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ABSTRACT

Sparse matrix-matrix multiplication (SpGEMM) is a sparse kernel
that is used in a number of scientific applications. Although several
SpGEMM algorithms have been proposed, almost all of them are
restricted to the compressed sparse row (CSR) format, and the
possible performance gain from exploiting other formats has not
been well studied. The particular format and algorithm that yield
the best performance for SpGEMM also remain undetermined.

In this work, we conduct a prospective study on format-specific
parallel SpGEMM algorithms, and analyze their pros and cons. We
then propose IA-SpGEMM, an input-aware auto-tuning Framework
for SpGEMM, that provides a unified programming interface in
the CSR format and automatically determines the best format and
algorithm for arbitrary sparse matrices. For this purpose, we set-up
an algorithm set and design a deep learning model called MatNet
that is trained by over 2,700 matrices from the SuiteSparse Matrix
Collection to quickly and accurately predict the best solution by
using sparse features and density representations. We evaluate
our framework on CPUs and a GPU, and the results show that
IA-SpGEMM is on average 3.27x and 13.17x faster than MKL on an
Intel and an AMD platform, respectively, and is 2.23x faster than
cuSPARSE on an NVIDIA GPU.
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(a) Performance comparison of various SpGEMM algorithms
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(b) Time overhead of memory access and sparse accumulation

Pe
rc

en
ta

ge
 memory access
 sparse accumulation

Figure 1: Comparison of performance of different algo-

rithms and their overhead.

1 INTRODUCTION

Sparse matrix-matrix multiplication (SpGEMM) is a key kernels
in a number of applications. For example, it often accounts for
more than half of the cost of the setup phase for restricting and
interpolating matrices in algebraic multigrid methods (AMG) [10].
Many graph processing operations, such as breadth-first search [21],
Markov clustering [6], graph contraction [21], subgraph extraction
[13], peer pressure clustering [49], and cycle detection [58], can be
expressed as SpGEMM. GraphBLAS [7] also defines matrix-based
graph algorithms. Efficient SpGEMM algorithms are thus crucial
for these applications to achieve higher performance.

Several SpGEMM libraries are widely used, including the Intel
MKL [26], vector-based sparse accumulator (SPA) [20], hash-based
method [41], heap-basedmethod [5], cuSPARSE [17], and CUSP [16]
proposed for Nvidia and NSPARSE [42]. However, these libraries
are sensitive to sparse input matrices and thus exhibit significant
fluctuations in performance. In Figure 1(a), we compare the perfor-
mance of various algorithms by calculating A ∗AT on an Intel CPU
(as in Section 5.1). It is clear that different algorithms deliver their
best performance on different matrices, and no single algorithm
dominates on all datasets in terms of performance. This problem
transfers the burden of identifying the optimal library onto appli-
cation programmers and poses special challenges for the automatic
library selector.

On the contrary, Figure 1(b) shows two sources of overhead:
the proportion of time spent on sparse accumulation and memory
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access for the SPA SpGEMM algorithm. It is clear that memory
access takes up a significant amount of execution time. However,
research in the area has largely ignored the potential for improving
performance by optimizing memory access, and has preferred in-
stead to continue to develop new sparse accumulation algorithms
[13, 18] for the compute part. To some extent, SpGEMM is similar to
sparse matrix-vector multiplication (SpMV) and sparse triangular
solve (SpTRSV) for irregular and indirect memory access patterns
[31]. Much of the research on SpMV and SpTRSV has been dedi-
cated to optimizing memory access by excavating classic storage
formats [27, 35, 39, 55, 57] with promising results [51, 52]. Back
to SpGEMM, such classic storage formats, as DIA, COO and ELL,
can reduce memory requirements or accelerate memory access on
vector architectures and change the order of the calculation process,
or can even reduce the number of sparse accumulation operations.
The other motivation of this work is to explore the influence on
several classic storage formats on SpGEMM.

In this paper we design multiple SpGEMM algorithms based
on a variety of widely used sparse storage formats and analyze
the conditions conducive to better performance. Therefore, in or-
der to integrate our implementations with the existing SpGEMM
libraries and choose the optimal algorithm, we propose an input-
aware auto-tuning framework for SpGEMM (IA-SpGEMM), which
classifies two input matrices into the most appropriate category
among the assembled SpGEMM algorithm set by employing a novel
convolutional neural network called MatNet. We thus build a large
number of matrix multiplication pairs by using all matrices from
the current version of SuiteSparse Matrix Collection and collect the
performance data of the SpGEMM algorithm set as the output of
the training data on a given architecture. Moreover, we extract the
sparse features and density representation of the two input matrices
as input to the training data. MatNet is then generated by using
the collected performance data, extracted features, and density
representations. Compared with traditional machine learning or
empirical models, MatNet is suitable for solving this problem, and
can be easily migrated to other architectures with nearly equivalent
prediction accuracy.

In addition, as a lightweight SpGEMM library, IA-SpGEMM pro-
vides a unified interface in the CSR format to quickly predict the
best format and algorithm for two input matrices, and the matrices
are finally executed by the corresponding implementation with
possible format conversion. We evaluate the IA-SpGEMM on three
processors (an Intel CPU, an AMD CPU, and an Nvidia GPU), and
show that it achieves significantly better performance that is on
average 3.27x and 13.17x faster than the Intel MKL on dual Intel
Xeon E5-2620 and dual AMD EPYC 7501, respectively, with an ac-
curacy of 93%, and 2.23x faster than the NVIDIA cuSPARSE library
on Tesla P100 with an accuracy of 91%. The main contributions of
this paper are as follows:

• We propose multiple SpGEMM algorithms based on a vari-
ety of widely used sparse storage formats, and redesign the
sparse accumulation and memory access methods that repre-
sent two main overheads in the SpGEMM. We also analyze
the advantages and disadvantages of various format-specific
algorithms. By comparing it with current libraries by run-
ning all matrices from the SuitSparse Matrix Collection, a

significant performance gaps naturally leads to the adoption
of an auto-tuning model.

