
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2017; 00:1–21
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Fast synchronization-free algorithms for parallel sparse triangular
solves with multiple right-hand sides

Weifeng Liu1,2,3,∗, Ang Li4, Jonathan D. Hogg2, Iain S. Duff2 and Brian Vinter1

1Niels Bohr Institute, University of Copenhagen, Denmark
2Scientific Computing Department, STFC Rutherford Appleton Laboratory, UK

3Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
4Pacific Northwest National Lab, USA

SUMMARY

The sparse triangular solve kernels, SpTRSV and SpTRSM, are important building blocks for a number
of numerical linear algebra routines. Parallelizing SpTRSV and SpTRSM on today’s manycore platforms,
such as GPUs, is not an easy task since computing a component of the solution may depend on previously
computed components, enforcing a degree of sequential processing. As a consequence, most existing
work introduces a preprocessing stage to partition the components into a group of level-sets or colour-
sets so that components within a set are independent and can be processed simultaneously during the
subsequent solution stage. However, this class of methods requires a long preprocessing time as well
as significant runtime synchronization overheads between the sets. To address this, we propose in this
paper novel approaches for SpTRSV and SpTRSM in which the ordering between components is naturally
enforced within the solution stage. In this way, the cost for preprocessing can be greatly reduced, and the
synchronizations between sets are completely eliminated. To further exploit the data-parallelism, we also
develop an adaptive scheme for efficiently processing multiple right-hand sides in SpTRSM. A comparison
with a state-of-the-art library supplied by the GPU vendor, using 20 sparse matrices on the latest GPU
device, shows that the proposed approach obtains an average speedup of over two for SpTRSV and up to an
order of magnitude speedup for SpTRSM. In addition, our method is up to two orders of magnitude faster
for the preprocessing stage than existing SpTRSV and SpTRSM methods.
Copyright c© 2017 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: synchronization-free algorithm; sparse triangular solve; GPU; manycore processor

1. INTRODUCTION

The sparse triangular solve kernel, SpTRSV, is an important building block in a number of numerical
linear algebra routines, such as direct methods [9, 12], preconditioned iterative methods [36], and
least squares problems [6]. This operation computes a dense solution vector x from a sparse linear
system Lx = b or Ux = b, where L and U are square lower and upper triangular sparse matrices,
respectively, and b is a dense vector. According to the order of processing the components, the
Lx = b process is called forward substitution, and the Ux = b process is known as backward
substitution. When the same sparse triangular systems have to be solved for multiple right-hand
sides, the operations become LX = B and UX = B, where X and B are usually tall-and-skinny
dense matrices. Such operations are called SpTRSM.

∗Correspondence to: Niels Bohr Institute, University of Copenhagen, Denmark. E-mail: weifeng.liu@nbi.ku.dk

Copyright c© 2017 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]



2 W. LIU ET AL.

Compared to a dense triangular solve [14] and other sparse basic linear algebra subprograms
(BLAS) [13, 25] such as sparse transposition [43], sparse matrix-vector multiplication [22, 28, 29,
48] and sparse matrix-matrix multiplication [27], the SpTRSV and SpTRSM operations are more
difficult to parallelize since they are inherently sequential. This is because computing any single
component xk in a lower triangular sparse solution may depend on having first computed a subset
of previous components x0, . . . , xk−1. Similarly, solving xk from an upper triangular system may
require a subset of subsequent components xk+1, . . . , xn to be solved beforehand. To address the
inherently sequential process, most existing research concentrates on adding a preprocessing stage
to divide the entries of x into a number of sets (known as level-sets or colour-sets). Even though the
sets have to be executed in sequence, entries in any single set can be computed in parallel. As a result,
parallel hardware can be exploited efficiently. This class of methods is in general much better than
the original sequential implementation both on CPUs [17, 33, 38, 45] and on GPUs [23, 32, 34, 41].

However, the set-based methods have two performance bottlenecks. Firstly, finding a good set
partitioning often takes too much time, which may offset or even wipe out the benefits from
parallelization. Secondly, the synchronization between consecutive sets reduces parallelization
efficiency at runtime. In fact, due to these large overheads, finding an efficient thread
synchronization scheme still remains a popular research topic for computer hardware and software
design [7, 18, 24, 31, 35].

In this paper, we improve the synchronization-free algorithm for parallel SpTRSV described in
our previous work [26] and propose a new synchronization-free algorithm with an adaptive scheme
for parallel SpTRSM on GPUs. Our synchronization-free algorithms require only a light-weight
preprocessing stage without set partitioning. More importantly, our method completely eliminates
the runtime barrier synchronizations among sets and automatically selects appropriate parameters
to obtain the best performance. By doing so, our method resolves the bottlenecks and achieves
significant performance improvement.

