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Abstract Heterogeneous processors integrate very distinct compute resources
such as CPUs and GPUs into the same chip, thus can exploit the advantages
and avoid disadvantages of those compute units. We in this work evaluate and
analyze eight sparse matrix and graph kernels on an AMD CPU-GPU het-
erogeneous processor by using 956 sparse matrices. Five characteristics, i.e.,
load balancing, indirect addressing, memory reallocation, atomic operations,
and dynamic characteristics are our major considerations. The experimental
results show that although the CPU and GPU parts access the same DRAM,
very different performance behaviors are observed. For example, though the
GPU part in general outperforms the CPU part, it cannot achieve the best
performance in all cases given by the CPU part. Moreover, the bandwidth uti-
lization of atomic operations on heterogeneous processors can be much higher
than a high-end discrete GPU.

Keywords Heterogeneous processor · Performance analysis · Sparse matrix
computation.

1 Introduction

About a decade ago, graphics processing unit (GPU) has been introduced to
high performance computing. Because of its high peak compute performance
and bandwidth, a large amount of compute kernels and real-world applications
have been accelerated on GPUs [36]. However, it also has been reported that
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not all compute patterns are suitable for GPU computing due to their irregu-
larity [20] and time consuming memory copy between host memory and GPU
memory [16]. As a result, heterogeneous processor, also called accelerated pro-
cessing unit (APU) or CPU-GPU integrated architecture, has been expected
to exploit advantages of both CPUs and GPUs and avoid memory copy be-
tween memory areas of different devices. Schulte et al. [41] and Vijayaraghavan
et al. [47] recently reported that with a good design, heterogeneous processors
can be a competitive building block for exascale computing systems.

The effective design of such heterogeneous processors is challenging. For
example, because CPU and GPU applications normally have very different
memory access patterns, implementing efficient cache coherence between the
two parts is an open problem. Several hardware and software supporting tech-
niques have been developed [1,9,38]. Also, when both parts share the last level
cache, data prefetching scheme can be improved through adding new instruc-
tions [51]. In addition, low-power and performance/watt ratio optimization
are crucial design targets as well [4,60].

Despite the difficulties on architecture design, a few usable high perfor-
mance heterogeneous processors, such as AMD Carrizo [18], Intel Skylake [12]
and NVIDIA Denver [3], have been released in recent years. Such integrated
architectures inspired a number of novel techniques for various parallel prob-
lems. Daga et al. on AMD heterogeneous processors evaluated several kernels
and applications [6], and optimized B+ tree search [7] and breadth-first search
(BFS) [8]. Zhang et al. [54] developed faster BFS through traversal order op-
timization. Puthoor et al. [39] developed new DAG scheduling methods on
heterogeneous processors. Liu and Vinter designed a new heap data structure
called ad-heap [29] and new sparse matrix-vector multiplication (SpMV) and
sparse matrix-matrix multiplication (SpGEMM) algorithms [32,30] for hetero-
geneous processors. Said et al. [40] demonstrated that seismic imaging can be
faster and more energy efficient on heterogeneous processors. Zhu et al. [58,
60] and Zhang et al. [56,57] studied co-run behaviors of various kernels, and
Zhang et al. [55] developed effective workload partitioning approaches for het-
erogeneous processors.

However, irregular algorithms in particular sparse matrix and graph com-
putations have not been systematically studied in existing work. Zhang et
al. [57,55] took sparse matrix-vector multiplication (SpMV) and several graph
kernels into consideration in their co-run benchmarks and scheduling algo-
rithm design. But only very limited number of sparse matrices anf graphs
were used for benchmarking. Also, other important sparse matrix kernels,
e.g., SpGEMM [5,30,23,24], sparse matrix transposition (SpTRANS) [49] and
sparse triangular solve (SpTRSV) [28,50], have not been well studied on het-
erogeneous processors.