• We propose a convolutional neural network called MatNet to
select the best format and algorithm from a large algorithm
set. In benchmarking more than 8,000 matrix multiplication
pairs, the predictive accuracy of MatNet was over 93%. It
largely avoids the tedious work of manual choice and im-
proves scalability to benefit from all algorithms with an
acceptable overhead.

• Wedevelop an input-aware auto-tuning Framework for SpGEMM
(IA-SpGEMM) with a general interface based on the CSR
format. Users can thus transparently obtain the best perfor-
mance. We implement our framework on three processors
and yield average speedups of 3.27x, 13.17x, and 2.23x.

2 BACKGROUND

2.1 Sparse Matrix Storage Format

The sparse storage format defines the structure used to storage
the distributions and values of a sparse matrix, with the goal of
balancing the reduction in storage space by storing only non-zero
elements and implementing efficient memory access by placing the
accessed data into a continuous memory space. To achieve higher
efficiency in sparse routines, at least tens of formats have been
developed since the 1970s. In particular, most have been derived
from the four classic formats which are described below (refer to
[45] for a more detailed illustration). Figure 2 shows an example of
multiple formats on matrix A.

• Coordinate (COO) Format: The coordinate format is the most
flexible and simplest format. Only non-zero elements are
stored, and the coordinates of each non-zero element are
given explicitly.

• Compressed Sparse Row (CSR) Format: The most popular
representation contains three arrays: the beginning position
of each row is stored in "ptr", and the column indices and
values of each non-zero element are stored in "col_ind" and
"data", respectively.

• Diagonal (DIA) Format: Values of diagonals are stored as
columns in a dense matrix. Another "offsets" array saves
offsets from the main diagonal.

• ELLPACK (ELL) Format: It uses two matrices to pack all non-
zeros to the left with the same number of rows. The first
"col_ind" matrix stores the column indices and the second
"data" matrix stores the values.

ptr  = [0 2 4 6 7] 
rows = [0 0 1 1 2 2 3]
cols = [0 1 1 2 2 3 3] 
data = [1 2 3 4 5 6 7] 

ptr  = [0 2 4 6 7] 
col_ind = [0 1 1 2 2 3 3] 
data = [1 2 3 4 5 6 7] 

1 2 0 0
0 3 4 0
0 0 5 6
0 0 0 7

A = 

pos  = [-1 -1 -1 0 1 -1 -1] 
offsets = [0 1]
data = [1 3 5 7 2 4 6 *]

nnz  = [2 2 2 1] 
col_ind = [0 1 1 2 2 3 3 *]
data = [1 2 3 4 5 6 7 *]

COO CSR 
ELL DIA 

Figure 2: An example of the four sparse matrix formats,

where the italics represent small changes. The COO format

adds a row offset array, the DIA format adds a diagonal po-

sition array, and the ELL format adds an array for counting

nnzs per row. All formats are sorted in row order.
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Figure 3: Flowchart of three format-specific algorithms and some examples of A ∗A′. The DIA method shows the processes of

coordinate transformation and partial accumulation. The COO method divides matrices by k=1 and shows that the length of

the dense vector is reduced to that of the previous quarter. The ELL method also uses a line as an example to demonstrate the

fast symbol phase by BitMap and hash functions used in the numeric phase.

2.2 Parallel SpGEMMMethod

Let matrix A have size m ∗ n and B have size n ∗ k . The matrix
product is C = AB. The element in the i-th row and j-th column
in matrix C can be expressed as: ci j =

∑n−1
k=0 aikbk j . The parallel

SpGEMM method was proposed by Gustavson [25] and improved
on MATLAB by Gilbert et al. [20]. This algorithm (Algorithm 1) in
parallel multiplies rows ofA by the entire B matrix to calculate rows
ofC by summing the product of all non-zero elements as the sparse
accumulation operation. Similarly, many GPU SpGEMM algorithms
improve the sparse accumulation operation for accumulating partial
results by using distributed memory [13], a hash table [17, 42], or
the "expansion, sorting, and compression" (ESC) method [16]. Some
of these algorithms are included in our algorithm set.

Algorithm 1 Row-wise SpGEMM algorithm for C = A ∗ B. We
use C/C++ notation, i.e., C[i,j] refers to the (i + 1)-th row and the
(j + 1)-th column element in the matrix C .

1: #parallel for
2: for i = 0 to C .row do
3: for j = A.row_ind [i] to A.row_ind [i + 1] do
4: //accumulate par tial r esults in row
5: C[i, j] ← C[i, j] + A[i, j] ∗ B[j, :]

3 SPGEMM ALGORITHM

In this section, three format-special SpGEMM algorithms, as well
as their advantages and disadvantages, are introduced by using

A ∗A′ as an example 1. We also compare six CPU algorithms and
three GPU algorithms by running all matrices from the SuiteSparse
Matrix Collection such that themotivation for auto-tuning naturally
emerges.

3.1 SpGEMM in DIA, COO and ELL formats

Because the DIA format continuously stores diagonal elements,
it appears impossible to multiply two diagonals directly. To con-
nect these diagonals, we first append a "pos" array to the original
DIA format to record the order of each diagonal line, which can
be used to quickly and easily convert diagonal coordinates into
real coordinates. As shown in Figure 3, the multiplication proceeds
generally as follows: Step 1: Each element of the diagonal line is
first converted into real coordinates by coordinate transformation
to obtain the multiplied row number (an example of the second
diagonal of A is given in the figure). Step 2: The real coordinates
of the outputs are mapped to the corresponding diagonal numbers,
and the bitmap where the diagonal numbers are located is marked
as "T ". Step 3: The memory of C is allocated according to the num-
ber of "T "s in the bitmap, and the partial results are added to the
corresponding positions in the same manner as in the first step. Al-
gorithm 2 significantly reduces the overhead due to memory access
for the diagonal matrix and directly adds the intermediate results
to the target address without extra memory consumption. Note

1A and A′ have the same structure and different values. The values of A range from 1
to 7 and those of A′ are from a to д.
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that row-based thread scheduling takes a row as the minimum unit
such that it so it achieves load balancing and avoids write-write
conflicts among threads. This "lock-free scheduling" method can
avoid altogether the use of the lock. We call this method the "DIA
method."

