Warp-Consolidation: A Novel Execution Model for GPUs

Ang Li

Ang.Li@pnnl.gov

Weifeng Liu
Pacific Northwest National Lab, USA Norwegian University of Science and
Technology, Norway

Linnan Wang
Brown University, USA
linnan_wang @brown.edu

weifeng.liu@ntnu.no

Kevin Barker

Shuaiwen Leon Song

Pacific Northwest National Lab, USA Pacific Northwest National Lab, USA

kevin.barker @pnnl.gov

ABSTRACT

With the unprecedented development of compute capability and
extension of memory bandwidth on modern GPUs, parallel com-
munication and synchronization soon becomes a major concern for
continuous performance scaling. This is especially the case for
emerging big-data applications. Instead of relying on a few heavily-
loaded CTAs that may expose opportunities for intra-CTA data reuse,
current technology and design trends suggest the performance poten-
tial of allocating more lightweighted CTAs for processing individual
tasks more independently, as the overheads from synchronization,
communication and cooperation may greatly outweigh the benefits
from exploiting limited data reuse in heavily-loaded CTAs. This
paper proceeds this trend and proposes a novel execution model
for modern GPUs that hides the CTA execution hierarchy from the
classic GPU execution model; meanwhile exposes the originally
hidden warp-level execution. Specifically, it relies on individual
warps to undertake the original CTAs’ tasks. The major observation
is that by replacing traditional inter-warp communication (e.g., via
shared memory), cooperation (e.g., via bar primitives) and synchro-
nizations (e.g., via CTA barriers), with more efficient intra-warp
communication (e.g., via register shuffling), cooperation (e.g., via
warp voting) and synchronizations (naturally lockstep execution)
across the SIMD-lanes within a warp, significant performance gain
can be achieved. We analyze the pros and cons for this design and
propose corresponding solutions to counter potential negative effects.
Experimental results on a diverse group of thirty-two representative
applications show that our proposed Warp-Consolidation execution
model can achieve an average speedup of 1.7x, 2.3x, 1.5x and 1.2x
(up to 6.3x, 31x, 6.4x and 3.8x) on NVIDIA Kepler (Tesla-K80),
Maxwell (Tesla-M40), Pascal (Tesla-P100) and Volta (Tesla-V100)
GPUs, respectively, demonstrating its applicability and portability.
Our approach can be directly employed to either transform legacy
codes or write new algorithms on modern commodity GPUs.

CCS CONCEPTS

*Computer systems organization — Single instruction, multiple
data; *Software and its engineering — Synchronization; *Theory
of computation — Parallel computing models;

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

ICS ’18, Beijing, China

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5783-8/18/06. .. $15.00

DOI: 10.1145/3205289.3205294

College of William and Mary, USA
Shuaiwen.Song @pnnl.gov

1 INTRODUCTION

Classic GPU programming models such as CUDA organize thread-
level-parallelism in two levels: thread blocks and threads [1]. How-
ever, from hardware perspective, there are three execution hierar-
chies: Cooperative-Thread-Array (CTA), warp and SIMD-lane'.
When a kernel is launched, a thread block is mapped to a CTA while
a thread is mapped to a SIMD-lane. Consequently, the warp-level
execution is transparent to programmers unless warp primitives such
as voting are specifically invoked. For example, programmers often
have to manually extract warp-id from a kernel at runtime.

Moreover, it is common in parallel execution that workload is
unbalanced due to the disparity arising from various aspects, e.g.,
application code, input data, shared resource contention, runtime
scheduling, etc. [2]. Delay from such unbalanced workload can
be largely mitigated or even eliminated when multiple tasks are
allocated, executed and released freely and independently. How-
ever, when data-sharing and/or control-sharing occurs, including
Synchronization, Communication and Cooperation (SCC for short),
such delay can be amplified, resulting in system resource under-
utilization and performance degradation. This is especially the case
for GPU, as its fundamental design principle is to rely on massive
parallelism to hide the long latency from expensive off-chip memory
access. GPU workload imbalance can occur among both threads and
thread blocks. At thread-block level (inter-CTA), this is nonissue
since CUDA and OpenCL enforce completely independent thread
blocks. This ensures a thread block can be fetched, dispatched and
retired on an arbitrary available SM without interfering with others.
At thread level (intra-CTA), however, sharing may incur significant
overhead, as threads in a thread block can provoke control-sharing
and data-sharing.

Intra-CTA thread sharing can be further categorized into two
types: sharing among threads within the same warp and sharing
among threads from different warps. The former, also known as
warp-divergence, is extensively discussed [3-8]. The latter, however,
has been largely ignored since conventional wisdom assumes that
warps executed in parallel can effectively hide the latency from data
and control sharing.

In this paper, we demonstrate that such overhead from inter-warp
sharing within the scope of a CTA can severely limit application
performance that may be otherwise deliverable from GPU’s large-
scale SIMT. For example, Figure 1 profiles the percentage of the
stalls that are caused by warp synchronization (one type of inter-
warp SCC sharing) across 80 common applications on a NVIDIA

'In this paper, we use NVIDIA terminology, as it matches the evaluation platforms.
Meanwhile, we use thread and lane, CTA and thread block interchangeably.

Figure 1: Percentage of stalls due to CTA synchronization. “Explicit” implies user-defined “__syncthreads()” barrier. “Implicit” describes the implicit internal

barrier upon kernel termination.

Tesla-P100 GPU. As demonstrated by the pale pink bars, stalls from
inter-warp synchronization that explicitly uses __syncthreads ()
accounts for an average of /2% (up to 90%) of the total execution
stalls on GPU SMs. These explicit synchronizations can significantly
impact performance since they prevent GPU warps from overlapping
execution and hiding latency. Additionally, extra delay may also
incur at kernel termination as warps cannot be allocated and released
individually (i.e., allocate and release occur at thread block level). To
assess such implicit synchronization overhead, we manually insert
a CTA barrier at the end of each kernel in our profiling. Illustrated
by the dark blue bars in Figure 1, the percentage of the stalls due to
explicit+implicit synchronization grows up to 16.4% on average; for
certain applications such as GRM and SRD, such implicit stalls appear
to be quite significant.

This work focuses on optimizing applications with strong inter-
warp SCC sharing, e.g., applications composed of repeated warp
synchronization calls, demonstrating great warp-level workload im-
balance, and/or performing intensive inter-warp communication via
shared memory. We propose a novel warp-based execution model
called Warp-Consolidation for boosting the overall kernel perfor-
mance by employing one warp to complete the entire workload
of an original CTA. This essentially transforms warp-level SCC
to lane-level SCC, leading to significant SCC overhead reduction.
Meanwhile, on-chip resource allocation and release can now be sub-
ject to warps instead of CTAs, mitigating the resource fragmentation
issue [9, 6].

Our Warp-Consolidation execution model boosts performance by
significantly reducing the overhead from (i) inter-warp synchroniza-
tion (i.e., eliminated), (ii) inter-warp communication and (iii) false
waiting due to workload imbalance. For (i), we convert explicit syn-
chronization across warps to synchronization within a warp, which
is naturally established by SIMT lockstep execution. For (ii), we
replace the inter-warp communication via shared memory by highly-
efficient register shuffling at SIMD-lane level. For (iii), we propose
warp delegation to allocate and release CTA jobs independently and
instantaneously, while maintaining high occupancy. Evaluation on
a wide spectrum of representative applications demonstrates that
our proposed method can achieve an average speedup of 1.7x, 2.3x,
1.5x and 1.2x (up to 6.3x, 31x, 6.4x and 3.8x) on NVIDIA Kepler,
Maxwell, Pascal and Volta GPUs, respectively. We also discuss the
compatibility of our approach to the current technology trend and
suggestions on how to write new algorithms under our execution
model. In summary, this paper makes the following contributions:

e We propose the concept, methodology and design of Warp-Con-
solidation execution model (Section 3).

e For explicit synchronization among warps, we propose warp
aggregation to convert them into synchronization across SIMD-
lanes, which is naturally guaranteed by GPU’s SIMT lockstep
execution (Section 3.1).

e For the communication among warps via shared memory, we
propose register remapping to convert it into highly-efficient inter-
lane shuffling, which is achieved via native register operations
(Section 3.2).

e For the implicit synchronization upon the termination of a GPU
kernel, resource fragmentation and potential occupancy degrada-
tion issues, we propose warp delegation to eliminate unnecessary
waiting and enhance occupancy (Section 3.3).

e We validate our Warp-Consolidation model on all the recent gener-
ations of NVIDIA GPU architectures and results demonstrate that
it can substantially improve overall performance by drastically
reducing SCC overheads and resource fragmentation (Section 4).

2 GPU THREE LEVEL PARALLELISM

Shown in Table 1, we summarize the pros and cons of synchroniza-
tion, cooperation and communication (SCC) at three GPU execution
levels: CTA, warp, and SIMD-lane.

2.1 CTA-Level SCC

CTAs are fully independent. From the software perspective, GPU
programming models such as CUDA ensure that thread blocks (or
CTAs) are independent [1]. From hardware perspective, CTAs can
be issued, dispatched, executed and released freely without inter-
fering with each other, regardless of whether they are on the same
SM or not. In other words, there is no control-sharing among CTAs.
Additionally, SM resources such as warp-slots, registers, and shared
memory, are allocated and released according to CTAs. Tradition-
ally, there is no synchronization or cooperation mechanism among
CTAs natively enabled on GPUs. Although smart circumventing
approaches have been proposed [11, 12], they essentially convert
CTA synchronization to warp or thread synchronization in global
memory (e.g., global memory atomic); and deadlocks have to be
carefully avoided [13]. However, this situation is recently changed
due to the introduction of Cooperative Groups [14] under the latest
CUDA runtime together with Pascal or Volta architectures, where the
whole kernel grid can synchronize with a barrier. Finally, for com-
munication among CTAs, if by any means Read-After-Write (RAW)
race condition is resolved, it is through global memory, which can
take hundreds of cycles (see Table 1).

2.2 Warp-Level SCC

Warps in a CTA are semi-independent. They can be fetched and
executed freely. This is why branching across warps, if not producing
workload imbalance, is not harmful to performance [15]. However, a
warp cannot be allocated and released individually — all warps in a
CTA must be terminated at the same time. In other words, warps in
a CTA have control-sharing. Moreover, an implicit barrier is always
enabled at kernel termination to ensure the arrival of all warps before
the CTA can exit as a whole. Furthermore, the SM resources are

Table 1: GPU three execution hierarchies and their SCC features.