We in this paper evaluate and analyze performance behaviors of eight repre-
sentative sparse matrix kernels on the latest AMD APU Ryzen 5 2400G includ-
ing CPU cores codenamed Zen and GPU cores codenamed Vega. Among the
eight kernels, four kernels are from scientific computation, i.e., sparse matrix-
vector multiplication (SpMV), sparse matrix-matrix multiplication (SpGEMM),
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sparse matrix transposition (SpTRANS), and sparse triangular solve (Sp-
TRSV), and the other four kernels from graph computing, i.e., PageRank (PR),
graph coloring (GC), connected component (CC), and breadth-first search
(BFS). We use 956 large sparse matrices from the SuiteSparse Matrix Collec-
tion [10] as the benchmark suite for obtaining experimental results, which are
statistically significant. We then analyze the best performance configurations,
in terms of algorithm and compute resource, for matrices of various sparsity
structures. We mainly consider five characteristics, load balancing, indirect
addressing, memory reallocation, atomic operations, and dynamic character-
istics. Moreover, a performance comparison with a high-end discrete GPU is
also given for better understanding of sparse problems on various architec-
tures. We finally discuss several challenges and opportunities for achieving
higher performance for sparse matrix and graphs kernels on heterogeneous
processors.

2 Background

2.1 Heterogeneous Processors

Compared to homogeneous chip multiprocessors such as CPUs and GPUs,
heterogeneous processors are able to combine different types of cores into one
chip, thus can deliver improved overall performance and power efficiency [41,
47], while sufficient heterogeneous parallelism exists. The main characteristics
of heterogeneous processors include unified shared memory and fast commu-
nication among different types of cores in the same chip. The Cell Broadband
Engine can be seen as an early form of heterogeneous processor. Currently,
because of mature CPU and GPU architectures, programming environments,
and various applications, the CPU-GPU integrated heterogeneous processor
with multiple instruction set architectures is the most widely adopted choice.

Figure 1 shows a block diagrams of heterogeneous processors used as the ex-
perimental testbed in this paper. In general, a heterogeneous processor consists
of four major parts: (1) a group of CPU cores with hardware-controlled caches,
(2) a group of GPU cores with shared command processors, software-controlled
scratchpad memory, and hardware-controlled caches, (3) shared memory man-
agement unit, and (4) shared global dynamic random-access memory (DRAM).

Currently, although the computation capacity of the coupled CPU-GPU
processors is lower than that of the discrete GPUs, we can see that the hetero-
geneous processor is a potential trend for future processors. Hardware vendors
all release their heterogeneous processors, such as AMD Carrizo [18], Intel
Skylake [12] and NVIDIA Denver [3]. In addition, future heterogeneous pro-
cessors can be more powerful; with good design, they even can be applied in
exascale computing systems [41,47].
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Fig. 1 The diagram of a tightly-coupled CPU-GPU heterogeneous processor.

2.2 Sparse Matrix and Graph Computations

Sparse matrices exist in a number of real-world applications, such as finite el-
ement methods, social network, graph computing, and machine learning. For
instance, in graph computing, vertices among a graph can be represented as
rows, while edges can be represented as the nonzero entries of a sparse matrix;
in social network, the relation between different people can also be represented
as nonzero entries in a sparse matrix. To evaluate the real impact of hetero-
geneous processors on sparse matrix computations, the benchmark suite of
this work includes eight kernels. The first four kernels are from sparse basic
linear algebra subprograms [13], and Figure 2 plots the above four operations.
Calculating product of a sparse matrix and a dense vector or another sparse
matrix, transposing a sparse matrix, and solving a sparse triangular system
are fundamental operations for scientific computations. The last four kernels
are used for graph computing. We use the implementation from the GraphBIG
benchmark [35], which have different features and are used in many previous
works [35,55,57].

– Sparse matrix-vector multiplication (SpMV) that multiplies a sparse
matrix A with a dense vector x and obtains a dense vector y;

– Sparse matrix-matrix multiplication (SpGEMM) that multiplies a
sparse matrix A with another sparse matrix B and obtains a resulting
sparse matrix C;

– Sparse matrix transposition (SpTRANS) that transposes a sparse
matrix A of row-major to AT of row-major (or both of column-major);

– Sparse triangular solve (SpTRSV) that computes a dense solution
vector x from a system Lx = b, where L is a lower triangular sparse matrix
and b is a dense right-hand side vector;
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(a) Sparse matrix-vector multiplication (SpMV)(b) Sparse matrix-matrix multiplication
(SpGEMM)

(c) Sparse transposition (SpTRANS) (d) Sparse triangular solve (SpTRSV)

Fig. 2 Four representative sparse kernels benchmarked in this work.