Algorithm 2 DIA Method

1: function DIA_MUL_DIA(A, B, C )
2: Malloc Dense BitMap[A.row +B .col −1] and Init by f alses
3: for i ∈ A.row do
4: for j ∈ A.num_diaдonals do
5: A_j ← i + A.of f sets[j] //Conver t DIA to REAL
6: for k ∈ B .num_diaдonals do
7: B_j ← B_i + B .of f sets[k ] //Conver t DIA to REAL
8: out_dia ← A.row − A_i + B_j − 1 //Mappinд
9: if BitMask [out_dia] == f alse then
10: C .output_dia ← C .output_dia + 1
11: BitMask[out_dia] ← true

12: Malloc_DIA(C .output_dia)
13: #parallel for
14: for i ∈ A.row do
15: for j ∈ A.num_diaдonals do
16: A_j ← i + A.of f sets[j]
17: for k ∈ B .num_diaдonals do
18: B_j ← B_i + B .of f sets[k ]
19: out_dia ← A.row − A_i + B_j − 1
20: [out_i, out_j] ← [A_i, C .pos[out_j−out_i+C .row−1]]
21: C .data[out_i, out_j] ← C .data[out_i, out_j] +

A.data[i, j] ∗ B .data[B_i, k ]

The COO format separately stores non-zero elements of the same
row, because of which the flexible format can more easily to be
split and merged. Algorithm 3 first divides matrix A into k parts by
row, and matrix B into k parts by column (k is two or four). Each
partition of A and B is successively computed for a part ofC by the
SPA method [20] and all the partial results are finally merged. As
shown in Figure 3, matrix A is first divided into four row matrices
and matrix A′ is divided into four column matrices. Taking two
partitions as an example, four threads perform the multiplication
calculation of each part respectively. Given that the number of
columns of matrix A′ is divided into a quarter of those of the SPA
algorithm, the memory consumption of each thread is a quarter
of that of the SPA algorithm. Finally, the partial results between
threads are merged into the remelting result matrix. The most
significant advantage of this algorithm is that it greatly reduces the

length of the dense vector B_col
k

times over that of the SPA method
and improves the efficiency of the cache, but incurs additional
overhead in partitioning and merging the matrices. We call this the
"COO method."

The ELL format packages the original matrix into two rectangu-
lar matrices of the same size by shifting all non-zero elements to
left for more efficient memory access. Because each line of the ELL
format contains the same non-zero number, this format makes it
possible to reduce the overhead of the symbol phase of the SpGEMM
algorithm. In Step 1, we first equally assign matrix rows to threads
and use the Col_ind of two matrices to compute the maximum
non-zero elements per row ofC by a bitmap (an example of the first
row of A is given). The memory of C is then determined. In Step 2,
the memory ofC is allocated by the maximum number of non-zero
elements per row, and the newly allocated memory is used as hash
table to store and accumulate the intermediate results. All partial

Algorithm 3 COO Method

1: function COO_MUL_COO(A, B, C )
2: Divide A to A1, ..., Ak by row
3: Divide B to B1, ..., Bk by column
4: form ∈ k do
5: for n ∈ k do
6: Malloc Dense V ector [B_n .col ] and Init by − 1
7: #parallel for
8: for i ∈ Am .row do
9: for j ∈ Am .ptr [i] to Am .ptr [i + 1] do
10: for k ∈ Bn .ptr [Am .cols[j] : Am .cols[j] + 1] do
11: if mask [Bn .cols[k ]] � i then
12: mask [Bn .cols[k ]] ← i
13: num_nnz ← num_nnz + 1
14: Malloc_CSR(Cmn )
15: #parallel for
16: for i ∈ Am .row do
17: for j ∈ Am .ptr [i] to Am .ptr [i + 1] do
18: for k ∈ Bn .ptr [Am .cols[j] : Am .cols[j] + 1] do
19: output ← Bn .cols[k ]
20: Sums[output ] += Am .data[j] ∗ Bn .data[output ]

21: Sparsif y Sums to Cmn

22: Merдe C11, ..., Ckk to C

results are mapped to the corresponding positions by calculating
the hash values of the column indices or keeping plus one whenever
collision occurs. Finally, the disordered matrix C is sorted. Algo-
rithm 4 has two main advantages: (1) Because theCol_ind is placed
in continuous memory space, the symbolic phase can make full
use of the SIMD instructions to speed-up the efficiency of loading
and assigning data. (2) In the numeric phase, the memory space
pre-allocated to C is used as hash table, which not only benefits
the advantage of the hash table as the sparse accumulator, but also
avoids memory consumption. We call this the "ELL method."