Using 20 sparse matrices (ten of them are factorized by a sparse LU method [11]) from the
University of Florida Sparse Matrix Collection [10], our SpTRSV and SpTRSM methods achieve
an average speedup of over two for SpTRSV and up to an order of magnitude speedup for SpTRSM
over vendor supplied parallel routines for forward and backward substitution in single and double
precision. More impressively, the preprocessing stage of our algorithm is up to two orders of
magnitude faster than existing set-based methods in the vendor supplied libraries.

2. BACKGROUND

2.1. Solving a Sparse Triangular System with a Single Right-Hand Side (SpTRSV)

2.1.1. Serial SpTRSV Algorithm Without loss of generality, in this paper we assume that the
input matrices L and U are nonsingular lower and upper triangular matrices, and are stored in
the compressed sparse column (CSC) format consisting of three arrays col ptr, row idx and
val. A typical serial forward substitution implementation of SpTRSV for solving Lx = b is
given in Algorithm 1. This method accesses all columns in ascending order (line 3) and solves
for a single component of x at each step (line 4). After that, the code updates all the positions
corresponding to the nonzero entries of the current column in an intermediate array left sum
(lines 5–7). Analogously, the backward substitution for solving Ux = b starts from xn−1 and works
in descending order towards x0.

As can be seen, the columns in the main for loop (lines 3–8) cannot be parallelized as the ith
column requires the ith value in left sum (line 4), which may be affected by previous columns
that also update left sum[i] (line 6). To clarify this we give an example. Figure 1 (a) shows a
matrix L, for which the underlying dependencies are illustrated in its graph form in Figure 1 (b).
Obviously, vertex 5 (i.e., x5) cannot be solved before vertex 3 is solved, and vertex 3 has to wait for
vertex 0.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAST SYNCHRONIZATION-FREE ALGORITHMS FOR PARALLEL SPARSE TRIANGULAR SOLVES 3

Algorithm 1 A serial SpTRSV method for Lx = b, where L is in CSC format.
1: MALLOC(*left sum, n)
2: MEMSET(*left sum, 0)
3: for i = 0 to n− 1 do
4: x[i]← (b[i]-left sum[i])/val[col ptr[i]]
5: for j = col ptr[i]+1 to col ptr[i+ 1]−1 do
6: left sum[row idx[j]]← left sum[row idx[j]] + val[j] × x[i]
7: end for
8: end for
9: FREE(*left sum)

(a) L’s matrix form. (b) L’s graph form. (c) Level-sets generated.

Figure 1. A lower triangular matrix L and parallel SpTRSV using the level-set method.

2.1.2. Level-Set Method for Parallel SpTRSV The motivation for parallel-SpTRSV comes from the
observation that some components/vertices are independent and can be processed simultaneously
(e.g., vertices 0 and 1 in Figure 1 (b)). Therefore, the components can be partitioned into a number
of sets so that components inside a set can be solved in parallel, while the sets are processed
sequentially (i.e., level by level). With this observation, Anderson and Saad [1] and Saltz [37]
introduced a preprocessing stage to perform such a partition before the solving stage. Figure 1 (c)
shows that five level-sets are generated for the matrix L. Consequently, levels 0, 1 and 2 can use
parallel hardware (e.g., a dual-core machine) for accelerating SpTRSV. However, between sets,
dependencies still exist so synchronization is required at runtime.

2.1.3. Motivation for Avoiding Synchronization Synchronization remains a performance bottleneck
for many applications and has long been a classic problem in computer systems research [7, 18, 24,
34, 35]. To evaluate the synchronization cost in SpTRSV, we run a parallel SpTRSV implemented
by Park et al. [33] based on the aforementioned level-set approach. We show the cost of the
preprocessing stage and a breakdown of the solving stage execution time (i.e., synchronization cost
and floating-point calculations) using four representative matrices† from the University of Florida
Sparse Matrix Collection [10].

Matrix name Preprocessing cost SpTRSV cost SpTRSV cost breakdown (ms) #Level-sets(ms) (ms) Synchronization Compute
FEM/ship 003 92.46 12.95 10.96 1.99 4367
FEM/Cantilever 47.89 9.60 5.62 3.98 2397
chipcool0 8.74 1.99 1.15 0.84 534
nlpkkt160 484.67 38.30 0.01 38.29 2

Table I. Breakdown of a basic level-set method used in the source code of [33] on Intel dual-socket E5-2695
v3. See Table III for details of the four matrices.