– PageRank (PR) that ranks Internet web pages in search engines, which
works by counting the links between different web pages and weighting
each pages;

– Graph coloring (GC) that gives colors to vertices where any two ad-
jacent vertices shall have different colors, which is a special case in graph
labeling;

– Connected component (CC) that marks vertices in different compo-
nents and calculates the number of connected components;

– Breadth-first search (BFS) that explores a path from a root node to
each node in a graph, in a way that during each step, the unvisited neigh-
bors of visited nodes are marked to be visited in the next step.

2.3 Characteristics of Parallel Sparse Matrix and Graph Kernels

Unlike dense matrix computations, sparse matrix and graph kernels have sev-
eral unique characteristics [27].

The first one is load balancing. Dense matrix operations can be easily ex-
ecuted in parallel through row-wise, column-wise or 2D block-wise decompo-
sition. However, the nonzero entries of a sparse matrix can randomly exist at
any locations. Hence, which decomposition method gives the best load balanc-
ing depends on sparsity structure, operation pattern, and concrete hardware
device.

The second is indirect addressing. Because of the compressed storage fash-
ion, nonzero entries of a sparse matrix have to be accessed by indirect addresses
stored in its index array. It is well known that indirect addressing brings more
memory transactions and lower cache hit rate, and cannot be optimized at
compile time since the addresses are only known at runtime.
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The third is memory reallocation. Several sparse kernels, such as addition
or multiplication of two sparse matrices, generate sparse output. The number
of nonzero entries and their distribution are actually not known in advance.
Precomputing an upper bound is one method to deal with the unknown num-
ber of nonzero entries of the output. However, this method may waste memory
space. Another method is to preallocate a sparse output and reallocate more
space if the initial size is small. However, such memory reallocation is expensive
on GPUs currently.

The fourth is atomic operations. Some kernels highly depend on atomic
operations to collect nonzeros or to synchronize workload of thread blocks.
For example, thread blocks can use atomic operations on global variables to
communicate and obtain the execution status of other thread blocks for fast
synchronization. However, performance-wise, atomic operations are inherently
sequential, though they can be implemented more efficiently through some
architectural designs.

The fifth is dynamic characteristics. Some graph computing kernels have
dynamic characteristics, which means that the computation process is divided
into several iterations and each iteration only relates to part of a graph, i.e.,
part of a sparse matrix. Dynamic characteristics relate to both the input and
the algorithm. When the workload related to a compute iteration is too low,
the GPU fails to utilize all its compute cores.

We show a summary of the five characteristics in Table 1. The sparse ker-
nels are used for evaluation and analysis for these characteristics in Section 3.

Table 1 Summary of the characteristics and sparse kernels.

Characteristics Description Sparse kernels
Load balancing Efficient workload distribution. SpMV

Indirect addressing The data addresses are held in inter-
mediate locations.

SpMV

Memory reallocation Allocating memory space during run-
time.

SpGEMM

Atomic operations Exclusive execution by one thread. SpTRANS, SpTRSV
Dynamic characteristics Dynamically processing different

parts during execution.
PR, GC, CC, BFS

3 Evaluation Methodology

3.1 Platform

We in this evaluation use a heterogeneous processor, AMD Ryzen 5 2400G
APU, composed of four Zen CPU cores and 11 GPU cores running at 3.6
GHz and 1.25 GHz, respectively. Each CPU core can run two simultaneous
threads, and each GPU core has 64 AMD GCN cores. The system memory is
16GB dual-channel DDR4-2933 of theoretical peak bandwidth 46.9 GB/s. The
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operating system is 64-bit Microsoft Windows 101. The GPU driver version
is 18.5.1. The development environment is AMD APP SDK 3.0 and OpenCL
2.0.

3.2 Sparse Kernels

To evaluate load balancing and indirect addressing, we on the CPU part bench-
mark a classic row-wise CSR SpMV algorithm and a CSR5 SpMV algorithm
proposed by Liu and Vinter [31] parallelized with OpenMP and vectorized
by compiler, and on the GPU part test the other two SpMV kernels, i.e.,
the CSR-adaptive algorithm proposed by Greathouse and Daga [15] and the
CSR5 SpMV algorithm. The CSR-adaptive algorithm collects short rows into
groups to shrink gaps of row lengths for better load balancing, and the CSR5
SpMV algorithm evenly divides nonzeros into small tiles of the same size for
load balancing and uses vectorized segmented sum for utilizing wide SIMD
units on GPUs. We can observe the impact of load balancing by comparing
these algorithms, because their algorithms use different load balancing strate-
gies. For the impact of indirect addressing, we can analyze the performance
difference between the CPU and the GPU, because they have different data
access patterns thus resulting in different performance behavior to indirect
addressing.

