTRSV and SpMV kernels (recall Figure 5) also brings

better overall performance for the above cases.

4.3 Performance of Different Precision
Both double and single precision computations are important for

SpTRSV. For the sake of brevity, we only report performance of

double precision in the other benchmarks (e.g., Figures 4 and 6,

and Tables 4 and 5). To make the experiments more complete, we

conduct a performance comparison of single and double precision

of the three methods shown in Figure 7. As the major overhead of

sparse matrix computations is often from the sparsity structure of

the matrix, the performance ratio should in general not be similar

to dense problems with a ratio of about 0.5. As can be seen, on the

two GPUs, the ratio of double and single precision performance of

the Sync-free is around 0.9, and the ratio of our block algorithm is

between 0.8 and 0.9, while that of cuSPARSE is between 0.7 and 0.8.

This indicates that compared to Sync-free, our algorithm is bit more

sensitive to the costs for reading/writing floating point values. But

compared to cuSPARSE, our approach is relatively more insensitive

to the floating point precision used.

4.4 Preprocessing Cost Comparison
As SpTRSV is often used for solving triangular systems with multi-

ple right-hand sides or preconditioning a system with ILU factoria-

tion, it is important to consider the costs both for single SpTRSV

and for preprocessing the input matrix. Besides, the number of iter-

ations is crucial to evaluate overall improvement of a new SpTRSV

method. Table 5 shows the preprocessing costs, a single SpTRSV

cost and the overall costs for 100, 500 and 1000 iterations of a com-

plete procedure by using cuSPARSE, Sync-free and our recursive

block algorithm in double precision on the NVIDIA Titan RTX GPU.
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Figure 7: Performance ratio of double precision to single pre-
cision in box plots of running the three SpTRSV algorithms
on the 159 matrices on the Titan X and Titan RTX GPUs.

As can be seen, the preprocessing costs of cuSPARSE and Sync-

free are relatively low, since they only generate auxiliary arrays in

the preprocessing stage. But although our method uses a bit longer

preprocessing time (on average 9.16x over a single SpTRSV) for gen-

erating a new sparse matrix composed of successive sub-matrices

(recall Figure 3), the overall cost for a complete computation with a

number of iterations is still obviously lower than cuSPARSE and

Sync-free, because of the much faster SpTRSV computation.

Table 5: The average time (in milliseconds) for preprocess-
ing an inputmatrix, completing a single SpTRSVand solving
problems of a preprocessing and 100, 500 and 1000 SpTRSV.

Prepro- Single Overall Overall Overall

Methods cessing SpTRSV time of time of time of

time time 100 iters 500 iters 1000 iters

cuSPARSE v2 91.32 103.09 10400.71 51638.30 103185.29

Sync-free 2.34 94.79 9481.10 47396.15 94789.96

block algorithm 104.44 11.40 1244.05 5802.48 11500.52

5 RELATEDWORK
To exploit parallelism from sparsity structures, the level-set al-
gorithms have been proposed by Anderson and Saad [7] and

Saltz [64]. The methods divide all components into a number of

level-sets. The components within the same level-set can be solved

in parallel, but the different level-sets have to run in serial. To use

the highly parallel architectures of GPU, Maumov [58] implemented

a level-set method and merged small level-sets into a single GPU

kernel to save the cost for synchronizations between kernel calls.

Park et al. [60] and Yımaz et al. [84] further analyzed the sparsity

structure of the input matrix, and removed fine-grained depen-

dencies and redundant waiting to achieve higher performance. Li

and Saad [45] demonstrated that multiple minimum degree (MMD)

reordering can reduce the number of level-sets and improve paral-

lelism. Liu et al. [49, 50] proposed a CSC format synchronization-

free SpTRSV algorithm that fully removes the barrier synchroniza-

tions between level-sets through utilizing atomic operations on

GPUs. Dufrechou and Ezzatti [35, 36] designed a CSR version of

the synchronization-free algorithm, and simplified the procedure

finding level-sets. Su et al. [70] recently further exploit large-scale

thread-level parallelism for faster synchronization-free algorithm

on modern GPUs. In this work, the level-set information is used

for reordering the triangular parts, and the level-set method and

its Sync-free variant are called to solve the triangular sub-systems.

Another group of algorithms relies on graph colouring or parti-

tioning. Schreiber and Tang [67] for the first time designed colour-
set algorithms using graph colouring for accelerating SpTRSV.