Algorithm 4 ELL Method

1: function ELL_MUL_ELL(A, B, C )
2: Malloc Dense BitMap[B .col ] and Init by False
3: #parallel for
4: for k ∈ A.row do
5: for i ∈ A.nnz[k ] do
6: for j ∈ B .nnz[A_col [k ∗ B_max + i]] do
7: if Mask [B .cols[i ∗ B_max + j]] � k then
8: Mask [B .cols[i ∗ B_max + j]] ← k
9: nnz_row ← nnz_row + 1
10: C .nnz_row [i] ← nnz_row
11: C_max ← MAX (C .nnz_row )
12: Malloc_ELL(C .row ∗C .max_nnz_per_row )
13: #parallel for
14: for k ∈ C .row do
15: for i ∈ A.nnz[k ] do
16: for j ∈ B .nnz[A_col [k ∗ A_max + i]] do
17: Output_hash ← hash_f unction(B .cols[A.col [k, i], j])
18: C .cols[i, Output_hash] ← B .cols[A.col [k, i], j]
19: C .data[i, Output_hash] += A.data[k, i] ∗

B .data[A.col [k, i], j]
20: Sor t C .cols and C .data

3.2 Overview of algorithm set

Thus far, we have constructed multiple format-specific algorithms.
By integrating them with currently available popular algorithm
libraries, as shown in Table 1, seven SpGEMM algorithms are de-
veloped for the CPU and three for the GPU. As benchmark, we
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Table 1: Performance statistics : "Dominance" and "Percentage" represent the number and proportion of the best and the better

than baseline for various algorithms. "Average Speedup" calculates the average speedup in cases where the best perform is

attained on a specific algorithm, and "Ideal Tool" uses the best performance to obtain the global speedup on three platforms.

Method
Dominance Percentage

Average Speedup Speedup by "Ideal Tool"
Best of all Over BL. Best of all Over BL.

Intel
CPU

MKL (Baseline) 2874 - 35.07% - -

8.94x

DIA method 491 1107 5.99% 13.51% 72.04x
COO method 283 506 3.45% 6.17% 7.63x
ELL method 1496 2879 18.26% 35.13% 9.92x

SPA vector-based 259 748 3.16% 9.13% 1.31x
Hash-based 2150 4307 26.24% 52.56% 6.37x
Heap-based 642 1951 7.83% 23.81% 6.21x

AMD
CPU

MKL (Baseline) 1708 - 20.96% - -

46.16x

DIA method 745 1544 9.14% 18.94% 346.0x
COO method 342 586 4.20% 7.19% 8.20x
ELL method 1989 3044 24.40% 37.35% 32.96x

SPA vector-based 830 2529 10.18% 31.03% 1.58x
Hash-based 1757 2363 21.56% 28.99% 21.40x
Heap-based 779 1015 9.56% 12.45% 12.18x

NVIDIA
GPU

cuSPARSE(Baseline) 3827 - 51.07% - -
2.40xCUSP 208 769 2.78% 10.26% 6.27X

NSPARSE 3459 3525 46.16% 47.04% 3.71X

build 8000+ matrix multiplication pairs by using all the matrices in
the SuiteSparse Matrix Collection and compare the performance of
these algorithms.

Table 2: Seven algorithms for CPU and three algorithms for

GPU.

CPU

Intel MKL v19.0.0.117 mkl_sparse_sp2m (CSR) [26]
DIA method (Algorithm 2)
COO method (Algorithm 3)
ELL method (Algorithm 4)

SPA vector based method (CSR) [20]
Hash based method (CSR) [41]
Heap based method (CSR) [5]

GPU
CUSP v0.5.1 based on ESC method (COO) [16]

cuSPARSE v8.0.61 (CSR) [17]
NSPARSE (CSR) [42]

3.3 Performance comparison

We compare the performance of various algorithms on three archi-
tectures (as in Section 5.1). To achieve accurate results and complete
the task in a controllable time, the run time is the average of 10
trials, and we restrict memory expansion to no more than five times
due to format conversion. The execution times of all algorithms
could be no longer than five times than of the MKL or cuSPARSE,
which also means that these matrix pairs are not suitable for a
specific format or algorithm.

As shown in Table 2, a general view of the experiments clearly
shows significant differences in performance with varying inputs,
formats, algorithms, and platforms. In addition, no single format and
algorithm can constantly deliver the best performance on all matrix
pairs. In the case of the Intel CPU, we mark MKL’s performance as
the baseline, which delivers the best performance on only 35% of
the matrix pairs. The DIAmethod outperforms the baseline on 1,107
matrix pairs better than baseline and yields the best performance
on 491, e.g., dw256A*dwa512 and qpband*Trefethen_20000. These
matrices are almost composed of one or multiple diagonal lines.
The COO method outperforms the baseline on 506 matrix pairs

and delivers the best results on approximately half of them, e.g.,
human_gene2*appu and msc10848*crystk02. The non-zero rate
(≈8%) and the number of columns of these matrices are large. The
ELLmethod exceeds the baseline on 2,879matrix pairs and performs
optimally on 1,496, e.g., G48*G49 and ch7-9-b3*ch7-9-b2. The vector-
, hash-, and heap-basedmethods perform better than the baseline on
7,006 matrices, and on 3,051 matrix pairs yield the best performance
among all methods. For the AMD platform, using the same method
to sort the performance of the algorithms, the seven algorithms
perform best on 20.96%, 9.14%, 4.20%, 24.40%, 10.18%, 21.56%, and
9.56% of the cases, respectively. In comparison, AMD benefits more
from the diversity of formats and algorithms. For the GPU, the two
algorithms (cuSPARSE and NSPARSE) are suitable for almost half
of the matrix pairs. NSPARSE shows advantages in performance
on large matrices, whereas the ESC algorithm is effective on only
on a few matrix pairs.