To test memory reallocation, we can analyze an application that involves
memory reallocation. We run an SpGEMM algorithm developed by Liu and
Vinter [30] that calculates the number of floating point operations of each row,
groups rows of similar number of operations into the same bin, and use differ-
ent methods for rows in the same bin. The rows requiring more computations
may need to allocate larger space but finally waste the space since the final
result can be much shorter. Thus it is better to pre-allocate a small space and
re-allocate for larger space when and only when the small space is inadequate.
Because GPUs lack the ability to re-allocate memory, the program has to allo-
cate a larger space, copy the entries from the current space, and finally release
the old space. This method is actually inefficient and wastes memory space. To
avoid the slow processing, Liu and Vinter [30] exploit the re-allocation scheme
on the host memory to accelerate the procedure.

To benchmark atomic operations, we use two kernels that involves atomic
operations: an atomic-based SpTRANS method described by Wang et al. [49]
and a synchronization-free SpTRSV algorithm proposed by Liu et al. [28].
The SpTRANS method first uses atomic-add operations to sum the number
of nonzeros in each column (assuming both the input and output matrices
are in row-major) and then scatters nonzeros in rows into columns through
an atomic-based counter. The SpTRSV problem is inherently sequential. Its
synchronization-free SpTRSV algorithm uses atomic operations as a commu-
nication mechanism between thread groups. When a thread group finishes its

1 Since the Linux GPU driver of this integrated GPU is not officially available yet, we
have to do all benchmarks on Microsoft Windows.
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work, it will atomically update some variables in global memory, and some
other thread groups that are busy-waiting will notice the change and start to
complete their jobs.

To evaluate dynamic characteristics, we use four graph computing algo-
rithms in our experiment. Different graph applications may exhibit various
dynamic characteristics [48]. PageRank involves all vertices of a graph in com-
putation; graph coloring and connected component have large number of active
vertices at first, and then the value decreases; BFS has a low parallelism at first
iterations, and then the parallelism increases. These dynamic characteristics
make the GPU acceleration challenging.

3.3 Matrices

We use matrices downloaded from the SuiteSparse Matrix Collection [10] (for-
merly known as the University of Florida Sparse Matrix Collection). There
are currently 2757 matrices in the collection. To avoid experimental errors
from executing small matrices, we only select relatively large matrices of no
less than 100,000 and no more than 200,000,000 nonzero elements. With this
condition, 956 matrices are selected and tested to obtain statistically signifi-
cant experimental results. These matrices are used as the input for the sparse
kernels in Section 3.

We focus on the effect of matrix variance on the sparse kernels. We use the
metric of variation of row length to represent the variance of a matrix, which
can be described in Equation 1. In this equation, µ represents the average of
the number of non-zero elements in each row, n represents the number of rows,
and ei represents the number of non-zero elements in row i. Similar definition
has been used in [34].

variation =
1

µ

√∑n−1
0 (ei − µ))2)

n
(1)

4 Experimental Results

4.1 SpMV Performance and Analysis

We first demonstrate a series of performance data of SpMV operation in Fig-
ure 3. The x-axis of each sub-figure is variation of row length of the input
matrix. This value depends on distribution of the nonzero entries of the ma-
trix. A smaller value means the rows are of similar length, and larger value
means the rows are in a power-law distribution. When rows are calculated in
parallel, larger variation of row length may lead to serious load imbalance.

Figure 3 (a) plots a performance comparison of two SpMV methods, i.e.,
CSR-omp and CSR5-omp, on the CPU side, and Figure 3 (b) shows a similar
performance comparison of two SpMV methods, i.e., CSR-adaptive-ocl and
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(a) SpMV performance on the CPU part.
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(b) SpMV performance on the GPU part.
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(c) A performance comparison of the CSR5
SpMV algorithm on CPU and GPU parts.
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(d) A performance comparison of the best SpMV
algorithm on CPU and GPU parts.