Each colour-set shows up as a diagonal block, which can be inde-

pendent to the others thus can be processed in parallel. Naumov

et al. [59] and Suchoski et al. [71] demonstrated the effectiveness

of the colour-set methods for parallel SpTRSV on GPUs. Kabir et

al. [43] further improved the performance of SpTRSV on NUMA

architectures through graph colouring. Picciau et al. [61] developed

a graph partitioning method for achieving better data locality and

higher concurrency. However, in spite of the performance gain, it

is well known that graph colouring, reordering or partitioning is

NP-complete and in general very costly. In contrast, our method

proposed does not colour or partition the graph form of the input

matrix, thus could keep the preprocessing cost relatively low.

Tile/Block algorithms for densematrix problems have been
particularly successful in the recent years. The tile algorithms de-

signed by Buttari et al. [18, 19] have been widely used in factor-

ization routines. Haidar et al. [39] studied scheduling problems in

tile algorithms of PLASMA [2]. Amestoy et al. [6] and Akbudak et

al. [3] developed block low-rank methods for matrix factorization.

Haidar et al. [39] developed tile algorithms for eigensolver prob-

lems. Dongarra et al. [31, 32] proposed recursive tile methods for

LU factorization. Charara et al. [20, 21] exploited recursive blocking

for accelerating the dense triangular solve on multi-GPUs.

Tile/Block algorithms for sparse matrix problems also re-

ceived attention but have not shown wide effectiveness. Mayer [56]

pointed out that 2D blocking should be able to accelerate SpTRSV

but did not provide positive experimental results. Wang et al. [78,

79] developed a new format called Sparse Level Tile and a new

method for structured problem on Sunway processors. But it may

not be equally efficient for other architectures such as x86 and GPU.

Duff and Uçar [34] studied block triangular form of symmetric

sparse matrices. Vuduc et al. [76] and Bradley [14] developed block-

ing schemes for SpTRSV, but they mainly work well for relatively

dense triangular matrices from sparse LU decomposition.

It is also possible to solve triangular systems through iterative
methods that expose higher parallelism by calling a number of

SpMV operations. Anzt et al. [8, 11] and Chow et al. [25] proposed

several blocking and Jacobi iterationsmethods for SpTRSV in incom-

plete LU decomposition [12, 26]. Anzt et al. [10, 13] and Uçar and

Aykanat [73] also proposed fast methods for sparse approximate

inverse for solving triangular systems.

There has been much research about SpMV optimization on

modern architectures heavily used in this work. Liu and Vinter

proposed the CSR5 format [52] for better SIMD utilization, load

balancing and cross-platform execution on various multi-core and

many-core processors. Saule et al. [66] evaluated several sparse

kernels on Xeon Phi. Matam and Kothapalli [55] developed new

methods for selecting formats for SpMV computation. Sadi et al. [63]

accelerated SpMV by using high bandwidth memory. Buono et

al. [16] proposed new partitioning methods for SpMV on POWER

processors. Buttari et al. [17] designed aligned block sparse matrix

format. Vooturi et al. [72, 75] recently exploited block sparsity
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patterns in weight matrices for accelerating sparse neural network

computations.

Most of the aforementioned work can be seen as an analysis

phase (or inspector) used before repeatedly calling a sparse kernel

for many times. The stage can be generalized to be part of a com-
piler. The Sparse Polyhedral Framework proposed by Strout et al.

[68, 69], the Sympiler code generator and the ParSy framework

developed by Cheshmi et al. [23, 24] are all representative work

in this area. Besides, Mohammadi et al. [57] and Venkat et al. [74]

proposed effective compilation strategy for parallel SpTRSV.

Distributed algorithms for solving both dense and sparse tri-

angular systems also receivedmuch attention. Irony and Toledo [42]

designed 3D algorithms for distributed dense triangular solve,Wicky

et al. [80] developed a new communication-avoid implementa-

tion for the algorithm, and González-Domínguez et al. [37] imple-

mented the algorithm by using the UPC language. Recently the Su-

perLU_DIST package updated its solve phase with new distributed

SpTRSV methods. Liu et al. [54] used asynchronous communica-

tion in the 2D block cyclic layout of SuperLU_DIST, Sao et al. [65]

designed a well-scaled communication-avoid SpTRSV, and Ding et

al. [30] further improved distributed SpTRSV through one-sided

communication. We believe our block algorithms proposed here

can help distributed SpTRSV to be more efficient.

6 CONCLUSIONS
In this paper we have implemented three block algorithms for par-

allel SpTRSV on modern GPUs, and proposed an adaptive approach

that automatically selects the best kernels and parameters for com-

puting sub-matrices divided. Our experiments conducted on 159

matrices and on two high-end NVIDIA GPUs have shown on av-

erage 4.72x (up to 72.03x) and 9.95x (up to 61.08x) speedups over

cuSPARSE and Sync-free methods, respectively. Also, the prepro-

cessing cost of our method is moderate.
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