†Similar to [33], the nonsingular matrix L is the lower triangular part of the input matrix, plus a dense main diagonal.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



4 W. LIU ET AL.

We have two observations from Table I. Firstly, the preprocessing stage takes much longer than
a single call to SpTRSV. Specifically, the preprocessing stage is 4.39 (matrix chipcool0) to 12.65
times (matrix nlpkkt160) slower than the main kernel of SpTRSV. This implies that if SpTRSV
is only executed a few times, level-set based parallelization is not attractive. Secondly, when the
number of level-sets increases, the overheads for synchronization dominate the SpTRSV solving
stage execution time. For example, matrix FEM/ship 003 has 4367 level-sets that implies 4366
explicit barrier synchronizations in the solving stage and accounts for 85% of the total SpTRSV
execution time (10.96 ms out of 12.95 ms). In contrast, the synchronization overheads for matrix
nlpkkt160 is much less as only two level-sets are generated.

Therefore, to improve the performance of parallel SpTRSV, it is crucial to reduce the overheads
for preprocessing (i.e., generating level-sets) and to avoid the runtime barrier synchronizations.

2.2. Solving a Sparse Triangular System with Multiple Right-Hand Sides (SpTRSM)

2.2.1. Data-Parallel SpTRSM Algorithm Compared to SpTRSV with a single right-hand side, the
SpTRSM kernel has better data-level parallelism since its multiple right-hand sides can be processed
in parallel. Moreover, since entries in each column are independent of each other, they can be
processed in parallel as well. Algorithm 2 shows a data-level parallel method for SpTRSM. It can
be seen that the main for loop (lines 8–14) has two optimization strategies for leveraging data-level
parallelism: one is to parallelize multiple entries in each column (line 8), the other is to parallelize
multiple right-hand sides (line 9).

Algorithm 2 A data-parallel SpTRSM method for LX = B, where L is in the CSC format.
1: MALLOC(*left sum, n× rhs) . rhs is the number of right-hand sides.
2: MEMSET(*left sum, 0)
3: for i = 0 to n− 1 in parallel do
4: for ri = 0 to rhs− 1 do
5: loc← i× rhs+ ri
6: X[loc]← (B[loc]-left sum[loc])/val[col ptr[i]]
7: end for
8: for j = col ptr[i]+1 to col ptr[i+ 1]−1 in parallel do . Optimization 1: parallelize column entries.
9: for ri = 0 to rhs− 1 in parallel do . Optimization 2: parallelize right-hand sides.

10: locls← row idx[j]×rhs+ ri
11: loc← i× rhs+ ri
12: left sum[locls]← left sum[locls] + val[j] × X[loc]
13: end for
14: end for
15: end for
16: FREE(*left sum)

2.2.2. Motivation for an Adaptive Method If one thread is used for solving a batch of components
(i.e., a row of the solution matrix X), the two optimization strategies for parallelizing the two for
loops are mutually exclusive. That is to say, a program must select either for loop to parallelize.
Because of the different column lengths and the number of right-hand sides, directly parallelizing
any one of the two for loops may not always achieve the best performance. Figure 2 shows the
distribution of column lengths for the four matrices used above. It can be seen that the distribution
varies from matrix to matrix. Some matrices only have short columns, meaning that the SIMD
parallelism of column length may not be enough for saturating modern GPUs (for the NVIDIA the
warp size is 32 and for the AMD the wavefront size is 64). For instance, assume that the number
of right-hand sides is 16, then parallelizing the loop on right-hand sides (optimization 2 in line 9 of
Algorithm 2) may give the best performance for matrix Chipcool0 as most of its columns are shorter
than 16. But this may degrade throughput for matrix FEM/ship 003 since most of its columns are
longer than 16, and in such a case parallelizing the loop on column length (optimization 1 in line 8
of Algorithm 2) will be expected to be better.

Thus, it is important to find an adaptive method that can select a for loop to parallelize for best
data-parallelism and best throughput.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAST SYNCHRONIZATION-FREE ALGORITHMS FOR PARALLEL SPARSE TRIANGULAR SOLVES 5

0 10 20 30 40 50 60 70 80 90
Column length

0

1000

2000

3000

4000

5000

6000

C
o
u
n
t

FEM/ship 003

0 5 10 15 20 25 30 35 40 45
Column length

0

5000

10000

15000

20000

25000

C
o
u
n
t

FEM/Cantilever

0 5 10 15 20
Column length

0

500

1000

1500

2000

2500

3000

3500

4000

4500

C
o
u
n
t

chipcool0

0 5 10 15 20 25 30
Column length

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

C
o
u
n
t

nlpkkt160

Figure 2. The distribution of column length (the number of columns as y axes) of four matrices.

3. SYNCHRONIZATION-FREE ALGORITHM FOR SPTRSV

The first objective of this work is to eliminate the cost of generating level-sets and the barrier
synchronizations between the sets. Due to the inherent dependencies among components, the major
task for parallelizing SpTRSV is to clarify such dependencies and to respect them when solving at
runtime.