Fig. 3 SpMV experimental data to analyze load balancing and indirect accessing.

CSR5-ocl, on the GPU side. It can be seen that the methods deliver compa-
rable performance on both parts. But it is also noticeable that when varia-
tion of row length is larger than 1 (shown as 100 in the figures), CSR5-omp
and CSR5-ocl methods outperform CSR-omp and CSR-adaptive-ocl in many
cases. However, when the variation is smaller than 100, CSR-omp and CSR-adaptive-ocl

give better performance in some matrices. This means that even on moderate
scale parallel devices of four CPU cores or of 11 GPU cores, load balancing
is still a problem, and CSR5 as a load balanced method is more competitive
than the näıve CSR and CSR-adaptive methods. However, it is also worth to
note that the two algorithms work better for regular problems since they avoid
complex operations designed for load balanced calculation.

As for indirect accessing, it is also interesting to see the performance dif-
ference of CSR5-omp and CSR5-ocl in Figure 3 (c). Although the two methods
access the same DRAM thus utilize the same bandwidth, CSR5-ocl in most
cases offers better performance and gives up to 3x speedup over CSR5-omp.
This may be due to that the GPU runs much more simultaneous threads than
the CPU, thus can hide latency of randomly accessing vector x. However, it
can also be seen that CSR5-omp can achieve higher performance in several
cases (see the green dots near 80 GB/s). This may be due to cache locality
on CPUs is better than that on GPUs [22,21], and sparsity structure of the
several matrices can exploit caches better.
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Finally, we plot the best performance on both sides (CPU-best denotes
the best performance of CSR-omp and CSR5-omp, and GPU-best denotes the
best performance of CSR-adaptive-ocl and CSR5-ocl) in Figure 3 (d). It can
be seen that GPU-best in general outperforms CPU-best, but the latter can
achieve higher performance (CPU-best’s near 100 GB/s over GPU-best’s no
more than 80 GB/s). We believe that this is also due to the effects of CPU’s
cache and GPU’s higher amount of execution threads.

4.2 SpGEMM Performance and Analysis

We now list SpGEMM performance in Figure 4. The Nonunified mem label
denotes the original implementation of the allocation-copy-release scheme, and
the Unified mem label denotes using the CPU-side reallocation function for
rows requiring larger memory space. The x-axis is compression rate, meaning
that the matrices on the right side needs more merge operations over insertion
operations when accumulating intermediate products.
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Fig. 4 SpGEMM performance comparison of using uniformed memory or not for memory
reallocation.

It can be seen that in most cases, the two methods deliver comparable
performance. This is due to only very few very long rows requiring the pro-
gressive allocation, and the overall performance is not affected by those rows.
However, there are still many cases that can receive over 2x speedups from
the reallocation on unified memory. This means that the memory reallocation
technique can be very useful for irregular problems such as SpGEMM. Be-
cause the integrated GPU could use shared host memory, original algorithms
designed for GPUs can be further accelerated on heterogeneous processors.
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4.3 SpTRANS and SpTRSV Performance and Analysis

We in Figures 5 and 6 plot a performance comparison of the same SpTRANS
and SpTRSV methods implemented in CUDA and OpenCL, and they are ex-
ecuted on an NVIDIA Titan X GPU (3584 CUDA cores running at 1.4 GHz,
and 12GB GDDR5X of bandwidth 480 GB/s) and the AMD heterogeneous
processor. The x-axis of Figure 5 is the number of nonzeros per column, mean-
ing that matrices become more dense from left to right. The x-axis of Figure 6
is parallelism, meaning that on its right side more components of the solution
vector x can be solved out in parallel. Note that the execution time of the
algorithms benchmarked is dominated by atomic operations.
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(a) SpTRANS performance on integrated and
discrete GPUs.
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(b) SpTRANS bandwidth utilization on inte-
grated and discrete GPUs.

Fig. 5 SpTRANS experimental data to analyze performance behaviors of atomic opera-
tions.
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(a) SpTRSV performance on integrated and dis-
crete GPUs.
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(b) SpTRSV bandwidth utilization on integrated
and discrete GPUs.

Fig. 6 SpTRSV experimental data to analyze performance behaviors of atomic operations.