3.4 Performance analysis

The popular SpGEMM libraries do not yield the best performance
on all matrix pairs. On the Intel architecture, MKL delivers the best
performance on approximately 35% of the dataset, and almost all
matrix pairs can be executed within a reasonable time. The im-
provement in performance is highly correlated with data size, but
the overhead of the MKL framework is not expected, especially for
small matrix pairs. Our "DIAmethod" modifies the order of memory
access, and reduces the number of sparse accumulation operations
and memory consumption when the input matrix pairs satisfy a
diagonal distribution. It thus exhibits impressive performance with
an average speedup of 72.04x. The "ELL method" is based on the
most efficient sparse format for memory access. It significantly
improves the efficiency of memory access and saves time in the
symbol phase with an average speedup of 9.92x. But this format
will still introduce overhead due to padding data for unbalanced
row distribution in the matrix pairs. Thus, this method works well
for about 35% of the dataset. The "COO method" is suitable for
specific cases and some matrix pairs still stand out. Furthermore,
the vector-, hash-, and heap-based methods run on their "best of
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algorithms. The training phase generates the MatNet model by the two-way strategy.

all" matrix pairs to obtain average speedups of 1.31x, 6.37x, and
6.21x, respectively. In contrast to Intel, AMD’s performance has the
same proportions, but its absolute performance is slightly lower
than Intel’s. In addition, because of the higher memory bandwidth
needed for the AMD architecture, the "DIA" and "ELL" algorithms
deliver better performance. On the GPU platform, compared with
the cuSPARSE library, the "ESC" method and the NSPARSE algo-
rithm obtain average speedups of 6.27x and 3.71x, respectively on
their "best of all" cases.

We ideally assume that there is an "absolutely perfect" tool that
can accurately predict the best choice without any overhead. It
would achieve average speedups of 8.94x, 46.16x, and 2.40x for all
matrix pairs on the three platforms. Such performance improve-
ments urgently drive us to design an auto-tuning framework.

4 OVERVIEW OF IA-SPGEMM

In the previous section, our experimental results demonstrate the
enormous potential for leveraging various formats and algorithms.
We thus develop an Input-awareAuto-tuning Framework for SpGEMM
(IA-SpGEMM) to select the best format and algorithm on multiple
architectures. The framework is shown in Figure 4. It considers the
impact on performance of matrix patterns and machine configu-
rations for the SpGEMM kernel, and is evaluated by thousands of
matrix pairs. To achieve this goal, we need a learning model to com-
bine a large number of matrix patterns, algorithms, and machine
configurations to find the optimal matching solution. However, it
is challenging for a general algorithm to find the most suitable
solution in a large search space. Therefore, we first convert the
auto-tuning problem into a feature and image classification prob-
lem, and select an outstanding convolutional neural network for
classification to achieve this goal.

Recognizing the best format and algorithm is a complex task that
requires a large amount of data for training. We use all 2,726 ma-
trices from the SuitSparse Matrix Collection to build 8000+ matrix
multiplication pairs, and extract the matrix features and density
representations (Sections 4.1 and 4.2) as the input to the training
data. We then collect the execution times for various formats and
algorithms as the output of the training data. Thus, this method
incorporates matrix features and algorithms together to automat-
ically generate a highly accurate classifier. As shown in Figure 4,

the IA-SpGEMM system is divided into two parts: training and
prediction. It first trains the neural network MatNet (Section 4.3) by
using the collected training data, and the prediction part indicates
the probability of each algorithm to generate the best SpGEMM
kernel.

Conveniently, the IA-SpGEMMprovides a unified interface based
on the CSR format, which lends usability and portability to it. It
can quickly replace libraries in the IA-SpGEMM framework. It also
supports two usage methods to fit unique needs. The first is one
where the framework automatically selects the optimal algorithm,
whereas the other supports the inspector-executor approach. This
difference brings two benefits. First, the developer can transparently
benefit from multiple formats and algorithms. Second, the frame-
work can save the best choice by automatic tuning and reuse the
known best algorithm on the same matrix to significantly reduce
the overhead due to feature extraction and forward propagation
of the neural network. Extensibility is also an advantage of the IA-
SpGEMM. Given the inherent characteristics of the neural network,
it is open to the addition of new algorithms and training data to
improve performance and robustness.

We now introduce the three components of the IA-SpGEMM:
feature extraction, density representation, and the design of the
neural network.

4.1 Feature Extraction

As an automatic input-tuning system, the IA-SpGEMM first consid-
ers 13 fine-grained features related to the distribution and character-
istics of four formats for CPU, and eight features of two formats for
GPU. Some of them intuitively affect the performance of SpGEMM,
e.g., the number and ratio of non-zero elements. Other features
reflect memory consumption and algorithm performance resulting
from the storage structure. Table 3 summarizes all the sparse fea-
tures used in the IA-SpGEMM. The first eight features represent
the most common structure, including the number of rows and
columns, and non-zero elements, which suit for all four formats.
The ninth to 11th describe diagonal features of the DIA format,
including the number of diagonals and the fill ratio of the added
zero elements. The 12th expresses the fill ratio of the ELL format for
aligned memory access. The 13th feature represents the coefficient
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Table 3: Sparse features and description.

Feature Description

row, col,
nnz

the number of rows, columns and non-zero elements

nnz_ratio the ratio of non-zero elements in CSR format
max, min,
average

the maximun, minimun, and average numbers of
non-zero elements

VAR the variance of non-zero elements
dia_num the number of diagonals in DIA format
dia_ratio the number of diagonals divided by all diagonals
dia_pad,
ell_pad

the ratio of padding data in DIA and ELL formats

CV the coefficient of variation of non-zero elements

of variation (CV) of the COO format used in [1] to evaluate the
diversity of the number of non-zero elements per row.

4.2 Density Representation

Sparse matrices usually have high sparsity and different sizes while
the convolutional neural network (CNN) generally requires fixed-
size input data. This difference leads to two problems. The first is
that sparse matrices are usually very large, which causes a large
inference overhead for the neural network if complete matrices are
used as input. The second problem is that matrix pairs contain a
large and different numbers of rows and columns, which need to
be transformed to the same size. For the image field, the general
approach is to shrink large pixels or enlarge small ones to resize
an image. This method can also be used to convert the sparse
matrix into a small density representation that can represent the
coarse-grained patterns of the original matrix with an acceptable
size. The density representation as the primary image input to the
CNN represents a snapshot matrix that abstracts most of the sparse
patterns.

1 2 3 4
5 6

7 8
9 10

11 12
13 14 15 16

17 18
19 20

4 2
4

2 4
4

3dtube add32adjnoun can_61
Figure 5: An example to convert 8 × 8 matrix to 4 × 4 density

representation.