In this work, we use GPUs as the platform for exploiting inherent parallelism when there are
many components for a very large matrix. We assign a warp of threads to solve a single component
of x (a warp is a unit of 32 SIMD threads executed in lock-step for NVIDIA GPUs. For AMD
GPUs the warp is 64 threads and is denoted by the term wavefront). To respect the partial order
of SpTRSV, we need to be sure that the warps associated with dependent entries (if any) must be
finished first. Thus thread-blocks of multiple warps need to be dispatched in ascending order, even
though they can be switched and finished in arbitrary order. Since the partial order is essentially
unidirectional (i.e., any component only depends on previous components but not on later ones in
forward substitution, see Figure 1 (b), and vice versa in backward substitution), we can map entries
to warps and strictly respect the partial order of the entries so that no warp execution deadlock will
occur.

Therefore, before solving for a particular component, we let the processing warp learn how many
entries have to be computed in advance (i.e., the number of dependent entries). This number equals
the in-degree of a vertex in the graph representation of a matrix (Figure 1 (b)), which is also identical
to the number of nonzero entries of the current matrix row minus one (to exclude the entry on
diagonal). Thus, we use an intermediate array in degree of size n to hold the number of nonzero
entries for each row of the matrix. This is all we do in the preprocessing stage. Algorithmically, this
step is part of transposing a sparse matrix in parallel [43]. Compared to the complex dependency
extraction in the set-based methods that have to analyse the sparsity structure, our method requires
much less work. Lines 3–7 in Algorithm 3 show the pseudocode for our preprocessing stage.

Knowing the in-degree information indicating how many warps have to be finished in advance,
we can initiate a sufficient number of warps to fully exploit the irregular parallelism. For an
arbitrary warp, after finishing the necessary floating-point computation for a component (line 14 in
Algorithm 3), it notifies all the later entries that depend on the current one by atomic updating (lines
19 and 22). Note that atomic operations are needed here as multiple updates from different warps
may happen simultaneously. Therefore, a warp only has to wait (lines 11–13) until its corresponding
in-degrees are all eliminated, implying that all the dependent components are successfully solved
and the warp can start processing safely. Due to the warp multi-issuing property of GPUs, a warp can
start processing immediately after its dependencies have been satisfied, without any false waiting
incurred by the hardware.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



6 W. LIU ET AL.

Algorithm 3 The proposed synchronization-free algorithm for SpTRSV (forward substitution).
1: MALLOC(*d left sum, *s left sum, *d in degree, *s in degree, n)
2: MEMSET(*d left sum, *s left sum, *d in degree, *s in degree, 0)
3: function PREPROCESSING-STAGE()
4: for i = 0 to nnz − 1 in parallel do
5: ATOMIC-INCR(&d in degree[row idx[i]])
6: end for
7: end function
8: function SOLVING-STAGE()
9: th← SET() . size of diagonal block

10: for i = 0 to n− 1 in parallel do . One concurrent warp for one component.
11: while s in degree[i]+1 6= d in degree[i] do
12: //busy wait
13: end while
14: x[i]← (b[i]-d left sum[i]-s left sum[i])/val[col ptr[i]]
15: for j = col ptr[i]+1 to col ptr[i+ 1]−1 in parallel do . One thread for one nonzero.
16: rid← row idx[j]
17: if rid < i+ th− i%th then . Use on-chip scratchpad for red areas in Figure 4.
18: ATOMIC-ADD(&s left sum[rid], val[j] × x[i])
19: ATOMIC-INCR(&s in degree[rid])
20: else . Use GPU off-chip memory for green area in Figure 4.
21: ATOMIC-ADD(&d left sum[rid], val[j] × x[i])
22: ATOMIC-DECR(&d in degree[rid])
23: end if
24: end for
25: end for
26: end function
27: FREE(*d left sum, *s left sum, *d in degree, *s in degree)

Figure 3 illustrates the procedure for our synchronization-free algorithm‡ using an example.
Suppose there are three warps enrolled, tagged as warp0, warp1 and warp2. They follow the same
procedure and are context-switched by the hardware scheduler. For an arbitrary warp, the central
region contained in the red dotted box (labelled as the critical section protecting the left sum
array) separates the whole procedure into three phases: lock-wait, critical section and lock-update.

Figure 3. The basic procedure of our synchronization-free algorithm.