Hierarchy| Independence |Allocate/Destroy | Independent Execution |Synchronization | Cooperation | Communication | Latency(cycle) | Bandwidth
CTA Complete Yes Yes No No global memory 0(100) ~ 1x[10]
Warp Semi No (resp. CTA) Yes __syncthreads bar. shared memory 0(10) ~ 7.6x[10]
Lane |No (except Volta) | No (resp. CTA) No (except Volta) lockstep warp-vote | register shuffling o(1) ~ 47.3x[10]

allocated and retreated at the granularity of a CTA instead of a
warp. Thus, when warp workload imbalance occurs, some executing
resources such as registers are wasted. Several hardware-based
approaches have been proposed to allocate resources at warp level
[9, 6, 16].

Warp-level synchronization is achieved through the native prim-
itive “__syncthreads ()”. It operates as a barrier for warps rather
than threads [17]. Warp barrier is used to coordinate warps and en-
sure shared and global memory consistency. The overhead of barrier
comes from three sources: (I) raw execution overhead (tens of cycles
[17]), (IT) memory fence (i.e., _threadfence_block()) to ensure
memory access consistency, and (III) warp workload imbalance. The
imbalance induced overhead can be extremely significant when it is
used to synchronize short segments of code that only contain a few
memory access inside loops. Warp cooperation, proposed in [18]
and [15], rely on PTX instruction “bar.arrive” and “bar.sync”
[19] to perform producer-consumer patterns. Although divergence
among warps may not necessarily lead to workload imbalance, warps
following entirely distinct execution path (e.g., in warp cooperation)
may introduce large amount of instruction cache misses which may
severely hurt performance [15]. Inter-warp communication or data
sharing, is often through shared memory. However, to avoid RAW
hazard and maintain memory access consistency (note warps are in-
dependent for execution), synchronization or atomic access is often
required [1]. This adds extra delay for communication. For example,
shared memory communication in GPU typically takes tens of cycles
(Table 1).

2.3 Thread-Level SCC

Threads in a warp are traditionally not independent. For architec-
tures before Volta, warp is the basic unit for instruction fetching
and execution; a thread, if executed separately, is within a warp
divergence region. For warp divergence, a warp will traverse the di-
vergent path of each branch sequentially, incurring significant delay
[20]. The latest Volta architecture changes the picture by maintain-
ing execution state for each thread rather than shared by the entire
warp, thus allowing independent thread scheduling. Nevertheless,
the execution model is still SIMT [14], although the divergence and
reconvergence of threads in a warp are more flexible and efficient.
Since threads in a warp are executed in a lockstep manner, thread
synchronization is implicitly integrated in the instruction. Thread
cooperation can be achieved via warp voting instructions, which
allow lanes in a warp to evaluate a predicate register and broadcast
the result to all the lanes. There are three voting instruction variants:
“__all()” and “__any ()" merge the results of the 32 lanes into a
single bool and then broadcast it. “__ballot ()” conjuncts a 32-bit
mask, with each bit representing the predicate of each respective lane
[1]. For older GPU architectures such as Fermi and Kepler, it is also
possible to cooperate threads via the shared memory lock-bits [13].
Furthermore, thread communication can be accomplished through
inter-lane register shuffle. Shuffle is the instruction to exchange
data among lanes in a warp, i.e., a lane can obtain the register
value of another lane. There are four shuffle instruction variants:
“__shf1()” is indexed as any to any transfer; “__shfl up()” and

“__shfl _down ()" are to shift left and right to the nth neighbor; and
“__shfl_xor ()” represents butterfly (XOR) exchange [1]. All these
primitives are implemented by native hardware operations without
shared memory involved. Note that each shuffle transaction can only
exchange 4 bytes of data. For data types other than 4 bytes, one
can refer to the SHFL library [21]. Shuffle instructions are widely
supported since the Kepler architecture. Additionally, inter-lane
communication is also feasible through shared memory. However,
the shared memory partition then must be declared as volatile to
ensure memory consistency.

2.4 Summary

The three GPU execution hierarchies and their SCC features are
summarized in Table 1. With finer granularity, the degree of inde-
pendence declines but the efficiency of SCC sharing enhances. In
conclusion, a coarser execution granularity seems to be better for
hiding latency and amortizing control overhead within a CTA, but
suffers from less efficient control sharing and data sharing (synchro-
nization, cooperation and communication).

3 WARP-CONSOLIDATION EXECUTION
MODEL

Since managing SCC among fine-grained SIMD-lanes are much
more efficient than across warps, we are considering the possibility
of transforming warp-level SCC to lane-level SCC, which particu-
larly benefits applications that are SCC-heavy (Figure 1). With a
finer granularity, it may also benefit applications having resource
fragmentation issues. To reach this goal, we propose a new GPU ex-
ecution model named Warp-Consolidation model which restricts
a CTA to have only one warp inside. In other words, it applies one
warp to complete the entire workload of a CTA. Comparing with the
conventional thread-block/thread two-level execution model from
CUDA, Warp-Consolidation model exhibits the following advan-
tages:

e Synchronization: No synchronization (i.e., ._syncthre-ads())
is required at all as lanes in a warp are always executed in lockstep.
Under this model, there is no divergence across warps, thus no
stalls come from warp workload imbalance.

o Communication: Data communication is now conducted via
register shuffling. This is much more efficient than through shared
memory which demands an extra register read & write, an extra
shared memory read & write, and a warp-level synchronization.

e Cooperation: Cooperation is implemented through the warp
voting instructions, which is much more efficient than using warp-
level barrier-based primitives (e.g., bar.
sync-bar.arrive pair chain [15, 19]).

e Resource Allocation: Under this model, all the on-chip resources
are allocated subject to warp granularity. In this way, it is feasible
to precisely control the number of warps dispatched to an SM
so that when register and shared memory are not constraints,
maximum occupancy could be achieved.

o Resource Release: A warp now can retire and release all its
resources (registers, shared memory, warp slots, etc) immediately

Register CTA
remapping

Hardware Approach|

Warp
Consolidation
code

CUDA-based
SCC code

Software Approach]-:

Stage-2
Figure 2: Warp-Consolidation model guided optimization workflow.

upon job completion without waiting for other inflight warps to
exit together [2].

Additionally, from our previous work [22, 23], we found that that
the “clock()” instruction can be leveraged to signal warp context
switch: once we add the clock instruction into an empty waiting
loop, a spinning-warp is able to convey the execution to another warp
which it is busy-waiting for; otherwise an infinite waiting will occur.
Such a side-effect is probably because the clock instruction is often
used for counting ticks in the waiting loop. Latest practice also
suggests the benefit of using efficient atomic operations and reduc-
tion at warp level [24]. Throughout the paper we will demonstrate
that using our model to convert SCC type of GPU programs can
significantly improve their overall performance, even under reduced
occupancy? (Section 4-5) .

In summary, our proposed Warp-Consolidation model describes
a two-level execution model: warps and threads. We view CTA
as transparent, similar to the hidden role of warps in the CUDA
model. A warp is granted the ability for independently fetching, dis-
patching, resource allocation, scheduling, executing and releasing.
Synchronization is naturally ensured. Cooperation is done through
warp voting while Communication is accomplished via register shuf-
fling. Shared memory is viewed as thread-private space for relieving
register pressure rather than a shared space across warps, since data
sharing is already handled by the more efficient register shuffling.
The optimization workflow for transforming programs that are writ-
ten via traditional CUDA execution model to ours is illustrated in
Figure 2. It comprises three main stages: (a) warp aggregation, (b)
register remapping and (c) warp delegation.

3.1 Warp Aggregation: Eliminating
Synchronization

We propose a two-step approach to aggregate the number of warps
in a CTA into one.

Step 1: Adjusting CTA size. If the CTA size (e.g., number of
threads contained) in a kernel configuration can be simply adjusted
without affecting application correctness, it is ideal to change it to a
single warp size, which is 32 threads for all existing NVIDIA GPUs.
Common CUDA programming guide suggests the CTA or thread
block size should be a minimum of 64 threads (i.e., 2 warps) [25].
However, under our Warp-Consolidation model, we aim to adjust the
CTA size to 32 threads (only one warp) which implies an expanded
number of CTAs with smaller individual CTA size. This intends to
increase the number of CTAs launched on an SM in order to increase
CTA-level parallelism to compensate the reduced intra-CTA level
parallelism. Listing 1-2 show an example on how to adjust CTA size
for BFS kernel described in Table 3. The number of warps per CTA
is reduced from 16 to 1 (i.e., 512 to 32 threads in Line 8), while
__syncthreads () and __threadfence_block() (Line 4 and 5 in
Listing 1) are removed. The reduction of CTA size often comes with

2Qccupancy or warp-slots utilization is the ratio of the number of active warps per SM
to the total number of hardware warp-slots per SM.

I __global__ void Kernel(...){ | __global__ void Kernel(...){
2 __shared__ sh[N]; 2 __shared__ volatile sh[N];//volatile smem

3 for(...){ 3 for(...){

4 reads() ; 4 //sync is avoided

5 __threadfence_block(); 5 //blockwise memory fence is avoided
6 500l 6

7} 7}

8num_thds = 512;//16 warps 8num_thds = 32;//reduce to one warp
Onum_blks = (int)ceil(num_nodes/

ﬁ”n\m_blks = (int)ceil(num_nodes/

10 (double)num_thds; 10 (double)num_thds;//num of blks x16
11dim3 grid(num_blks,1,1);//grid config I1dim3 grid(num_blks,1,1);//grid config
12dim3 thds(num_thds,1,1);//blk config 12dim3 thds(num_thds,1,1);//blk config

13do{ 13do{

14 Kernel<<<grid,thds>>>(...) 14 Kernel<<<grid,thds>>>(...)

15while(stop) ; 15while(stop) ;

Listing 1: BFS original kernel Listing 2: BFS after warp aggregation

increment in grid size (Line 11). We also declare the shared memory
as volatile for inter-lane data exchanging (Line 2 in Listing 2).