As shown in Figure 5, we apply this method to map an 8*8 matrix
to a 4*4 matrix as an example. The original matrix is divided into
4*4 blocks, and each block is counted by non-zero elements that fill
into the corresponding new matrix. Then, the original 8*8 matrix
and the 4*4 density representation both contain several diagonals
with some irregular non-zero elements. Block count is related to
non-zero elements on the matrix, and normalization restricts their
number to within a reasonable range (0 ~255).

To ensure sufficient accuracy and acceptable overhead for the
neural network, we define 128*128 (by comparing with the size
of 64*64, 128*128, and 256*256, and choosing the best one) as the
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Figure 6: Details of the parameters of the neural network,

and visualization of some kernels of MatNet.

size of the density representation and apply the scaling method
to map the sparse matrix to the density representation. Note that
any sampling method (such as distance histogram representation
[61]) may also lose potential features, which can affect the choice
of format and algorithm. An approach is thus is needed to make
full or systematic use of these data from different dimensions (fine
and coarse grained) and complement the loss of accuracy caused
by data abstraction (feature extraction and scaling method).

4.3 MatNet Design

The traditional CNN has delivered impressive results in image clas-
sification [22, 28, 47]. Several convolutional layers and pooling
layers are used in it to extract high-level features [46, 59]. The feed-
forward neural network (FFNN) is applied to classify multidimen-
sional data [56]. The standard FFNN is a multi-layer feedforward
network with an input, a hidden, and an output layer. It can be used
to learn and store a large number of mappings between the input
and output layers. With regard to our questions, we found that
these two inputs, in Section 4.1 and 4.2, respectively, are not per-
fect and have shortcomings. Features only capture the fine-grained
patterns of the matrix, whereas density representation abstracts
from coarse-grained patterns but ignores details. We thus explore a
learning model to combine the two patterns, and this is described
below.

Based on the powerful classification capability of neural net-
works, we design the MatNet model, which combines the CNN and
the FFNN to enhance the ability to classify images and features
simultaneously. As show in Figure 6, this structure consists of four
separate inputs, two of which are the density representations of
matrices A and B, and are marked as A_DR and B_DR, respectively,
and the others are features of matrices A and B, and are marked
as A_F and B_F, respectively. This is so the CNN can produce a
number of filters to discriminate local features by using the conv1
layer and holistic characteristics by using the conv2/conv3 layer
(some kernels are visualized). The extended FFNN can aggregate
sparse features.

We then define the training data, which include features (13 for
CPU and nine for GPU), density representations (128*128), and the
probability of each algorithm. For example, if the execution times of
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Figure 7: Loss and accuracy of the MatNet, and details of various formats and algorithms during the training phase.

the five algorithms areT 1,T 2,T 3,T 4, andT 5, the probability of each

algorithm can be calculated as: Pi =
1
T i

1
T 1+

1
T 2+...+

1
T 5

, respectively

(if a specific algorithm cannot be executed in a reasonable time,
then 1

T i is set to zero). Then, the "best choice" corresponds to the
algorithmwith the highest probability. Unlike past work on training
learning models absolutely, which can cause confusion between
algorithms delivering similar performance, the probability of the
output fairly preserves differences that are critical for selection.

From 2,726 matrices, we randomly select 5,000 records as the
training data (fewer records for GPU with limited memory). These
data have two characteristics: 1) The training data are from two
matrices that may be completely unrelated. 2) Similar density rep-
resentations may lead to completely different results. Moreover, the
relationship between the two types of input (feature and density
representation) is not obvious. These unrelated data thus affect
each other during the training phase, which affect the accuracy of
the network, so we adopt a two-way strategy to eliminate interfer-
ence. Therefore, training is divided into two separate stages. The
first phase trains two kinds of neural networks (CNN and FFNN)
independently. The second phase maintains all parameters of the
previous training and merges all components to update the param-
eters at the last level. In this way, the mutual influence of features
and density representations can be significantly reduced. With the
gradual addition of more training information, the accuracy of
prediction can be improved step by step.

Another major advantage of this model is scalability. With the
same training method, the IA-SpGEMM can easily be deployed on
new platforms and new algorithms can be added to it to improve
diversity. Because the configurations of the chosen platforms are
completely different, the collected training data and the "best result"
can vary significantly from one platform to the other. With retrain-
ing, MatNet can also achieve high accuracy on these platforms.

5 EVALUATION

In this section, we evaluate the speedup of the IA-SpGEMM by run-
ning all matrices in the SuiteSparse Matrix Collection on the three
architectures, and analyze the accuracy and overhead of MatNet.

5.1 Setup

Platform: We compare the performance of the IA-SpGEMM
on three architectures, as shown in Table 4. Two of them are x86
multicore processors and the other is a manycore processor.

Baseline: The IA-SpGEMM is compared with several state-of-
the-art SpGEMM libraries, such as Intel MKL v19.0.0.117 and the
hash-based method [41] for CPU, and NVIDIA cuSPARSE v8.0.61
and NSPARSE [42] for GPU. We enable the OpenMP threading
model on both CPU platforms with 28 threads on the dual Intel
E5-2690 v4 and 64 threads on the dual AMD EPYC 7501 with the
"-O3" option.

Dataset: A total of 2,726 matrices from the SuiteSparse matrix
collection are used to randomly construct 8,195 matrix pairs for
evaluation, for a total of 220 GB in total. Of this, 60% is used for
training, 20% for validation, and 20% for testing. The matrices range
in size from 56KB to 33GB, and the number of non-zero elements

Table 4: Two CPUs and one GPU used for evaluation.