In the lock-wait phase, the warp iteratively evaluates the status of the lock protecting the critical
section of the current warp. If locked, it waits in the loop (known as spinning); otherwise, it stops
waiting and enters the next phase. Although the lock here is a spin-lock, it does not have the busy-
waiting problem. Based on our observation, if the clock() function is invoked inside the waiting loop,
the NVIDIA nvcc compiler would not start the waiting loop for some ‘optimization’ reasons, so a
signal will be sent to the hardware warp scheduler to switch to the next warp context. This avoids
the execution deadlock. In contrast, the AMD OpenCL compiler does not have this risk at all, so

‡Note that hardware-level synchronizations in atomic operations should not be confused with barrier synchronizations in
the set-based methods, when we claim that the proposed method is synchronization-free.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAST SYNCHRONIZATION-FREE ALGORITHMS FOR PARALLEL SPARSE TRIANGULAR SOLVES 7

the waiting loop in our OpenCL version does not have to add any functions to prevent deadlock. In
the critical section phase, the warp updates the components in left sum that have dependencies
on the components that the warp is currently working on. This is done in an order that depends
on the partial dependency defined by the sparsity structure. After that, it aborts the critical section
and enters the lock-update phase. In the last lock-update phase, the warp updates the dependent
in degree array, in the same order as for left sum (so that all the order dependencies are
strictly respected). Depending on the number of components in that column (line 15 in Algorithm 3),
it may require one or several updates. When an in-degree is updated to reach the target value (so
that all the dependencies of the component are resolved), the lock corresponding to that in-degree
is unlocked. Consequently, the warp waiting for that lock can abort the waiting phase and enter its
critical section.

Lines 8–26 in Algorithm 3 give the pseudocode for the solving stage of our synchronization-free
SpTRSV method. We can optimize this by exploiting the GPU on-chip scratchpad memory. When
warps in the same thread-block share the same portion of on-chip memory, some components’
dependencies may be resolved within the thread block with lower latency. Our implementation
allocates two sets of intermediate arrays, one set on local scratchpad memory (s left sum
and s in degree) and the other set on GPU off-chip global memory (d left sum and
d in degree), see line 1 of Algorithm 3. When a warp finds a dependent entry (the later entry that
depends on the current one) in the same GPU thread-block composed of multiple warps, it updates
the local arrays (lines 18–19) in the scratchpad memory for faster accessing. Otherwise, it updates
the remote off-chip arrays (lines 21-22), to notify warps from other thread-blocks. The sum of the
two arrays (line 11) is used to verify if all the dependencies are satisfied.

Figure 4 (a) shows an example using 12 warps organized in 3 thread-blocks for solving a
system of order 12× 12. Operations in on-chip scratchpad memory are marked red (lines 18–19
in Algorithm 3), other operations in GPU off-chip memory are marked green (lines 21–22), and the
diagonal entries are coloured blue (line 14). Figure 4 (b) plots read/write behaviour for solving the
12 components (presented as 12 columns) of x. We can see that entries 0, 1 and 5 can be solved
immediately once the corresponding warps are issued since they have no in-degree (see the blue
arrow blocks for columns 0, 1 and 5 in the top half of the subfigure), and they update values using
their out-degrees (see the bottom half). In contrast, the other entries have to busy-wait (see red and
green arrow blocks in the top half) until their in-degrees are eliminated for solving (see blue arrow
blocks). Figure 5 plots an example that solves an upper triangular system where the matrix is the
symmetric counterpart of the lower triangular matrix shown in Figure 4. It can be seen that even
though the two matrices are symmetric to each other, the two SpTRSV processes have completely
different parallelism.

Also, it can be seen that if the entries in a given column (except the one on the diagonal) are
sorted in ascending order, the components affected by the column will be expected to be solved
in ascending order (i.e., from left to right). Because the left components are in general likely to
finish earlier and thus signal their out-degree components earlier, the overall waiting time of our
synchronization-free algorithm may be decreased and better performance can be expected. As for
backward substitution, the column entries can be accessed in reverse order for similar effects. In
this procedure, a fast segment sort [15] that separately orders a list of columns in parallel will be
important to achieve overall best performance.

4. SYNCHRONIZATION-FREE ALGORITHM FOR SPTRSM

Based on the SpTRSV approach described in the previous section, we develop an extended
synchronization-free algorithm for SpTRSM. The key idea is to adaptively select an optimization
strategy (i.e., parallelizing multiple nonzero entries in a column, or parallelizing multiple right-hand
sides) at runtime for each column to achieve best performance.

This adaptive method can be illustrated in a two-dimensional space shown in Figure 6. The two
dimensions are the length of a given column (the number of nonzero entries in the column, expressed
as col len, i.e., ‘column length’, on the x axis) and the number of right-hand sides (expressed as

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



8 W. LIU ET AL.

(a) A matrix L. (b) Read/write behaviours.

Figure 4. An example of the proposed synchronization-free SpTRSV method for forward substitution. The
red area performs atomic-add (line 18 in Algorithm 3) and atomic-incr (line 19) in scratchpad memory, and

the green area performs atomic-add (line 21) and atomic-decr (line 22) in GPU global memory.

(a) A matrix U . (b) Read/write behaviours.