Step 2: Warp Coarsening. If the underlying algorithm hinders the
CTA size from being adjusted to warp size, aggressive warp coarsen-
ing is needed. We describe it as aggressive because the coarsening
factor is always the maximum — condensing the number of warps per
CTA to one. We want to emphasize that warp aggregation is different
from GPU thread coarsening [26-28] in two major ways: (1) Thread
coarsening [27, 28] fuses two or more threads in order to increase
the amount of work performed per thread but reduces the total thread
number. It tries to increase the instruction-level-parallelism (ILP)
[26], reduce the number of memory-access instructions [27] and
dismiss auxiliary instructions [29]. However, the objective for warp-
aggregation is to reduce the number of warps per CTA to one for
avoiding significant SCC overheads across warps. (2) For thread
coarsening, choosing an appropriate coarsening factor is crucial for
performance delivery [27, 28]. But for warp aggregation there is no
coarsening factor tuning; we always coarsen CTA size to one warp.
Note that since warp coarsening costs extra registers and possibly
larger shared memory usage which may lead to occupancy degra-
dation or register spilling, we prefer to avoid warp coarsening if
adjusting CTA size (Step 1) is adequate. When the original CTA size
is too large (e.g., 32 warps/CTA), in practice we first perform Step 1
to adjust CTA size to the smallest allowable value before conducting
coarsening. In general, we do not expect direct performance benefit
from warp coarsening itself. We will further discuss warp coarsening
and its related concerns in Section 5.

Listing 3-4 depict an example of conducting warp coarsening for
the SOG kernel shown in Table 3. Since the original kernel fixes
its CTA size to 64 threads (i.e., 2 warps) based on algorithm’s grid
pattern, we are unable to only perform Step 1 to reduce its CTA
size to 1 warp. Thus we resort to warp coarsening whose process is
described as follows. Since the thread id (i.e., threadIdx) is solely
used for distinguishing threads in a CTA, in this example we only
need to replicate each instruction that depends on threadIdx.x
along the x dimension. As can be seen, variables i0, g, X, mask
are all replicated once (Line 7-13 in Listing 4). For “if”” statement,
we either need to replicate it (Line 24-25 in Listing 3 to Line 19-
22 in Listing 4) or convert it to a “for” statement with the stride
being the warp size (Line 8-10 in Listing 3 to Line 5-6 in Listing 4).
Regarding “for” or “while” statement, we replicate the whole loop
block first and then decide whether to fuse them based on compiler-
level dependency check, register pressure and data locality pattern
within each loop. For example, the two loops in Line 25-34 in
Listing 4 (from Line 30-34 in Listing 3) cannot be fused, while
the transformed loops from Line 19-23 in Listing 3 can be fused
(Line 14-18 in Listing 4). Warp coarsening performed here can

1
4
5
6

35

__global__ void sobolGPU_kernel(...){

//smem converted to volatile smem 2
__shared__ unsigned v[n_direction]; 3
//only threadldx.x need to be affined 4
d_directions+=n_directions*blockIdx.y; 5
d_output+=n_vectors*blockldx.y; 6

//"if" statement coverted to "for"

if (threadldx.x<n_directions){ 8 i

v[threadIdx.x]=d_directions[threadIdx.x]; 9
¥ 10
//avoid synchronization 1
__syncthreads();
//var resp. to threadIdx.x to be affined
int i0=threadIdx.x+blockIdx.x*blockDim.x; 14
int stride=gridDim.x*blockDim.x; 15
unsigned int g=i0"(i0>>1); 16

/ unsigned int X=0; 1

| __global__ void sobolGPU_kernel(...){

__shared__ volatile unsigned v[n_directions];

d_directions+=n_directions*blockldx.y;

d_output+=n_vectors*blockldx.y;

for(int j=threadldx.x;j<n_direction;j+=32)

j directions[jl;

threadldx.x+blockIdx.x*64;

Tdx.x+32+blockldx.x*64;

idDim.x*64;

_07(i0_0>>1);

_1°(i0_1>>1);

unsigned X_0=0; unsigned X_1=0;

unsigned mask_0, mask_1;

for (unsigned k=0;k<__ffs(stride)-1;k++){
mask_0=-(g_0&1); mask_1=-(g_1&1);
X_0"=mask_0&v[k]; X_1"=mask_1&v[k];
g_0=g_0>>1; g_1=g_1>>1;

thre

unsigned int mask; 18 ¥

for (unsigned k=0;k<__ffs(stride)-1;k++){ 9
mask= - (g & 1);//replicate 7
X "= mask & v[kl;//replicate 21
g = g > 1;//replicate 22

if (0<n_vectors) //replicate or use "for" 24
d_output [10]=(float)X+k_2powneg32; 25
unsigned v_log2stridemi=v[__ffs(stride)-2]; 26
unsigned v_stridemask=stride-1; 27
//"for" statement need to replicated,
//can be fused later if possible
for(int i=iO+stride;i<n_vectors;i+=stride){ 3
X"=v_log2stridem1"v[__ffs ("~ ((i-stride) |
v_stridemask))-1];
d_output [i]=(float)X*k_2powneg32;

if (10_0<n_vectors)

d_output [i0_0]=(float)X_0xk_2powneg32;
if (i0_1<n_vectors)

d_output [10_1]=(float)X_1*k_2powneg32;

5 unsigned v_log2stridemi=v[__ffs(stride)-21;

unsigned v_stridemask=stride-1;

for(int i=i0_O+stride;i<n_vectors;i+=stride){
X_0"=v_log2stridem1”v[__ffs(~((i-stride) |

v_stridemask))-1];

d_output [i]=(float)X_0*k_2powneg32;

}

for(int i=il_O+stride;i<n_vectors;i+=stride){

X_1"=v_log2stridem1”v[__ffs(~((i-stride) |
v_stridemask))-1];

d_output [i+32]=(float)X_1*k_2powneg32;

34 3}

¥
S0bolGPU_kernel<<<dimGrid,64>>>(...); 35 s0bolGPU_kernel<<<dimGrid,32>>>(...);

Listing 3: SOG original kernel Listing 4: SOG after aggregation
be viewed as conducting warp-level vectorization on CTA-level
already vectorized code; special caution is required when handling
boundary and epilogue. Note that we currently manually perform
the code transformation for Warp-coarsening. But it is feasible to
implement this process as an automatic code transformation handled
by compiler [27].

3.2 Register Remapping: Accelerating
Communication

The objective of this technique is to reduce communication overhead
under the new execution model. Once a single warp can accomplish
the entire workload of a CTA in the original kernel via warp ag-
gregation, inter-warp communication is then converted to inter-lane
communication. The basic idea here is to leverage register shuffle to
replace data exchange through shared memory in order to enhance
communication efficiency. As previously discussed, communica-
tion across warps using shared memory requires two register access,
two shared memory access and a synchronization. Even for intra-
warp communication via shared memory, it requires two register
access and two shared memory access as GPU ISA only allows one
operand in shared memory space. Additionally, accessing shared
memory incurs much higher latency than accessing registers, since
the requests need to flow through the memory access pipeline via
load-store units.

In comparison, register shuffle has many advantages: (i) it is
hardware supported; (ii) no synchronization or memory fence is
required; (iii) no intermediate exchange buffer is needed; and (iv)
register read and write are faster than shared memory while two
register access is sufficient for communication. Experience on early
versions of NVCC has suggested that 90% of the performance im-
provement can be achieved by keeping things in registers [30] and
only register-to-register instruction is able to to reach the peak in-
struction throughput [26, 10]. Thus applying shuffle instructions
to replace shared memory instructions may significantly accelerate
applications with communication.

However, converting shared memory communication to register
shuffle is nontrivial. First, shared memory is a unified space, having

SMEM AL] Lane-0| (Lane-1| (Lane-2| [Lane-3
Sto1 | sl | sf2] | s31) {[R[IR] (A8 T[iRes ro
S[4] i S[5¥ SI6] i S[7] 1

AN - il \\5i~
b=sf(R0,2) b=sf(Rv1ﬂ b=sf(R0,1)] [b=sf(RL0) Shuffle

— [
Lane-0| Lane-1| |Lane-2| |Lane-3 __/—(‘ N
b=S[2]| | b=SI71| | b=S[11| | b=S[4] {REG R1

(A) Shared Memory: Unified Space (B) Register: Distributive Space

Figure 3: Communication via shared memory to communication via register
shuffle. The unified, collective shared memory space is now mapping a
separated, distributive local register space per lane, and data is exchanged
by shuffling a register, such as RO or R1.

consistent view from all-lanes and all-warps in the CTA. But register
is a lane-private space so lanes cannot directly see each other’s stored
value. Upon a register access, all the SIMD-lanes in a warp need
to have the same reference tag (e.g., R1) due to lockstep execution.
Thus converting shared memory communication to register shuftle
is similar to mapping a collective shared memory access pattern to a
distributive memory access pattern, as shown in Figure 3. Second,
shared memory can be referenced using an address that is calculated
at runtime. However, to access a register, the tag (e.g., RO, R1) must
be decided at launch time or even at compile time. Therefore, no
runtime address calculation is allowed for allocating variable array
in registers; otherwise, local memory which allocated in off-chip
global memory space, is employed and performance suffers severely.
In other words, kernels with their communication patterns defined
at runtime do not gain performance benefit from such conversion.
Third, the shuffle instructions are executed passively, meaning that
it is the object lane that “feeds” its own register value to the subject
lane, not the subject lane “fetches” from the object lane’s register
space. As a result, when the object lane does not participate in the
shuffling process (e.g., in a divergent branch), an incorrect value can
be transferred. Finally, space allocation on shared memory is very
flexible — any number of entries can be allocated before hitting the
capacity. But for registers, the number must be a factor of 32 since all
the lanes must keep the same declaration. So an improper mapping
may waste a lot of registers. If the number of shared memory entries
is not a factor of 32, register remapping can be complicated and
error-prone.

Listing 5-6 show a code transformation example for a stencil
kernel (STL in Table 3). As can be seen, each element needs to
access its surrounding neighbors. For its left and right neighbors,
data sharing is originally done via shared memory (i.e., sh_A0 array).
We first apply warp aggregation to remove the synchronization across
warps (Line 6, 15, 29, 32 in Listing 5). Based on the shared memory
array sh_A0 size (64 entries), we declare two additional registers per
SIMD-lane (i.e., r0_AO and r1_AO for each of the 32 lanes) for data
communication via register shuffle.