Figure 5 (a) and Figure 6 (a) demonstrate absolute performance. It can be
seen that the Titan X GPU can be nearly up to 20x faster than the integrated
GPU, but also in many cases delivers only a couple of times speedups. But
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in Figure 5 (b) and Figure 6 (b), it is clear to see that the AMD integrated
GPU gives much better bandwidth utilization than the NVIDIA discrete GPU.
Overall, when the discrete GPU offers 10x more theoretical bandwidth over
the integrated GPU, SpTRANS and SpTRSV heavily dependent on atomic
operations do not receive benefits of higher bandwidth. Although we lack
implementation details of atomic operations on both architectures, it is very
interesting to see that the relatively low end integrated GPU accessing host
memory can bring such high atomic memory utilization.

4.4 PageRank Performance and Analysis

The performance results of PageRank is shown in Figure 7. It shows the perfor-
mance comparison of GPU results using OpenCL (denoted as GPU PageRank-
ocl) and CPU results using OpenMP (denoted as CPU PageRank-omp). The
horizontal axis represents the variation of edges in each node; this is the same
as the variation of row length in SpMV (Section 4.1), because graphs are rep-
resented as sparse matrices, where vertices correspond to rows while edges
correspond to nonzero entries. The vertical axis represents the performance
using giga-traversed edges per second (GTEPS).
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Fig. 7 PageRank experimental data to analyze performance behaviors of graph programs.

From Figure 7, we can see that PageRank on GPUs is more likely to have
high performance when the variation of edges is low; in contrast, PageRank on
CPUs does not have obvious performance variation along with the variation of
edges. This is due to the architecture difference. GPUs have massive parallel
computing cores, and a group of cores are required to execute in an SIMD
manner, which means that threads in a co-execution group (“wavefront” in
OpenCL terminology) need to execute the same instruction simultaneously.
However, when the workload distribution is unbalanced in the co-execution
group, the threads that finish workload earlier needs to wait for the others
threads to process next workloads, which causes performance degradation.
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Among graph computing applications, like PageRank, this problem can be
more serious. Instead, CPU performance in Figure 7 keeps in a small fluctu-
ation along with the variation of edges. CPUs do not have such problem due
to the out-of-order execution model and relatively higher cache capacity. The
highest performance the GPUs can reach is 7.5 GTEPS, while the CPUs can
only reach 1.2 GTEPS.

Figure 7 shows the performance speedup from GPU to CPU on the inte-
grated architecture. The average performance speedup is about 2.3x, and the
highest speedup is 14.0x. From Figure 7, we can see that when the variation of
edges is low, the GPU can better release its compute capacity, thus has high
speedup to the CPU.

4.5 Graph Coloring Performance and Analysis

Different from PageRank, graph coloring does not involve all vertices during
computation. It at first involves all vertices to do coloring; during iterations,
the vertices that have been colored successfully do not need to be involved.
Hence, the number of active vertices decreases as along with the proceeding of
the iterations. Because program parallelism relates to the number of vertices,
the GPU performance can be affected.

Figure 8 shows the performance comparison between the GPU and the
CPU on integrated architectures for graph coloring. From Figure 8, we can see
that the GPU performance has a clear decreasing trend along with the increase
of the variation of edges of each node. When the variation of edges is 10−2, the
average performance for GPU is 0.2 GTEPS; when the variation of edges is 102,
the average performance for GPU decreases to 0.003 GTEPS. This is due to
the irregularity of the graph and the GPU architecture. When the variation of
edges is low, which means that the graphs are relatively regular, graph coloring
process can have more active vertices to utilize the GPU parallelism capacity
than that from an irregular graph. In contrast, when the variation of edges
is high, in some iterations, the number of active vertices can be low, which
affects the GPU performance. Different from the GPU, the CPU remains a
steady performance.

Figure 8 shows the performance speedup from the GPU to the CPU. Be-
cause the CPU part has a relatively steady performance, the performance
decreasing trend on the GPU is obvious. The highest performance speedup
can be 10.6x when the variation of edges is around 0.3; however, when the
variation of edges is higher than 101, the CPU has a better performance than
the GPU. Therefore, the variation of edges can be an important indicator for
graph coloring to decide whether to run on GPUs or on CPUs for heteroge-
neous processors.
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Fig. 8 Graph coloring experimental data to analyze performance behaviors of graph pro-
grams.