Figure 5. An example of the proposed synchronization-free SpTRSV method for backward substitution.

rhs, i.e., ‘#right hand sides’, on the y axis). Two parameters p and q are used for partitioning the
space vertically and horizontally, respectively. Hence the space is divided into four areas utilizing
different optimization strategies to process a column:

• The upper right and lower right parts are always processed using the optimization method 1.
This means that when col len is long enough (it may be much larger than rhs), parallelizing
multiple nonzero entries in the column will give better performance.

• The upper left part is always processed by the optimization strategy 2, meaning that
parallelizing multiple right-hand sides will offer superior performance when rhs is sufficiently
large and col len is short enough. Moreover, compared to parallelizing multiple nonzero
entries that causes all subsequent components released at roughly the same time, parallelizing
multiple right-hand sides processes the components as early as possible, thus potentially
reducing the overall execution time.

• The lower left area is further divided into two parts: the left part indicates that when rhs
is larger than col len, optimization method 2 should be used, and the right part indicates
that when col len is long enough but still under the vertical divider p, the column should be
processed by optimization method 1.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAST SYNCHRONIZATION-FREE ALGORITHMS FOR PARALLEL SPARSE TRIANGULAR SOLVES 9

Figure 6. The adaptive method for computation in each column.

Algorithm 4 The proposed synchronization-free algorithm for SpTRSM (forward substitution).
1: MALLOC(*d left sum, n× rhs) . rhs is the number of right-hand sides.
2: MALLOC(*d in degree, n)
3: MEMSET(*d left sum, *d in degree, 0)
4: function PREPROCESSING-STAGE() . The same to the preprocessing stage in SpTRSV.
5: for i = 0 to nnz − 1 in parallel do
6: ATOMIC-INCR(&d in degree[row idx[i]])
7: end for
8: end function
9: function SOLVING-STAGE()

10: for i = 0 to n− 1 in parallel do . One concurrent warp for one component.
11: while d in degree[i] 6= 1 do
12: //busy wait
13: end while
14: for ri = 0 to rhs− 1 in parallel do . One thread for one right-hand side item.
15: loc← i× rhs+ ri
16: X[loc]← (B[loc]-d left sum[loc])/val[col ptr[i]]
17: end for
18: len← col ptr[i+ 1] − col ptr[i]−1
19: if (len ≤ rhs ∨ rhs > p) ∧ len < q then . In this paper, p and q are set to 8 and 8192, respectively.
20: for j = col ptr[i]+1 to col ptr[i+ 1]−1 do
21: rid← row idx[j]
22: for ri = 0 to rhs− 1 in parallel do . One thread for one right-hand side item.
23: ATOMIC-ADD(&d left sum[rid× rhs+ ri], val[j] × X[i× rhs+ ri])
24: ATOMIC-DECR(&d in degree[rid])
25: end for
26: end for
27: else
28: for j = col ptr[i]+1 to col ptr[i+ 1]−1 in parallel do . One thread for one nonzero.
29: rid← row idx[j]
30: for ri = 0 to rhs− 1 do
31: ATOMIC-ADD(&d left sum[rid× rhs+ ri], val[j] × X[i× rhs+ ri])
32: ATOMIC-DECR(&d in degree[rid])
33: end for
34: end for
35: end if
36: end for
37: end function
38: FREE(*d left sum, *d in degree)

Here we do not adopt the optimization that uses both on-chip and off-chip memory for faster
solving stage in our synchronization-free SpTRSV. The main reason is that the number of right-hand
sides can be large and thus may consume excessive on-chip scratchpad memory and degrade device
occupancy (i.e., cannot saturate hardware resources). As a comparison, the proposed algorithm for
SpTRSM stores shared resources, such as the in-degree and left sum arrays, only in GPU off-
chip global memory. Algorithm 4 shows the proposed synchronization-free algorithm for forward
substitution SpTRSM. It can be seen that line 19 decides which optimization approach is called for

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



10 W. LIU ET AL.

a given column. In our experiments, we always set p and q to 8 and 8192, respectively, since we find
empirically that this combination generally gives the best overall performance (see Figure 12).

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

We have implemented the proposed synchronization-free SpTRSV method both in CUDA and
in OpenCL and have evaluated it on two GPUs: an NVIDIA GeForce Titan X GPU of Pascal
architecture, and an AMD Radeon R9 Fury X GPU of GCN architecture. We also benchmark the
most recent SpTRSV and SpTRSM implementations from two libraries cuSPARSE v8.0 and MKL
v11.3 Update 3 provided by NVIDIA and Intel, respectively. We execute each method a hundred
times and use the arithmetic average of the runtime to calculate the GFlop/s rates.

Because mixed-precision numerical methods have recently attracted much attention, we evaluate
all methods in both single and double precision for SpTRSV. But for brevity, we only show
experimental results of SpTRSM in double precision. Information about the platforms and test
schemes are listed in Table II.