When accessing across register spaces (e.g., 70_A0 to r1_A0), an
additional register is employed. For example, in Line 25 of the left
listing, lane-31 needs to access sh_AO[sh_id+1], which is not in
the present register space of r0_A0 after register remapping but in
r0_A1 of lane-0. Since shuffle instructions executed by a warp must
have the same source and destination register (lockstep execution),
and rotation shuffle is currently not supported, we allocate another
register a_other (Line 20 in Listing 6) to hold the value of register
r0_A1 of lane-0.

| __global__ void block2D_hybrid_coarsen_x(...){ | __global__ void block2D_hybrid_coarsen_x(...){
> >
3 //Shared Memeory: [64] 3 //Register Space: [32]*2
4extern __shared__ float sh_AO[]; 4float r0_A0=0.0f; float ri_A0=0.0f;
5sh_AO[sh_id]=0.0f; sh_AO[sh_id2]=0.0f; SEE
6 ncthreads Q) ; 6float bottom=0.0f,bottom2=0.0f;
7. 7float top=0.0f,top2=0.0f;
% float bottom=0.0f,bottom2=0.0f; 8if ((i<nx) &&(j<ny)){
9float top=0.0f,top2=0.0f; 9 bottom=A0[Index3D(nx,ny,i,j,0];
104f ((i<nx) &&(j<ny)){ 10 r0_A0=AO[Index3D (nx,ny,i,j,1)];
11 bottom=A0[Index3D(nx,ny,i,j,0)]; 1}
12 sh_AO[sh_id]=A0[Index3D (nx,ny,i,j,1)]; 12....//remove sync
13 for(int k=1;k<nz-1;k++){
14 float a_left,a_ right,a_up,a_down,a_other;
_ ncthreads () ; 15 if ((i<nx)&&(j<ny))

16 for (int k=1;k<nz-1;k++){ 16 top=AO0[Index3D(nx,ny,i,j,k+1)];
17 float a_left_right,a_up,a_down; 17 //shuffle is outside branch
18 if ((i<nx)&&(j<ny)) 18 hfl_up(r0_A0,1);//left neighbor
19 top=A0[Index3D(nx,ny,i,j,k+1)]; 19 £1_down (r0_A0,1) ;//right neighbor
20 if(w_region){ :>1U a_other=__shf1(r1_A0,0);//2nd reg space

000 21 if(w_region){

a_left_right=x_1_bound?A0[Index3D(22—
23 nx,ny,i-1,j,k)]:sh_A0[sh_id-11; 23 a_left=x_1_bound?A0[Index3D(nx,ny,i-1,3,k)]
24 Anext[Index3D(nx,ny,i,j,k)]=(top+bottom 24 ra_left;
25 +a_up+a_down+sh_AO [sh_id+1] 25 a_right=(threadldx.x==31)7a_other:a_right;
26 +a_left_right)*cl-sh_AO[sh_id]*c0; 26 Anext[Index3D(nx,ny,1,j,k)]=(top+bottom
27/} 27 +a_up+a_down+a_left

o 28 +a_right)*c1-r0_AO*cO;
__syncthreads(); 29}

30 bottom=sh_AO[sh_id]; 30
31 sh_AO[sh_id]=top;)l
_syncthreads(); 3

bottom=r0_A0;

£0_AO=top;

}
}
dim3 block(32, 1, 1);
36din3 grid(nx+63)/64, ny, 1);

35dim3 block(32, 4, 1);
36dim3 grid(nx+63)/64, (ny+3)/4, 1);
37 block2D_hybrid_coarsen_x<<<grid,block>>>(..

Listing 5: STL original kernel Listing 6: STL after reg remapping

HCTA HCTA HCTA

[AAAAAASM

Adjusting CTA Size
Occupancy

ree warp-slot

arp task

TB|[TB|[TB|TB| TB|TB|
Z|TB|[TB|[TB||TB|TB|TB

HCTA HCTA

Warp Coarsening
CJACTACTACTA gMm SM

3
AARAA
A

A -

»
& & Y W W W W
TTTTTT
A TBI|[TB|TB|TB|TBJT
TBI|[TB[TB|TB)|TBJT
HHHBHE

(C) wWarp Delegation

(A) Baseline CUDA Model

(B) Warp Aggregation

Figure 4: Execution model transformation from CUDA-baseline to warp-
aggregation to warp-delegation.

Also note that shuffling (e.g., Line 18-19 in Listing 6) must be
put outside of the if branch (Line 21 in Listing 6). Otherwise, the
branch effect can cause certain lane(s) receive incorrect data value.
In Listing 6, if lane-0 is branched out, it falls out of the w_region and
lane-1 could receive an undefined value when shuffling from left to
right (shfl_down in Line 19). The same condition may also occur for

shfl_up.

3.3 Warp Delegation: Enhancing Occupancy

Warp delegation provides a method to tackle the occupancy concern
from applying warp aggregation (Section 3.1) which restricts only
one warp per CTA. Since the Kepler architecture, each SM supports
64 hardware warp-slots. However, each SM can only accommodate
at most 16 CTAs for Kepler, and 32 CTAs for Maxwell and Pas-
cal (Table 2). Consequently, the theoretic occupancy? after warp

3Occupancy is the ratio of the number of active warps per SM to the number of
warp-slots per SM, or warp-slots utilization. The theoretic occupancy is calculated
theoretically from kernel configuration; the achieved occupancy is measured by real
hardware performance counters at runtime.

.) ;37 block2D_hybrid_coarsen_x<<<grid,block>>>(...);

== Yarp_Consolidation.cuh ===
2#if __CUDA_ARCH__ < 500 //Kepler GPU

3#define MAX_CTAS_PER_SM 16 //Each SM host at most 16 CTAs

4#define WARPS_PER_CTA 4 //16x4 to saturate all 64 warpslots

S#else //Other GPUs

G#define MAX_CTAS_PER_SM 32 //Each SM host at most 32 CTAs

7 #define WARPS_PER_CTA 2 //32x2 to saturate all 64 warpslots

8 #endif //We want to keep CTAs as small as possible to reduce possible unbalancing
9//Modification to the parameter list

10#define PARAM const int _ctas, const int _ox, const int _oy

|1 #define CALL(X) ((X).x*(X).y*(X).z), (X).x, (X).y

12//Calculate the new CTA coordinate

|3#define X_PARTITION unsigned bx=vid/_oy; unsigned by=vid/_oy;

|4#define Y_PARTITION unsigned by=vid/_ox; unsigned bx=vid/_ox;

15//Main delegation loop

16 #define WARP_DELEGATION unsigned sm_id;\

17 asm("mov.u32 %0,%%smid;": "=r" (sm_id));\//fetch sm-id

18 unsigned warp_id;asm("mov.u32 %0,%%warpid";:"=r"(warpid));\//fetch hardware warp id
19 if (warpid>=MAX_CTAS_PER_SM*WARPS_PER_CTA) return;\ //for warp throttling

20 unsigned laneid;asm("mov.u32 %0,%%laneid";:"=r"(laneid));\//fetch lane id

21 const unsigned agentid=warpid*_SM+sm_id;\//we use warps as CTA agents

22 const unsigned nagents=MAX_CTAS_PER_SM*WARPS_PER_CTA*_SM;\//maximun persistent warps
23 for (unsigned vid=agentid;vid<_ctas;vid+=nagents)//job loop for each warp agent

Listing 7: Warp delegation header file

| #include "Warp_Delegation.cuh"
2 __global__ void Kernel(int* A, PARAM){
3 WARP_DELEGATION{
X_PARTITION;//or Y_PARTITION
Kernel_Body;//use bx, by to replace blockldx.x & y
:>() } //and _ox, _oy to replace gridDim.x & y

7} kernel<<<MAX_CTAS_PER_SMx_SM,

J WARPS_PER_CTA*32>>>(A, CALL(grid));

| __global__ void
2Kernel (intx A){
3 Kernel_Body;

4} 4
5//kernel after warp 5
6//aggregation and

7//register remapping
8 kernel<<<grid,32>>>(...); 8

Listing 8: Original ker- Listing 9: Transformed kernel by warp delega-
nel tion

aggregation is at best 25% for Kepler and 50% for Maxwell and
Pascal. For instance, suppose in Figure 4-(A) an SM has 6 hardware
warp-slots and each CTA contains four warps in the original kernel,
two warp-slots are then wasted, known as the resource fragmen-
tation issue. After warp-aggregation (i.e., adjusting CTA size or
warp-coarsening) shown in Figure 4-(B), each CTA contains only
one warp. If an SM here can accommodate at maximum 4 CTAs
(i.e., 4 CTA-slots), two warp-slots will be left idle, leading to a lower
occupancy. Warp delegation aims to provide users a way to improve
occupancy through fine tuning to achieve desired performance. Note
that for some applications that are bounded by register usage and ILP
[26, 10], increasing occupancy may reduce the overall performance.
So leaving it as it is after warp aggregation and register remapping
works better for them, shown as the Hardware Approach in Stage-3
in Figure 2. We will further discuss this in Section 4 and Section 5.
This subsection focuses on the applications that require improved
occupancy to achieve better performance after warp aggregation.

The basic idea is to circumvent the restriction from less CTA-slots
than warp-slots per SM on contemporary GPUs. Inspired by [31],
we propose a software-based warp delegation method to relax this
restriction. Our warp delegation approach is different from [31]
in several aspects: (a) warp delegation aims to improve occupancy
for our execution model rather than clustering CTAs with inter-
CTA locality on SMs; (b) warp delegation instructs each warp to
fetch and execute CTA jobs after warp aggregation, while CTA-
clustering applies CTA-agents to fetch and execute CTA jobs; (c)
warp delegation uses a different indexing method: warpid «+ SM +
sm_id which addresses the issue when CTA number cannot evenly
divide SM number; (d) CTA-clustering requires global memory
atomic operations to distinguish among CTAs in an SM, but warp
delegation simply relies on hardware warp-slot id (fetched directly
from a constant register) to identify the warp-agents in an SM.

In warp delegation, we define the term Hyper-CTA or HCTA, as
shown in Figure 4-(C). Unlike the traditional CTA definition in the
CUDA model, HCTA is a super CTA that comprises warps that are
processed by warp aggregation stage. These warps are completely

Table 2: GPU SM resource configuration. “Reg” refers to the number of 4B register entries.

GPU Arch/CC Runtime | SMs | CTAs/SM | Warps/SM | Warps/CTA | Reg/SM | Reg/CTA | Reg/Thd | Shared/SM | Shared/CTA
Tesla-K80 | Kepler-3.7 7.5 15 16 64 32 128K 64K 255 112KB 48KB
Tesla-M40 | Maxwell-5.2 8.0 24 32 64 32 64K 64K 255 96KB 48KB
Tesla-P100 | Pascal-6.0 8.0 56 32 64 32 64K 64K 255 64KB 48KB
Tesla-V100 | Volta-7.0 9.0 80 32 64 32 64K 64K 255 96KB 96KB

Table 3: Benchmark Characteristics. “WPs” stands for warps per CTA. “CTAs” means the default number of CTAs per SM in the baseline. “Regs” represents
the number of registers per thread in the baseline. “SMem” is the shared memory requirement (in bytes) per CTA in the baseline. “Sync” represents whether
inter-warp synchronization (i.e., __syncthreads()) exists in the kernel. “Comm” indicates whether inter-warp communication appears in the kernel. “Ref” refers

to the source benchmark-suit.