Intel CPU AMD CPU NVIDIA GPU

Core

Xeon E5-
2690 v4

2 processors,
28 cores

@2.60 GHz

EPYC 7501
2 processors,
64 cores

@2.00 GHz

Tesla P100
56 SMs

@1328 MHz

Caches
L1: 32 KB*14
L2: 256 KB*14
L3: 35 MB

L1: 32 KB*32
L2: 512 KB*32
L3: 64 MB

L2:4096 KB

Memory
128 GB

DDR4-2133
2*4 channels

256 GB
DDR4-2666
2*8 channels

16 GB
1.4 Gbps HBM2

Bandwidth 136.6 GB/s 341 GB/s 732 GB/s
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Figure 8: Performance and proportion of different formats and algorithms on the three architectures. MKL and hash-based

method for CPU, and cuSPARSE and NSPARSE for GPU are state-of-the-art libraries.

ranges from 4,000 to 2 billion. The dataset includes large and actively
growing sets of sparse matrices that arise in practice.

5.2 Results of Training

Figure 7 gives an overview of the loss and accuracy of MatNet
discussed in Section 4.2 for classifying matrix pairs into the best
format and algorithm on the three platforms. Several aspects are
compared below.

5.2.1 Loss and Accuracy. The loss function (categorical_crossentropy)
is used to indicate how far prediction deviates from the target value.
During the training phase, weights are updated based on this quan-
tity. Another indicator is accuracy, which monitors howmany cases
are correctly predicted. While the network is being trained, loss
decreases and accuracy increases.

The top half of Figure 7 compares the losses and accuracies for the
training, validation, and testing data. For the Intel platform, as the
number of steps of iteration increases for independent training (first
phase), the loss ofMatNet decreases gradually. After 2,000 iterations,
the network converges to an almost 85% accuracy. We then merge
the two independent trainings and adjust the learning rate (second
phase). Loss continues to decline and accuracy increases slowly,
and finally the training process stabilizes at 4,000 iterations. An
accuracy of 93% is achieved for the training set, and 91% and 90% for
the validation and testing sets, respectively. On the AMD platform,
the network demonstrates similar learning proficiency, and the
final accuracy values are 92%, 90%, and 89%. For the GPU platform,
MatNet incurs slightly higher loss but has higher accuracy. The
network converges at close to 2,000 iterations. At this time, the
intervention is interpolated and training continues. After 3,000
steps, the accuracy values are stable at 92%, 90%, and 87%.

The results show that MatNet quickly learned the characteris-
tics of the matrices and maintained continuous convergence on
the three platforms, which also indicates that the density repre-
sentation and features contain potential connections to the best
format and algorithm. In addition, the two-stage training method
significantly improves accuracy. With the combination of the two
types of training data by using the two-way strategy, MatNet is
thus further upgraded.

5.2.2 Best Format and Algorithm. We now provide details of
the convergence of various formats and algorithms by MatNet. It

Table 5: Comparison of results of prediction of the two ma-

chine learning classification methods.

Platform Method
Decision Tree MatNet

pre.(%) recall(%) pre.(%) recall(%)

Intel
CPU

MKL 79.669 86.294 88.137 96.160
DIA 81.037 66.384 94.284 76.741
ELL 54.731 63.157 96.039 86.607
COO 67.105 70.223 92.531 78.636
Others 71.875 45.098 89.201 85.201

AMD
CPU

MKL 75.021 73.972 93.277 87.763
DIA 80.174 53.336 89.512 90.319
ELL 71.875 88.461 95.424 85.887
COO 76.288 86.064 87.570 93.392
Others 79.613 58.461 86.841 89.129

NVIDIA
GPU

CUSP 66.327 28.571 92.5 74.326
CUSPARSE 76.428 82.294 95.215 93.675
NSPARSE 82.667 78.981 91.961 87.620

is clear that as the overall accuracy of the network gradually in-
creases, various formats and algorithms exhibit different tendencies
of convergence. The main reason for this is that these formats and
algorithms account for an unbalanced proportion of records for the
training data. For example, the Intel platform’s MKL algorithm and
the AMD platform’s ELL method first converges to high precision
by occupying the largest proportion of the training data, and the
GPU’s cuSPARSE and NSPARSE algorithms exhibit similar rates of
convergence using similar numbers of records. Finally, all formats
and algorithms achieve accuracy higher than 90%.

In addition, we used a widely used traditional decision tree algo-
rithm (CART approach [12]) to compare with MatNet. The decision
tree is constructed by features of the two matrices. Table 5 shows
the performance of the two classifiers on two indicators, where
pre. represents precision and recall measures the number of correct
results returned. The result shows that MatNet outperforms the
decision tree on the two indicators with an average precision of
91.50% and recall of 86.57%, whereas the decision tree has a preci-
sion of 74.19% and recall of 67.79%. The results in terms of accuracy
on the three platforms also show that our MatNet is an effective
cross-platform model.

5.3 Speedups and Overhead

The results of speedup of the IA-SpGEMM are presented in Figure
8. The predicted formats and algorithms are generated by the Mat-
Net model, and each execution of the IA-SpGEMM includes the
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Figure 9: Performance breakdown of several groups of matrices of different sizes.

complete overhead incurred by feature extraction, prediction, and
format conversion (if needed). The x-axis represents the sequence
of matrix pairs with incremental non-zeros, and the y-axis on the
left side represents the GFLOPS of SpGEMM and the y-axis on the
right side calculates the proportion of various optimization meth-
ods that deliver the best performance. Compared with the MKL
and cuSPARSE method, our algorithm achieves average speedups
of 3.27x, 13.17x, and 2.23x. Furthermore, we test the speedups of
IA-SPGEMM in comparison with state-of-the-art methods ([41]
and [42]), and they are 2.45x, 8.22x, and 1.94x on average. The per-
formance gain consists of several parts: (1) A variety of formats
significantly reduce the time needed for memory access for the cor-
responding matrix pairs. (2) The three proposed algorithms change
the number of sparse accumulations or reduce memory consump-
tion. (3) Our framework also makes full use of currently available
algorithms. Compared with the "ideal tool" mentioned in Section
3.4, the IA-SpGEMM achieves an accuracy of 94% without overhead
and 37% with overhead as its best performance on the same dataset.
The main reason for the reduction in speedups is that the fixed time
for predicting the best format and algorithm is expensive, especially
for small matrix pairs.