4.6 Connected Component Performance and Analysis

Connected component calculates the components that each vertex belongs to.
In graph theory, a connected component is a subgraph where any two vertices
in it can be connected by an path. In this algorithm, we assign each vertex a
number; the algorithm consists of several iterations, and during each iteration,
each vertex compares its number to that of its neighbors and then updates its
number to the smaller value. The algorithm stops when the graph does not
change, and at last, the number of unique values represents the number of
connected components. The parallelism trend is similar to graph coloring; at
first, all vertices need to update and the algorithm has a large parallelism;
after several iterations, most components are fixed, and the parallelism can be
low.

Figure 9 shows the performance results of connected component. It shows
the performance comparison between the GPU OpenCL version (GPU CC-ocl)
and the CPU OpenMP version (CPU CC-omp) of connected component. The
performance trend is similar to that from graph coloring: the GPU performance
has a clear decreasing trend along with the increase of the variation of edges
of each node. The reason is that graphs with high variation of edges are likely
to consume more iterations for computation, and the last few iterations do not
have high parallelism. For the CPU device, the performance upper bound is
relatively stable.

Figure 9 shows the performance speedup from GPUs to CPUs. We can
see a clear trend that the speedup decreases along with the increase of the
variation of edges. When the variation of edges is about 10−2, the speedup
is 4.7x on average; however, when the variation is around 102, the speedup
decreases to 0.05x.
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Fig. 9 Connected component experimental data to analyze performance behaviors of graph
programs.

4.7 BFS Performance and Analysis

BFS traverses the graph from a root to the other vertices to obtain the shortest
path between the root and the other vertices. BFS explores vertices based on
their distance to the root. BFS includes several iterations for computation,
and during each iteration, it includes the unvisited neighbors to the set of
visited vertices. The newly involved vertices at each iteration form a frontier
for the next iteration, and only the neighbors to the frontier needs to be
explored. The exploration of each vertex in the frontier can be distributed
to different threads in parallel, so the frontier size relates to the parallelism.
Hence, GPU performance may be affected due to inadequate active vertices.
Moreover, compared to other applications, BFS has a low computation density;
most operations in BFS relate to memory access.

Figure 10 shows the performance comparison between the CPU and the
GPU on heterogeneous processors. From Figure 10, we can see that in most
cases, the CPU OpenMP version (CPU BFS-omp) achieves better performance
than the GPU OpenCL version (GPU BFS-ocl) does. The reason is that both
the GPU and the CPU share the same physical memory, and thus have the
same memory bandwidth. Because the frontier size may influence the power of
parallelism of GPUs in some iterations, the GPU part does not achieve as high
performance as the CPU part does on heterogeneous processors. However, in
some cases, such as the performance around the variation of 10−2, the GPU
still performs better than the CPU does; this implies that for BFS, relatively
regular input can have larger frontier size on average, which makes GPUs exert
higher performance.

Figure 10 presents the performance speedup from GPUs to CPUs on het-
erogeneous processors. It denotes that when both the GPUs and the CPUs
share the same memory, the CPUs have better performance than the GPUs
do for BFS. In addition, when the input is relatively regular (a low variation
of edges), GPUs can still outperform CPUs.
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Fig. 10 BFS experimental data to analyze performance behaviors of graph programs.

4.8 Comparison between Scientific Computing kernels and Graph Computing
Kernels

From Section 4.4 to Section 4.7, we can see that graph computing kernels are
more complex than scientific linear algebra kernels. Linear algebra programs
usually launch kernel once, and use the whole sparse matrix for computation;
graph computing kernels can be divided into several iterations, and these it-
erations may have different parallelism. For PageRank, the computation in
each iteration involves all vertices, so PageRank has similar performance com-
pared to linear algebra kernels. For graph coloring and connected component,
the parallelism has a decreasing process, and each iteration may not involve
all vertices for computation; hence, they have better performance on GPUs
than on CPUs when the variation is not large, and vice versa. BFS has a low
parallelism at first, and then the parallelism increases. Another reason why
GPUs have lower performance for BFS than CPUs is that BFS is a memory
bound program; most operations in BFS relate to memory access. Because
CPUs and GPUs share the same bandwidth, higher architecture parallelism
has a negative influence on the bandwidth utilization.