Application Description abbr. Kernel Name CTAs | WPs |Regs | SMem |Sync | Comm | Ref
64H 64 and 256 bin histogram calculation 64H |mergeHistogram256Kernel()| 256 8 15 | 1000B | Y Y [[32]
streamcluster | Assigning points to nearest centers STR kernel_compute _cost() 128 16 | 25 0B N N [33]
atax Matrix transpose and vector multiply ATX atax _kernel2() 256 8 18 0B N N |[34]

bh Gravitational forces via Barnes-Hut method | BHH BoundingBoxKernel() 168 | 32 | 32 [24000B| Y Y [35]
mersenne Mersenne Twister random generator MEE BoxMullerGPU() 32 4 18 0B N N [32]
binomial Option call price via binomial model BIL | binomialOptionsKernel() 1024 | 8 17 | 2007B | 'Y Y [32]
BlackScholes | Option call price via Black-Scholes model | BLS BlackScholesGPU() 480 4 21 0B N N [32]
corr Correlation computation COR corr_kernel() 8 8 22 0B N N [34]
cutcp Compute Coulombic potential for 3D grid | CPP cenergy() 512 4 22 0B N N |[36]

fit Fast Fourier transform FFT IFFT512 device() 32768 2 56 | 4500B | Y Y [37]
stencil Jacobi stencil operation on regular 3D grid | STL | block2D _hybrid_coarsenx() | 64 4 29 | 1000B | Y Y |[36]
hotspot Estimate processor temperature HOT calculate_temp() 7396 | 8 38 | 3000B | Y Y [[33]
Ips 3D Laplace solver LPS GPU _laplace3d() 5000 | 4 16 | 2390B | Y Y |[38]
matrixMul Matrix multiplication MAL matrixMulCUDA() 16384 32 | 27 | 8000B | Y Y [32]
mum Pairwise local sequence alignment for DNA | MUM mummergpuKernel() 196 8 23 0B N N [[38]
scalarProd Scalar products of input vector pairs SCD scalarProdGPU() 4096 | 8 24 | 4000B | Y Y [32]
sgemm Single precision general matrix multiply SGM mysgemmNT() 496 4 46 | 512B | Y Y |[[36]
recursiveGaussian | Recursive Gaussian filter REN d_transpose() 1024 | 8 10 | 1062B | Y Y [32]
nbody All-pairs gravitational N-body simulation NBY integrateBodies() 224 8 36 | 4000B | Y Y |[32]
pathfinder Dynamically finding a path in 2D grid PAR dynproc_kernel() 3334 | 1 13 | 256B Y Y |[[33]
MonteCarlo Option call price via Monte-Carlo method | MOO MonteCarloReduce() 1024 | 8 29 | 4000B | Y Y [[32]
bfs Breadth first search BFS Kernel() 1954 | 16 16 0B Y N [33]
b+tree B+tree Operation B+E findK() 10000| 8 27 0B Y N |[33]
SobolQRNG Sobel edge detection filter for images S0G sobolGPU _kernel() 25600 2 19 128B Y Y [32]
dct8x8 Discrete cosine transform for 8x8 block DC8 CUDAkernell1DCT() 4096 | 2 18 | 500B Y Y |[32]
srad Speckle reducing anisotropic diffusion SRD reduce() 2048 | 16 | 25 [4000B | Y Y |[[33]
backprop Perceptron back propagation BAP | bpnn_layerforward_CUDA() | 32768 | 8 18 | 1062B | 'Y Y |[33]
gesummy Scalar vector and matrix multiplication GEV gesummv_kernel() 128 8 23 0B N N [[34]
gaussian Solving variables in a linear system GAN Fanl() 2 16 12 0B N N [33]
single Monte Carlo single Asian option SIE initRNG() 782 4 32 0B Y Y |[32]
syr2k Symmetric rank-2k operations SY2 syr2k_kernel() 16384 8 19 0B N N [34]
syrk Symmetric rank-k ooperations SYK syrk_kernel() 4096 | 8 28 0B N N [[34]

isolated, free to allocate, execute and free an original CTA’s job
without interfering with each other. At SM level, HCTAs stay persis-
tently on an SM and iteratively fetch from the original CTAs’ task
set. In this way, warp delegation can successfully circumvent the re-
striction from the limited hardware CTA slots to improve occupancy.
Meanwhile, this method can also resolve the resource fragmentation
issue of the original kernel. For instance, Figure 4-(C) shows that all
the hardware warp-slots can be filled under warp delegation. Note
that in our proposed Warp-Consolidation model, HCTAs are hid-
den from users: as long as the desired occupancy can be achieved, a
different CTA formation can be applied.

Listing 7 shows the implementation of warp delegation. Users
can simply incorporate this header file into their code. In Line 20-
21, each warp fetches its hardware warp-slot id to calculate its
unique warp-agent id for this kernel context. Then all the warp
agents (nagents in Line 22) are employed to traverse the CTA task
set (Line 23). Listing 8-9 show how to integrate the header for
warp delegation. X_PARTITION or Y_PARTITION still needs to be

specified to identify the HCTAs’ x and y coordinates in the new
kernel grid.

Although warp delegation can effectively increase occupancy for
our Warp-Consolidation model and tackle the resource fragmentation
problem [6], a high occupancy may not necessarily lead to higher
performance due to potentially extra congestion in cache, NoC and
off-chip bus [26, 10]. To better accompany warp delegation and
enable finer-tuning in Warp-Consolidation model, we apply warp-
throttling to control the number of warps being active (Line 19 in
Figure 7) to reach optimal performance. A more dynamic runtime
throttling targeting cache congestion can be implemented via [39].

Although in this work we perform such code transformation man-
ually due to the fact that the vendors do not release compiler-level
details, the major goal here is to demonstrate the feasibility and
potential benefit of the idea. Algorithm 1 summarizes the major
procedure of kernel transformation for warp-consolidation. By fol-
lowing it, the three stages can be integrated into an optimization
compiler to realize auto code transformation, similar to [27, 40, 41].

Algorithm 1: Warp Consolidation

Input :Original Kernel Code
Output : Warp-Consolidation based Optimized Kernel Code
Stage-1 Warp Aggregation(kernel code):
if CTA-size can be adjusted to 32 threads then
| Adjust CTA-size to 32 threads;
else
Perform aggressive warp coarsening;
for each code block separated by -_syncthreads() do
Replicate each var reused across the code block;
Replicate statements depending on threadldx.x;
Convert “if” statements to “for” statements;
Replicate “for” and “while” block;
Perform loop fusion if possible;
end
end
Remove all sync statements;
return optimized code after warp-aggregation;
Stage-2 Register Remapping(kernel code):
if Fixed s-mem access pattern and no addr calculation then
Remove all shared memory allocation;
Partition smem space into warp-based chunks;
Allocate these chunks in different registers;
Replace smem references by shuffle instructions;
end
return optimized code after register-remapping;
Stage-3 Warp Delegation (kernel code):
Include the Warp_Delegation.cuh header file;
Pack kernel body into the WARP_DELEGATION macro;
Set partition strategy;
Convert kernel invokation;
return optimized code after warp-delegation;

4 EVALUATION
4.1 Evaluation Methodology

We evaluate the proposed Warp-Consolidation execution model and
its techniques including warp aggregation, register remapping and
warp delegation on four NVIDIA high-end Tesla GPUs, covering
all the recent generations of NVIDIA GPU architectures: Kepler,
Maxwell, Pascal and Volta, as listed in Table 2. For generality, we
select 32 representative applications from popular GPU benchmark
suits, covering various science domains and kernel features as listed
in Table 3. The baseline here is the original code provided by the
benchmark packages without any modification. We use large inputs
for all the application runs to better reflect real-world workloads.
In addition to the three stage optimization discussed in Section
3, we also evaluate warp throttling to further fine-tune optimal
performance for Warp-Consolidation model, which is discussed in
Section 3.3. Results shown in this section are the average of multiple
runs and their outputs have been compared with the original kernels’
outputs to guarantee correctness.

4.2 Overall Results Analysis

Figure 5, 6, 7 8 show the overall performance improvement by ap-
plying each stage of warp-consolidation optimization incrementally,
marked as “Baseline”, “Aggregate”, “Shuffle” and “Delegation”.
“Throttle” is also included last to provide additional fine-tuning
for performance. The cyan lines based on the right axis show the
achieved occupancy measured by CUDA profiler, which imply the
actual levels of TLP at runtime. Note that when profiling achieved
occupancy for COR, SY2, GEV on Tesla-K80, the profiler reports
performance counter overflow due to their lower bit-width design
on Fermi and Kepler, so the achieved occupancy for these three
applications on K80 appears as zero. L1/Tex cache is turned on for
these experiments.

Together with warp-throttling, our Warp-Consolidation execution
model achieves 1.7x (up to 6.3x), 2.3x (up to 31.1x), 1.5x (up to
6.4x) and 1.2x (up to 3.8x) on Kepler-K80, Maxwell-M40, Pascal-
P100 and Votal-V100 GPUs, respectively. For applications con-
taining synchronization and shared memory communication (e.g.,
64H, BHH, STL, HOT, PAR, MOO, SOG, DC8, SRD, BAP, SIE, etc. See
“Sync” and “Comm” columns in Table 3), both warp-aggregation
and register-remapping can lead to significant performance gain
by avoiding cross-warp synchronization and less-efficient shared
memory communication. For applications without synchroniza-
tion and communication (e.g., STR, ATX, COR, CPP, MUM, GEV, SY2,
SYK, etc.), warp-aggregation (Aggregate and Shuffle show the same
performance here as no register-remapping is applied) degrades per-
formance, suggesting that when no SCC types of overheads need
to be avoided, occupancy degradation may lead to performance de-
crease. On the other hand, warp delegation has demonstrated its
effectiveness for improving their performance because it resolves the
resource fragmentation issue for better occupancy. The performance
of applications such as GEV and SYK is bounded by congestion in
cache, NoC or off-chip bus, thus warp throttling can effectively miti-
gate such contention. For MAL and REN, register-remapping (Shuffle)
degrades the performance significantly. This is because the shared
memory addresses used for communication are only known at run-
time for these applications, so when applying register-remapping,
local memory rather than registers is used, causing high overheads
from accessing global memory (Section 3.2). We validate this by
observing high local memory transaction increase in the profiler.