The testbeds The SpTRSV and SpTRSM algorithms

An Intel Xeon E5-2630 v4
(Broadwell, 10 cores @ 2.2
GHz, 25 MB L3 cache, 16 GB
DDR4 @ 68.3 GB/s).

(1) The mkl ?csrtrsv and mkl ?csrsm for SpTRSV and
SpTRSM in MKL v11.3 Update 3, respectively. Note that those two
are highly tuned serial implementation.
(2) The parallel executor mkl sparse ? trsv using the
functions mkl sparse set sv hint and
mkl sparse optimize as an inspector for SpTRSV in MKL
v11.3 Update 3.
(3) The parallel executor mkl sparse ? trsm using the
functions mkl sparse set sm hint and
mkl sparse optimize as an inspector for SpTRSM in MKL
v11.3 Update 3.

An NVIDIA GeForce Titan X
(Pascal GP102, 3584 CUDA
cores @ 1.4 GHz, 12 GB
GDDR5X @ 480 GB/s, driver
v367.48).

(1) The latest SpTRSV method cusparse?csrsv2 solve
using functions cusparse?csrsv2 bufferSize and
cusparse?csrsv2 analysis in its preprocessing stage in the
NVIDIA cuSPARSE v8.0.
(2) The latest SpTRSM method cusparse?csrsm solve using
function cusparse?csrsm analysis in its preprocessing
stage in the NVIDIA cuSPARSE v8.0.
(3) The synchronization-free methods for SpTRSV and SpTRSM
proposed in this paper.

An AMD Radeon R9 Fury X
(GCN Fiji, 4096 Radeon cores
@ 1.05 GHz, 4 GB HBM @
512 GB/s, driver v15.12).

(1) The synchronization-free methods for SpTRSV and SpTRSM
proposed in this paper.

Table II. The testbeds and SpTRSV and SpTRSM algorithms. Note that the proposed synchronization-free
method uses matrices in CSC format, while the other methods use the CSR format, and we assume the input

is already in the right format before a solve starts.

Table III lists the 20 sparse matrices used for our experiments on all platforms. The first 10
matrices have been used in other research on sparse matrix computations [17, 25, 27, 28, 29, 33, 48]
and are publicly available from the University of Florida Sparse Matrix Collection [10]. The last 10
matrices are also from the collection but, in this evaluation, we use their factorized forms generated
by a sparse LU decomposition using MA48 [11] from the Harwell Subroutine Library (HSL) [16].
Hence our benchmark suite covers more application scenarios of sparse system solvers. The selected
matrices cover a wide range for the number of level-sets as well as the average parallelism inside a
level-set. For example, matrix nlpkkt160 has only two level-sets so that the computation of most
of its components can run in parallel, whereas for the factorized matrix g7jac140sc very few

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAST SYNCHRONIZATION-FREE ALGORITHMS FOR PARALLEL SPARSE TRIANGULAR SOLVES 11

components can utilize parallel resources. Note that in this paper we test both forward and backward
substitution. Thus the information for the L and U parts of the matrices are listed separately.

Matrix name #Rows/#Cols Tria. #Nonzeros #Level-sets Parallelism (L or U )
(L or U ) (L or U ) minimum average maximum

nlpkkt160 8,345,600 L 118,931,856 2 4,096,000 4,172,800 4,249,600
U 2 4,096,000 4,172,800 4,249,600

road central 14,081,816 L 31,015,229 59 2 238,674 4,480,856
U 59 1 238,674 4,330,799

road usa 23,947,347 L 52,801,659 77 1 311,004 6,739,633
U 77 1 311,004 8,010,032

webbase-1M 1,000,005 L 2,348,442 512 2 1,953 88,133
U 1,757,099 514 1 1,945 926,806

wiki-Talk 2,394,385 L 3,072,221 515 1 4,649 2,256,516
U 6,737,959 522 1 4,586 2,341,064

chipcool0 20,082 L 150,616 534 2 37 73
U 534 1 37 78

FEM/Cantilever 62,451 L 2,034,917 2,397 1 26 244
U 2,397 1 26 244

crankseg 1 52,804 L 5,333,507 4,056 1 13 56
U 4,056 1 13 280

FEM/ship 003 121,728 L 4,103,881 4,367 1 27 761
U 4,367 1 27 59

hollywood-2009 1,139,905 L 57,515,616 82,735 1 13 91,152
U 82,735 1 13 78,886

Wordnet3 82,670 L 166,941 8 567 10,333 30,548
U 110,482 74 1 1,117 70,543

rajat18 94,294 L 280,494 82 1 1,149 56,915
U 460,208 167 1 564 4,150

lung2 109,460 L 273,646 454 1 241 37,338
U 754,446 906 1 120 7,620

dc2 116,835 L 666,173 677 1 172 85,849
U 848,612 678 1 172 41,698

soc-sign-epinions 131,828 L 271,947 28 1 4,708 87,001
U 818,316 1,566 1 84 105,087