Overhead is still in our discussion. Note that after collecting
the training data, it takes approximately 27 minutes to train the
complete MatNet for 4,900 records on two NVIDIA P100 GPUs.
In addition, SpGEMM using the IA-SpGEMM framework features
multiple stages: 1) extracting the density representation and sparse
features of the two matrices; 2) predicting the best format and algo-
rithm by MatNet; 3) conversion into various formats (if necessary);
and 4) executing the corresponding matrix multiplication kernel.
In Figure 9, a proportion chart shows the average performance
breakdown of 12 groups of matrices with increasing sizes. The
overhead of the first and the third parts is proportional to the size
of the matrix pair, and the second part takes about 0.18 millisec-
onds per matrix pair. It is clear that the first three performance
overheads account for a smaller proportion of the total time as the
matrix pairs become larger. Most of the extra overhead incurred by
the IA-SpGEMM is below 20%. We thus recommend not using our
framework on very small matrix pairs so that the overhead incurred
by the auto-tuner does not become another system bottleneck. In
addition, the inspector-executor method divides SpGEMM into two
stages: analysis and execution. The inspector inspects the matrix
patterns and applies format changes, and the executor calls the

routine by reusing the predicted results. As the number of compu-
tations increases, these overheads are almost completely diluted
and the proportion of overhead is significantly reduced.

5.4 Usage

In this section, we open-source IA-SpGEMMwith a unified interface
for the SPGEMM kernel and provide a test case to compute A ∗ B
for validating the results of prediction of MatNet. The source code
is available athttps://github.com/zhen-xie/IA-SpGEMM.git. In
addition, our model can be easily extended to more platforms and
algorithms by collecting more training records and fine-tuning the
MatNet model.

6 RELATEDWORK

Sparse kernels have been widely used to improve higher effi-
ciency in a number of applications [14, 23, 33]. Various approaches
have been proposed to optimize data dependence and unbalanced
sparse computations. Venkat et al. [2, 53, 54, 60] developed several
techniques for dependence analysis and data transformation op-
timization for sparse computations during the compilation phase,
Arash et al. [3, 4] used a performance model and a blocking mecha-
nism to resolve the problem of load imbalance. This paper focuses
on the format, algorithm, and auto-tunner for the SpGEMM kernel.

SpGEMM was parallelized and optimized on CPUs. The most
significant difference between these algorithms is the method used
for nonzero accumulation. As in the COO algorithms used in this
paper, the dense accumulator [20, 43] is a general solution, whereas
other methods involve sorting a heap [5] or merging rows [44].
Moreover, a few GPU algorithms have been proposed, CUSP [16]
uses an expand-sort-compress (ESC) algorithm that pre-allocates
and collects all intermediate results, and accumulates them through
sort and compression operations. cuSPARSE [17], NSPARSE [42]
and Kokkos [19] uses a hash table to combine the intermediate re-
sults in global memory. bhPARSE [34] first assigns rows into bins by
the size of the intermediate result and output, and launches various
kernels. The hybrid method [36, 38], multiple-levels algorithm [5],
and row merge algorithm [24] can also show good performance on
partial matrices. These algorithms can be added to our IA-SpGEMM
to yield better performance. Moreover, our current system selects
four main formats on the CPU and two formats (COO and CSR)
on the GPU. But there are 10 popular formats [50], including Com-
pressed Sparse Column (CSC), Sliced ELL (SELL) [40], Block CSR
(BCSR) [45], Hybrid (HYB) [11] and CSR5[37]. However, this work
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focuses on building an IA-SpGEMM framework compatible with
various formats and algorithms. Using this framework, we can still
design new algorithms for these formats to speed-up this kernel,
and the SpGEMM algorithms can advance the IA-SpGEMM system.
In addition, the IA-SpGEMM framework proposed in this paper
resolves the problem on a single node and, in many cases, domi-
nate the whole overhead. We would like to see that the following
work could integrate our framework into distributed SpGEMM
implementations[8, 9, 13].

Selecting the best format and algorithm has received con-
siderable attention in recent years. The work closest to this study
is that by Zhao et al.[61], which for the first time used a CNN
to select the matrix format for SpMV and yielded an accuracy of
93%. Several studies [15, 32, 48] have been devoted to the best
storage formats through auto-tuning methods, but some methods
may be limited owing to the learning ability of the models applied.
Moreover, choosing the best format can be seen as a classification
problem, and is similar to recognizing handwritten digits, which
was one of the first applications of the CNN. The LeNET-5 [29]
was developed for this task. The FFNN [30] is also widely used for
the classification model. Unlike SpMV auto-tuners, our algorithm
needs to consider the patterns of the two arbitrary matrices at the
same time and classify them into appropriate directories. We thus
introduced these two neural networks to automatic tuning and
designed a new convolutional neural network (MatNet) to connect
them for the SpGEMM. We found that sparse kernels can bene-
fit from the neural network method. Extending neural networks
to more sparse kernels can also help reveal connections between
optimization methods and specific parameters.

7 CONCLUSION

In this work, we proposed a variety of SpGEMM algorithms for DIA,
COO, and ELL formats, and presented an Input-aware Auto-tuning
Framework for SpGEMM (IA-SpGEMM) that can automatically
determine the best format and algorithm for any sparse matrix
pairs. It gathers a set of SpGEMM algorithms that naturally allow
for the use of a deep learning model (MatNet) to predict the best
choice by using features and density representation. The results
show that the IA-SpGEMM yields better performance than four
other state-of-the-art libraries. We also expect more sparse and
input-sensitive algorithms can be inspired by our method.
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