Comparing across the four architectures, we can observe that
our approach achieves slightly better performance on Kepler than
other architectures (particularly for CPP, MAL, PAR, MOO, DC8, SRD
and GEV). This is because an SM on Kepler has more scalar cores
(192 cores/SM for Kepler vs.128 cores/SM for Maxwell and 64
cores/SM for Pascal and Volta), so it is easier to explore optimiza-
tion opportunities via Warp-Consolidation techniques on Kepler
since the SCC degree (e.g., higher synchronization and communi-
cation intensity) and memory hierarchy contention are relatively
higher. Resolving these bottlenecks on Kepler via warp-aggregation
(e.g., MAL, PAR, GEV) and warp-throttling (e.g., MOO, DC8, BAP) result
in good performance gain. Moreover, from the occupancy curve,
we can observe that warp-delegation technique can effectively ad-
dress the occupancy degradation caused by warp aggregation (e.g.,
STR, ATX, HOT, LPS, SCD, etc). On the other hand, the best perfor-
mance delivered by warp-throttling for applications such as BIL,
PAR, MOO, SY2 suggest that occupancy improvement does not nec-
essarily lead to better performance. Finally, for Volta, the benefit is
not as significant as the others. This is mainly due to the baseline
performance improvement for applications such as SCD, SGM, SGM,
SY2 and SYK. More specifically, there are three main reasons result in
such improvement: (i) Volta supports independent thread scheduling
(see Section 2.3), which significantly reduces warp control diver-
gence overhead, consequently mitigating the probability and degree
of inter-warp unbalancing; (ii) In Volta, FP32 and Int32 instruc-
tions can be executed simultaneously, which reduces the overhead
for address calculation in divergent memory access, lowering the
possibility of false-waiting among warps; (iii) the L1 cache speed,
capacity and bandwidth has been dramatically enhanced in Volta,
which also contributes to the lower divergence overhead as well as
inter-warp imbalance.

%2_5,{:] Baseline [Aggregate [Shuffle EEE Delegation R Throttle} h §
520 ‘oowd1.03
S 15 i i . A , “”70.88
1.0 I ' 63
o5 ‘ ' Tl 104 %
s il
uo.o o ol e il Al S (11022

c
o 1.5r-

64H STR ATX BHH MEE BIL BLS COR CPP FFT STL HOT LPS MAL MUM SCD SGM REN NBY PAR MOO BFS B+E SOG DC8 SRD BAP GEV GAN SIE SY2 SYK AVG <

igure 5: Speedup and Achieved Occupancy on Kepler-based NVIDIA Tesla-K80 GPU. The cyan star-line indicates achieved occupancy. “AVG” is the average.
= z z
3.0F=" T T T T T T T T T T T T T T T T T T T i T T T T T T T T T T &
2_5,{:] Baseline [J Aggregate [Shuffle [Delegation N Throttle} B s
2,00 ! v 4103

1

1

‘ i ‘ . -
Bl i| it R Al il
00 a3 [l /1]) 0011 175

4 STR ATX BHH MEE BIL BLS COR CPP FFT STL HOT LPS MAL MUM SCD SGM REN NBY PAR MOO BFS B+E SOG DC8 SRD BAP GEV GAN SIE SY2 SYK AVG

Figure 6: Speedup and Achieved Occupancy on Maxwell-based NVIDIA Tesla-M40 GPU. The cyan star-line indicates achieved occupancy. “AVG” is the average.
- mory < o >
© 3.0F— T T T T T T T T T T T T T T T T T T T fila T T T T T B T T THT T]
K 2.5,{:] Baseline [Aggregate [Shuffle HEE Delegation I Throttle} 1 8
o
g 2.0]|]
s 1.5+ 1
3 10f]
g 0sf b
[1 [
W 0.07C4H STR ATX BHH MEE BIL BLS COR CPP FFT STL HOT LPS MAL MUM SCD SGM REN NBY PAR MOO BFS B+E SOG DC8 SRD BAP GEV GAN SIE SY2 SYK AVG <
Figure 7: Speedup and Achieved Occupancy on Pascal-based NVIDIA Tesla-P100 GPU. The cyan star-line indicates achieved occupancy. “AVG” is the average.
pissy 3 >
8 3.0F= T T r T T T r T T : T T T T T T T T T T T r T r T r : r T T o
Ez_s,[:] Baseline [Aggregate [Shuffle EEE Delegation Throttle} 1 8
e 2.00 .]
G
o 1.5+ :
3 1of
$ o5k I :
2 0.5 i 5.
]
00=54H STR ATX BHH MEE BIL BLS COR CPP FFT STL HOT LPS MAL MUM SCD SGM REN NBY PAR MOO BFS B+E SOG DC8 SRD BAP GEV GAN SIE Sv2 SYK AVG C0 <
Figure 8: Speedup and Achieved Occupancy on Volta-based NVIDIA Tesla-V100 GPU. The cyan star-line indicates achieved occupancy. “AVG” is the average.

Hit Rate on Kepler
]
——

e

==
——1

F

o
(']
c
=
)

Hit Rate on Pascal Hit Rate on Maxwell

Hit Rate on Volta

100% {I:I Baseline [Aggregate N Shuffle I Delegation N Throttle}

OFENWRUONOO
Norm Reg Usage

(=%

Figure 9: L1 Cache hit-rate for global memory access on Kepler Tesla-K80 GPU. The purple star-line indicates the normalized register usage per threa

100%7[III Baseline [Aggregate [EEE Shuffle EEE Delegation HEE Throttle

——
=———
—
—
—]
—
—
=
——1
———
Fe—————
H——
y—r
————————
—
)
-
OENWARUIONOWO
Norm Reg Usage

64H STR ATX BHH MEE BIL BLS COR CPP FFT STL HOT LPS MAL MUM SCD SGM REN NBY PAR MOO BFS B+E SOG DC8 SRD BAP GEV GAN SIE SY2 SYK AVG

e

igure 10: L1 Cache hit-rate for global memory access on Maxwell Tesla-M40 GPU. The purple star-line represents the normalized register usage per threa

100%7[:| Baseline [Aggregate [Shuffle I Delegation || Throttle}

80%

60%

o N o e

20% ' I l i L
° 1 | i

0%

1
'
d
i
h

OFRENWAUIONOO
Norm Reg Usage

TN (TECM (TEES (TEON CTEEM (TOEN (TN T (T] LI (T (1 GO (RS (TN (7 LI L e TR (TN (TEE el 1) T (7 EEW [TTEN il [T
64H STR ATX BHH MEE BIL BLS COR CPP FFT STL HOT LPS MAL MUM SCD SGM REN NBY PAR MOO BFS B+E SOG DC8 SRD BAP GEV GAN SIE SY2 SYK AVG

11: L1 Cache hit-rate for global memory access on Pascal Tesla-P100 GPU. The purple star-line represents the normalized register usage per thread.

{I:I Baseline I:I Aggregate [N Shuffle @B Delegation M Throttle

ORENWAUIONWO
Norm Reg Usage

[Tl [l [T [
64H STR ATX BHH MEE BIL BLS COR CPP FFT STL HOT LPS MAL MUM SCD SGM REN NBY PAR MOO BFS B+E SOG DC8 SRD BAP GEV GAN SIE SY2 SYK AVG

Figure 12: L1 Cache hit-rate for global memory access on Volta Tesla-V100 GPU. The purple star-line represents the normalized register usage per thread.

= T T T T
[Baseline [Aggregate [Shuffle EEE Delegation B Throttle

Kepler AVG

Maxwell AVG Pascal AVG Volta AVG

Figure 13: The average performance speedup across all 32 applications when
turning off L1/Tex cache on three GPU architectures.

4.3 Impact from Cache and Registers

To further explore the impact from cache and register files, we profile
the L1 cache hit rate for global access as well as the normalized reg-
ister usage per thread (purple lines based on the right axis) through
nvprof [42], shown in Figure 9, 10, 11 and 12 for Kepler, Maxwell,
Pascal and Volta, respectively. Note that Kepler architecture uses
both L1 and texture cache [43] for global memory access. Thus
some applications such as BHH, MEE, MUM, NBY, etc., show a different
L1 cache behavior in Figure 9 from that on Maxwell and Pascal. We
have several observations. (1) Much higher L1 cache hit rates for
GEV, SY2 and SYK are observed after applying warp-throttling on
Maxwell and Pascal, indicating that these applications are primarily
contention-bound at L1. The significantly increased hit rate for these
three applications on Volta explain the degraded speedup from warp
delegation in Figure 8, supporting our arguments in Section 4.2.
(2) Regarding warp-aggregation, sometimes the cache efficiency
increases (e.g., BIL, HOT, MUM, MOO, B+E) due to better and more ran-
dom exploitation of the inter-CTA locality, while sometimes hit rate
drops (e.g., BHH, COR, BFS) due to less intra-CTA reuse. Overall, the
primary performance gain from our Warp-Consolidation execution
does not directly come from better utilization of cache (i.e., only
slightly higher average hit rate) but rather from reducing SCC related
stalls and resource fragmentation issues. Figure 13 shows the aver-
age performance gain for each scheme and architecture by enabling
L1/Tex cache across the 32 applications. As can be seen, although
Volta shows great performance speedup by enabling L.1/Tex cache
amongst architectures, the speedups among schemes for a particular
architecture are very consistent, implying that they benefit similarly
from the cache. Therefore, the performance gain achieved by Warp-
Consolidation execution is essentially from reducing SCC overheads
through more efficient data communication and better utilization
of the on-chip resources (registers, shared memory, hardware warp
slots, NoC bandwidth, etc) rather than cache. For register impact,
Figure 9-11 show that the register usage per thread does not increase
much with warp aggregation, much smaller than the aggregation
factor.

5 EXTENDED DISCUSSION AND
REFLECTION

By summarizing the observations from Figure 5 to Figure 13, we ex-
tend our discussion here including additional observations, solutions
to concerns, compatibility to technology trend, and suggestions for
writing new algorithms.