5 Related Work

5.1 Performance Analysis for Coupled Heterogeneous Processors

Because coupled heterogeneous processors pose non-trivial challenges from
both programming and architecture aspects, many researchers focus on perfor-
mance analysis on the coupled heterogeneous processors to understand their
performance behaviors for optimizations. Daga et al. [6] analyzed the efficiency
of the coupled heterogeneous processors, and pointed out that such heteroge-
neous processor is a step in the right direction for efficient supercomputers.
Doerksen et al. [11] used 0-1 knapsack and Gaussian elimination as two ex-
amples to discuss the design and performance on fused architectures. Spafford
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et al. [45] studied the tradeoffs of the shared memory hierarchies on coupled
heterogeneous processors, and identified a significant requirement for robust
runtime systems on such architectures. Lee et al. [19] provided a comprehensive
performance characterization for data-intensive applications, and revealed that
the fused architecture is promising for accelerating data-intensive applications.
Zakharenko et al. [53] used FusionSim [52] to characterize the performance on
fused and discrete architectures. Mekkat et al. [33] analyzed the management
policy for the shared last level cache. Zhang et al. [56,57] studied the co-
running behaviors of different devices for the same application, while Zhu et
al. [59,58] studied co-running performance degradation for different devices for
separate applications. Garzó et al. [14] proposed an approach to optimize the
energy efficiency of iterative computation on heterogeneous processors. Zhu et
al. [60] presented a systematic study on heterogeneous processors with power
caps considered. Moreover, low-power, reliability, and performance/watt ratio
optimization are also crucial considerations [4,60,25,26]. Different from these
research, our study focuses on sparse matrix and graph kernels. We analyze the
load balancing, indirect addressing, memory reallocation, atomic operations,
and the difference between those kernels.

5.2 Accelerating Irregular Applications on Heterogeneous Processors

Many researchers focus on the optimization for applications on coupled het-
erogeneous processors. Kaleem et al. [17] provided an adaptive workload dis-
patcher for heterogeneous processors to co-run CPUs and GPUs together;
Pandit et al. [37] proposed Fluidic Kernels, which can perform cooperative
execution on multiple heterogeneous devices; this work can be applied on het-
erogeneous processors directly. However, these research does not consider the
optimization for workload irregularity. Shen et al. [43] provided Glinda, which
is a framework for accelerating imbalanced applications on heterogeneous plat-
forms. Barik et al. [2] tried to map irregular C++ applications to the GPU
device on heterogeneous processors. Fairness and efficiency are two major con-
cerns for shared system users; Tang et al. [46] introduced multi-resource fair-
ness and efficiency on heterogeneous processors. Zhang et al. [55] considered
the irregularity inside workload and architecture differences between CPUs
and GPUs, and then proposed a method that can distribute the relatively
regular part of workload to GPUs while remain irregular part to CPUs on
integrated architectures. Daga et al. [8] proposed a hybrid BFS algorithm that
can select appropriate algorithm and devices for iterations on heterogeneous
processors. Zhang et al. [54] further developed a performance model for BFS
algorithm on heterogeneous processors.

5.3 Accelerating Irregular Applications on Discrete GPUs

There are many works about accelerating irregular algorithms in sparse ma-
trix and graph computations. For example, Liu and Vinter [31] developed
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CSR5, which is an efficient storage format for SpMV on heterogeneous plat-
forms. Sparse matrix-matrix multiplication (SpGEMM) is another fundamen-
tal building block for scientific computation, and Liu and Vinter [30] proposed
a framework for SpGEMM on GPUs and integrated architectures. Shen et
al. [44,42] proposed a method to match imbalanced workloads for GPUs, and
performed workload partitioning for accelerating applications.

6 Conclusions

We in this work have conducted a thorough empirical evaluation of four
representative sparse matrix kernels, i.e., SpMV, SpTRANS, SpTRSV, and
SpGEMM, and four graph computing kernels, i.e., PageRank, Connected Com-
ponent, Graph Coloring, and BFS, on an AMD APU heterogeneous proces-
sors. We benchmarked 956 sparse matrices and obtained experimental results
which are statistically significant. Based on the data, we analyzed performance
behaviors of the kernels’ load balancing, indirect addressing, memory reallo-
cation, atomic operations, and dynamic characteristics on heterogeneous pro-
cessors, and identified several interesting insights.
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