(I) Parallelism and Occupancy. There is a design trend with
GPU vendors such as NVIDIA that the number of sustainable CTAs
per SM keeps increasing with architecture evolution, e.g., from 8
in Fermi, to 16 in Kepler, to 32 in Maxwell and Pascal; but the
hardware warp-slot number per SM remains largely unchanged, e.g.,
48 for Fermi, 64 for the rest. This trend suggests that GPU hardware
design is enhancing its ability to support more light-weighted CTAs.
More importantly, our software-based warp-delegation technique

Lane-0 Lane-1 Lane-2 Lane-3 Lane-0 Lane-1 Lane-2 Lane-3

Shared | | Shared | | Shared | | Shared

Private | | Private | | Private | | Private e e [

. . . . space space space space
register | |register | |register | |register

space space space space Private | | Private | | Private | | Private

register | | register | |register | [register

space space space space

Private Private Private Private

Shared Scratchpad Memory scratchpad | scratchpad & scratchpad | scratchpad

memory memory memory memory

(A) Shared Memory Based (B) Message Passing Based
CUDA Communication Model New Communication Model

Figure 14: Traditional CUDA communication model vs. Warp-Consolidation
communication model.

can effectively address the occupancy issue from mismatched CTA-
slot number and warp-slot number, demonstrated by significant
performance improvement from applications such as STR, BIL, CPP,
LPS, B+E, DC8, and SRD. Additionally, we want to emphasize that our
Warp-Consolidation execution model is a forward-looking technique
that future GPU applications with a larger problem size or CTA
number requirement can expect further enhanced performance under
it. For example, from Table 2 we can calculate that, as current Tesla-
V100 has 80 SMs, it requires 80 x 64 = 5120 warps to fully utilize
all the available hardware warp-slots after Warp-Consolidation. For
Tesla-K80, M40 and P100, this number is 960, 1536 and 3584.
However, Table 3 shows that today’s applications often do not meet
this requirement for max hardware utilization. This observation
indicates that our model could be a very promising tool for driving
future big-data algorithm or application design on GPUs.

(IT) Register Usage. There are some concerns on the potential of
excessive usage of registers after warp coarsening. Our experiments
(Figure 5-7) as well as other studies have shown that a good usage
of more registers could actually bring significant speedup, greatly
surpass the possible negative effects on occupancy. Figure 9-11 also
show that Warp-Consolidation only expands register usage for some
applications (e.g., HOT, FFT, MAL, SGM and DC8); but for the majority
of them, our method does not consume much additional registers,
especially on Maxwell, Pascal Volta. Furthermore, as the largest
on-chip SRAM structure on GPUs, register files are often not fully
utilized. Previous studies [6, 44] have indicated that nearly 30% of
the GPU registers are not used at all during program execution. Thus
extra usage of registers in Warp-Consolidation execution may not
necessarily lead to occupancy reduction. This could become less
an issue in future since the volume of registers on GPUs is continu-
ously increasing across generations. For certain cases that register
consumption really becomes a problem under our execution model,
there are two possible solutions: spilling into shared memory and
register packing [45, 46]. For the former, Figure 14 demonstrates
the traditional shared memory based CUDA communication model
(A) and a new communication model under our Warp-Consolidation
(B). Under this setup, using shared memory as thread private space
for spilling is more efficient than as a shared space. This is because
when spilling occurs, all the lanes will spin at the same time with
the same register tag, making these spilling access always aligned
and coalesced. This ensures full speed of shared memory as no
bank conflicts will occur. Refer to [47-49] for specific implementa-
tion examples. For the latter, several related techniques have been
proposed previously [45, 46]. With recent GPU support for short-
bitwidth data-types, e.g., Int8, Int16 and FP16, register packing may

become very attractive for certain applications. Finally, to compre-
hensively analyzing the interaction among various factors such as
parallelism, data size, register usage and cache effect, one may refer
to a visualizable performance model [50-52] or GPU profiling tools
[53, 54].

(III) Shared Memory. Warp aggregation, especially warp coars-
ening, may also lead to extra shared memory usage. Based on our
experimental observations, after the transformation stage of register-
remapping, shared memory is not likely used under our model. But
for the cases that shared memory usage does become a limiting
factor, we can adopt the shared memory multiplexing technique
[55]. As shown in Listing 7, since there are multiple warp-agents
per CTA and shared memory is often exploited in one execution
phase, multiplexing among these warp-agents is feasible after warp
delegation.

(IV) Developing New Algorithms. In addition to applying Warp-
Consolidation model to transform legacy codes, future new algo-
rithms can also be implemented directly through it. We have several
suggestions to assist this design effort. (1) Since a warp is granted
the same ability as a traditional CTA under our model, a similar
but more fine-grained partition strategy for CUDA can be utilized.
(2) Bigger problem and more CTAs are desired to saturate all the
hardware warp-slots on modern GPUs which tend to have a lot more
SMs. (3) Data exchanging in our model is achieved via register
shuffling, which is a message-passing communication model. An
efficient implementation should follow a distributed design pattern
and seek to finalize the communication pattern at compile time rather
than computing addresses at runtime. (4) The local memory should
now be allocated into warp-private partition in the shared memory
space (Figure 14) rather than off-chip global memory. This can be
achieved through either manual modification or compiler.

6 RELATED WORK

In the traditional CUDA model [1], task mapping contains two
levels: first level is from thread blocks to CTAs and the second
level is from threads to SIMD-lanes. However, warp is consid-
ered transparent. To address irregular applications, warp-centric
[56] and warp-specialization [15] techniques were proposed. Warp-
centric enables only a single SIMD-lane for the sequential phase
(SISD) but activates the entire warp in the parallel phase (SIMD).
Warp-specialization, on the other hand, initiates multiple warps to
correspondingly handle the different portions of a task and cooper-
atively generate the results, similar to MISD. The two approaches,
albeit different, both rely on the key observation that warps can be
executed independently. Divergence across warps, unlike lane-level
divergence, does not necessarily incur performance degradation. Un-
like CUDA task mapping, theirs at first level is from thread block
to CTA, but at the second level is from threads to warps rather than
threads to SIMD-lanes warp lane. Their basic observation is that,
by branching across warps, expensive SIMD divergence overhead
caused by SIMD-lane divergence within a warp can be avoided. This
can be seen as hiding SIMD-lanes but exposing warps for execution.
Although parallelism degree is reduced, benefits from eliminating
SIMD-lane divergence often outweighs degraded parallelism, espe-
cially for irregular applications. Our proposed model maps from
thread blocks to warps as the first level, and threads to lanes as the
second level. The expected benefit from our approach is not from
eliminating warp divergence, but the SCC overheads across warps.
Our method works for both regular and irregular applications.

Regarding warp-aggregation and synchronization, several hardware-
based approaches [20, 57, 16, 6, 58, 2] have been proposed to in-
crease resource utilization and enhance performance via execution
granularity manipulation and better warp scheduling. For example,
Narasiman et al. [20] proposed a hardware approach to dynamically
partition large warps into smaller subwarps for better utilization of
the compute resources and reducing warp-divergence overhead. Orr
et al. [57] proposed a GPU architecture that could dynamically ag-
gregate asynchronously produced fine-grained thread/warp tasks into
coarse-grained CTA tasks for execution. Wang et al. [16] observed
that for irregular applications, dynamically spawned tasks could
be launched in a granularity of CTAs, rather than heavy-weighted
kernel grid. Xiang et al. [6] focused on the resource fragmentation
issue, and proposed hardware solutions to allocate and release re-
sources based on warps. When resources underutilization occurs,
they dispatched a partial CTA to exploit the unused resources. They
reported difficulties when applications contain shared memory usage
and synchronization. Lee et al. [58] targeted on the execution time
disparity by different warps, and proposed hardware modification
to schedule critical warps first and more often. Liu et al.[2] con-
centrated on reducing the synchronization overhead across warps,
and also proposed warp-scheduler modification to prioritize critical
warps. All these approaches require hardware modifications. Our
design is purely software-based and can be directly deployed on
commodity GPUs.

Regarding register shuffling, both [59] and [60] proposed to com-
bine registers from multiple lanes to form a pool which could be
employed as a user-managed last-level-cache (LLC). The limitation,
however, is that only threads in a warp can access such pool; inter-
warp sharing is not possible. Also, the pool is only beneficial when
the data stored in the pool can be reused. Managing the pool is
also difficult and requires significant user effort. In comparison, our
approach uses registers as channels for inter-lane communication,
rather than a cache. Also, all the communication under our model
occur within a warp.

For warp-delegation, Xiao et al. [11] allocated a guard CTA per-
sistently staying on an SM to coordinate inter-CTA synchronization.
Pai et al. [61] proposed to initiate an elastic kernels staying on SMs
to serve CTA tasks from a series of application kernels in a task
queue, in order to make a better on-chip resource utilization. Li et
al.[31] observed the possibility of exploiting inter-CTA locality and
proposed an approach to cluster CTAs with good inter-CTA locality
on the same SMs. However, all these approaches work on the con-
ventional CUDA execution model and use persistent CTAs to fetch
and execute CTA tasks. On contrary, our work applies persistent
warps after warp aggregation to execute CTA task set. The execution
model is very different. In addition, our major optimization goal is
to reduce SCC and fragmentation overheads.

7 CONCLUSION

In this paper, we focus on optimizing the overheads from inter-warp
SCC (synchronization, cooperation and communication) and pro-
pose a novel execution model that hides the CTA hierarchy but
exposes independent warp-level execution. The basic idea is to re-
place more expensive inter-warp SCC with much cheaper intra-warp
SCC in order to achieve significant performance gains. We propose
three optimization stages: warp aggregation, register remapping
and warp delegation, to drastically reduce SCC and fragmentation
overheads under controllable occupancy. Evaluation on all the recent

generations of NVIDIA GPU architectures have demonstrated the
effectiveness, applicability and portability of our approach. Through
a thorough discussion on solutions to possible concerns, compati-
bility to technology trend and development of new algorithms, we
believe our novel execution model is a forward-looking technique
that can effectively address future big-data GPU applications.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their construc-
tive comments. This research is supported by U.S. DOE Office of
Science, Office of Advanced Scientific Computing Research, un-
der the “CENATE” project (award No. 66150), and the European
Union’s Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie “TICOH” project (grant No. 752321). The
Pacific Northwest National Laboratory is operated by Battelle for the
U.S. Department of Energy under contract DE-AC05-76RL01830.

REFERENCES

[1]
[2]
[3]
[4]

[5]
[6]
[7]

[8]

[9]

[10]
[11]

[12]

[13

[14]
[15]

[16]

[17]

[18]
[19]
[20]

[21]
[22]

(23]

[24]
[25]
[26]

[27]

NVIDIA. CUDA Programming Guide, 2017.

Yuxi Liu, Zhibin Yu, Lieven Eeckhout, Vijay Janapa Reddi, Yingwei Luo, Xiaolin
Wang, Zhenlin Wang, and Chengzhong Xu. Barrier-Aware Warp Scheduling for
Throughput Processors. In ICS-16. ACM.

Nicolas Brunie, Sylvain Collange, and Gregory Diamos. Simultaneous branch
and warp interweaving for sustained GPU performance. In ISCA-12. IEEE.
Gregory Diamos, Benjamin Ashbaugh, Subramaniam Maiyuran, Andrew Kerr,
Haicheng Wu, and Sudhakar Yalamanchili. SIMD re-convergence at thread
frontiers. In MICRO-11. ACM.

Wilson WL Fung and Tor M Aamodt. Thread block compaction for efficient
SIMT control flow. In HPCA-11. IEEE.

Ping Xiang, Yi Yang, and Huiyang Zhou. Warp-level divergence in GPUs:
Characterization, impact, and mitigation. In HPCA-14. IEEE.

Rachata Ausavarungnirun, Saugata Ghose, Onur Kayiran, Gabriel H Loh, Chita R
Das, Mahmut T Kandemir, and Onur Mutlu. Exploiting Inter-Warp Heterogeneity
to Improve GPGPU Performance. In PACT-15. IEEE.

Ang Li, Wenfeng Zhao, and Shuaiwen Leon Song. BVF: enabling significant
on-chip power savings via bit-value-favor for throughput processors. In MICRO.
ACM, 2017.

David Tarjan and Kevin Skadron. On demand register allocation and deallocation
for a multithreaded processor, December 29 2009. US Patent App. 12/649,238.
Vasily Volkov. Better performance at lower occupancy. In GTC-10.

Shucai Xiao and Wu-chun Feng. Inter-block GPU communication via fast barrier
synchronization. In IPDPS-10. IEEE.

Jeff A Stuart and John D Owens. Efficient synchronization primitives for GPUs.
arXiv preprint arXiv:1110.4623,2011.

Ang Li, Gert-Jan van den Braak, Henk Corporaal, and Akash Kumar. Fine-grained
synchronizations and dataflow programming on GPUs. In SC-15. ACM.
NVIDIA. Volta Architecture White Paper, 2018.

Michael Bauer, Sean Treichler, and Alex Aiken. Singe: leveraging warp special-
ization for high performance on GPUs. In PPoPP-14. ACM.

Jin Wang, Norm Rubin, Albert Sidelnik, and Sudhakar Yalamanchili. Dynamic
thread block launch: A lightweight execution mechanism to support irregular
applications on GPUs. ISCA-16.

Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and An-
dreas Moshovos. Demystifying GPU microarchitecture through microbenchmark-
ing. In ISPASS-10. IEEE.

Michael Bauer, Henry Cook, and Brucek Khailany. CudaDMA: optimizing GPU
memory bandwidth via warp specialization. In SC-7/. ACM.

NVIDIA. Parallel Thread Execution ISA, 2017.

Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov,
Onur Mutlu, and Yale N Patt. Improving GPU performance via large warps and
two-level warp scheduling. In MICRO-11. ACM.

Bryan Catanzaro. LDG and SHFL Intrinsics for arbitrary data types, 2014.
Weifeng Liu, Ang Li, Jonathan Hogg, lain S Duff, and Brian Vinter. A
Synchronization-Free Algorithm for Parallel Sparse Triangular Solves. In
EuroPar-16. Springer.

Weifeng Liu, Ang Li, Jonathan D Hogg, Iain S Duff, and Brian Vinter. Fast
synchronization-free algorithms for parallel sparse triangular solves with multiple
right-hand sides. Concurrency and Computation: Practice and Experience, 2017.
Justin Luitjens. Faster Parallel Reductions on Kepler, 2014.

NVIDIA. CUDA C Best Practice Guide, 2017.

Vasily Volkov and James W Demmel. Benchmarking GPUs to tune dense linear
algebra. In SC-08. IEEE.

Yi Yang, Ping Xiang, Jingfei Kong, Mike Mantor, and Huiyang Zhou. A unified
optimizing compiler framework for different GPGPU architectures. TACO, 2012.

[28]
[29]

[30

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]
[43]
[44]
[45]
[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

[60]

[61]

Alberto Magni, Christophe Dubach, and Michael O’Boyle. Automatic optimiza-
tion of thread-coarsening for graphics processors. In PACT-14. IEEE.

Alberto Magni, Christophe Dubach, and Michael FP O’Boyle. A large-scale
cross-architecture evaluation of thread-coarsening. In SC-13. IEEE.

Mike Murphy. NVIDIAs Experience with Open64. In Open64 Workshop at CGO,
2008.

Ang Li, Shuaiwen Leon Song, Weifeng Liu, Xu Liu, Akash Kumar, and Henk
Corporaal. Locality-Aware CTA Clustering for Modern GPUs. In ASPLOS-17.
ACM.

NVIDIA. CUDA SDK Code Samples, 2015.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer,
Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In /ISWC-09. IEEE.

Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John
Cavazos. Auto-tuning a high-level language targeted to GPU codes. In InPar-12.
IEEE.

Milind Kulkarni, Martin Burtscher, Calin Casgaval, and Keshav Pingali. Lonestar:
A suite of parallel irregular programs. In ISPASS-09. IEEE.

John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen-Mei W Hwu. Parboil: A revised
benchmark suite for scientific and commercial throughput computing. Center for
Reliable and High-Performance Computing, 2012.

Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S Meredith, Philip C
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S Vetter. The scalable hetero-
geneous computing (SHOC) benchmark suite. In GPGPU-10. ACM.

Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.
Analyzing CUDA workloads using a detailed GPU simulator. In ISPASS-09.
IEEE.

Ang Li, Gert-Jan van den Braak, Akash Kumar, and Henk Corporaal. Adaptive
and transparent cache bypassing for GPUs. In SC-15. IEEE.

Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Ignacio Gomez, Chris-
tian Tenllado, and Francky Catthoor. Polyhedral parallel code generation for cuda.
TACO, 2013.

Jun Shirako, Akihiro Hayashi, and Vivek Sarkar. Optimized two-level paralleliza-
tion for GPU accelerators using the polyhedral model. In CC-17. ACM.
NVIDIA. CUDA Profiler User’s Guide, 2018.

NVIDIA. Kepler GK110 Whitepaper, 2013.

Mohammad Abdel-Majeed and Murali Annavaram. Warped register file: A power
efficient register file for GPGPUs. In HPCA-13. IEEE.

Andrew Davidson and John D Owens. Register packing for cyclic reduction: A
case study. In GPGPU-11. ACM.

Andrew Davidson, David Tarjan, Michael Garland, and John D Owens. Efficient
parallel merge sort for fixed and variable length keys. In InPar-12. IEEE.

Ari B Hayes and Eddy Z Zhang. Unified on-chip memory allocation for SIMT
architecture. In SC-14. ACM.

Xiaolong Xie, Yun Liang, Xiuhong Li, Yudong Wu, Guangyu Sun, Tao Wang, and
Dongrui Fan. Enabling coordinated register allocation and thread-level parallelism
optimization for GPUs. In MICRO-15. ACM.

Ang Li, Shuaiwen Leon Song, Akash Kumar, Eddy Z Zhang, Daniel Chavarria-
Miranda, and Henk Corporaal. Critical points based register-concurrency autotun-
ing for GPUs. In DATE-16.

Ang Li, YC Tay, Akash Kumar, and Henk Corporaal. Transit: A visual analytical
model for multithreaded machines. In HPDC-15. ACM.

Ang Li, Shuaiwen Leon Song, Eric Brugel, Akash Kumar, Daniel Chavarria-
Miranda, and Henk Corporaal. X: A comprehensive analytic model for parallel
machines. In /PDPS-16. IEEE.

Ang Li, Weifeng Liu, Mads RB Kristensen, Brian Vinter, Hao Wang, Kaixi Hou,
Andres Marquez, and Shuaiwen Leon Song. Exploring and analyzing the real
impact of modern on-package memory on hpc scientific kernels. In SC-17. ACM.
Mark Stephenson, Siva Kumar Sastry Hari, Yunsup Lee, Eiman Ebrahimi,
Daniel R Johnson, David Nellans, Mike O’Connor, and Stephen W Keckler.
Flexible software profiling of GPU architectures. In SC-15. ACM.

Du Shen, Shuaiwen Leon Song, Ang Li, and Xu Liu. Cudaadvisor: LIvm-based
runtime profiling for modern gpus. In CGO-18. ACM.

Yi Yang, Ping Xiang, Mike Mantor, Norm Rubin, and Huiyang Zhou. Shared
memory multiplexing: a novel way to improve GPGPU throughput. In PACT-12.
ACM.

Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Acceler-
ating CUDA graph algorithms at maximum warp. In PPoPP-11. ACM.

Marc S Orr, Bradford M Beckmann, Steven K Reinhardt, and David A Wood.
Fine-grain task aggregation and coordination on GPUs. In ISCA-14. ACM.
Shin-Ying Lee and Carole-Jean Wu. CAWS: criticality-aware warp scheduling
for GPGPU workloads. In PACT-14. ACM.

Thomas L Falch and Anne C Elster. Register caching for stencil computations on
GPUs. In SYNASC-14. IEEE.

Eli Ben-Sasson, Matan Hamilis, Mark Silberstein, and Eran Tromer. Fast multi-
plication in binary fields on gpus via register cache. In SC-16. ACM.

Sreepathi Pai, Matthew J Thazhuthaveetil, and Ramaswamy Govindarajan. Im-
proving GPGPU concurrency with elastic kernels. In ASPLOS-13. ACM.

	Abstract
	1 Introduction
	2 GPU Three Level Parallelism
	2.1 CTA-Level SCC
	2.2 Warp-Level SCC
	2.3 Thread-Level SCC
	2.4 Summary

	3 Warp-Consolidation Execution Model
	3.1 Warp Aggregation: Eliminating Synchronization
	3.2 Register Remapping: Accelerating Communication
	3.3 Warp Delegation: Enhancing Occupancy

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 Overall Results Analysis
	4.3 Impact from Cache and Registers

	5 Extended Discussion and Reflection
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