TSOPF RS b162 c4 20,374 L 1,565,005 765 3 26 5,273
U 3,949,099 1,129 1 18 229

cit-HepTh 27,770 L 4,244,363 879 1 31 17,970
U 2,130,249 1,191 1 23 7,918

rajat25 87,190 L 1,458,168 1,756 1 49 39,959
U 1,928,716 1,674 1 52 572

epb3 84,617 L 3,313,794 3,470 1 24 26,906
U 6,439,264 3,920 1 21 140

g7jac140sc 41,490 L 10,102,488 5,156 1 8 19,520
U 17,590,850 5,327 1 7 129

Table III. The benchmark suite including 10 original matrices (eight symmetric and two unsymmetric) and
10 matrices (all unsymmetric) factorized using a sparse LU method. Note that even for symmetric matrices,
forward and backward substitution may not have the same parallelism. Also note that ‘parallelism’ refers to
the average number of components that can be solved in parallel in the level-set method. For example,
the 8× 8 matrix plotted in Figure 1 has a parallelism of 1.6 (i.e., eight components grouped into five

parallelizable level-sets).

5.2. SpTRSV Performance

Figures 7 and 8 show the single and double precision SpTRSV performance on the 20 matrices
measured on the three platforms. Overall, the methods in MKL are relatively slow when the
parallel degree is high, but behave better when the parallel degree is low (meaning that operations
are more sequential). The cuSPARSE library exhibits opposite performance: showing relatively
better performance when the parallel degree is high but inferior performance when the parallel
degree is low. Nevertheless, on average (harmonic mean), the MKL and cuSPARSE libraries show

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



12 W. LIU ET AL.

comparable throughput. Compared to both MKL and cuSPARSE, our synchronization-free method
is in general faster and sometimes much faster.

n
lp
kk

t1
6
0

ro
a
d
_c
e
n
tr
a
l

ro
a
d
_u

sa

w
e
b
b
a
se

-1
M

w
ik
i-T
a
lk

ch
ip
co

o
l0

ca
n
t

cr
a
n
ks

e
g
_1

sh
ip
_0

0
3

h
o
lly

w
o
o
d
-2
0
0
9

W
o
rd
n
e
t3

ra
ja
t1
8

lu
n
g
2

d
c2

so
c-
si
g
n
-e
p
in
io
n
s

T
S
O
P
F_
R
S
_b

1
6
2
_c
4

ci
t-
H
e
p
T
h

ra
ja
t2
5

e
p
b
3

g
7
ja
c1

4
0
sc

H
a
rm

o
n
ic
 m

e
a
n

Matrix

0

1

2

3

4

5

G
Fl
o
p
/s

1
5
.2
0

1
4
.6
4

6
.1
6

5
.0
8

MKL serial (Intel E5-2630 v4)

MKL parallel (Intel E5-2630 v4)

cuSPARSE (NVIDIA Titan X)

Sync-Free (NVIDIA Titan X)

Sync-Free (AMD Fury X)

(a) forward substitution

n
lp
kk

t1
6
0

ro
a
d
_c
e
n
tr
a
l

ro
a
d
_u

sa

w
e
b
b
a
se

-1
M

w
ik
i-T
a
lk

ch
ip
co

o
l0

ca
n
t

cr
a
n
ks

e
g
_1

sh
ip
_0

0
3

h
o
lly

w
o
o
d
-2
0
0
9

W
o
rd
n
e
t3

ra
ja
t1
8

lu
n
g
2

d
c2

so
c-
si
g
n
-e
p
in
io
n
s

T
S
O
P
F_
R
S
_b

1
6
2
_c
4

ci
t-
H
e
p
T
h

ra
ja
t2
5

e
p
b
3

g
7
ja
c1

4
0
sc

H
a
rm

o
n
ic
 m

e
a
n

Matrix

0

1

2

3

4

5

G
Fl
o
p
/s

1
5
.0
9

1
4
.8
3

5
.6
2

MKL serial (Intel E5-2630 v4)

MKL parallel (Intel E5-2630 v4)

cuSPARSE (NVIDIA Titan X)

Sync-Free (NVIDIA Titan X)

Sync-Free (AMD Fury X)

(b) backward substitution

Figure 7. The SpTRSV (single precision) performance of the 20 matrices on three platforms.

Specifically, on the Pascal-based Titan X GPU, our synchronization-free algorithm demonstrates
an average speedup over the cuSPARSE library of 2.42 times in single precision and 2.34 times
in double precision for forward substitution, and 1.77 times in single precision and 1.77 times in
double precision for backward substitution. The maximum speedups are 6.11, 5.49, 4.65, 4.22,
respectively. These best speedups are all from matrices, such as cant and dc2, that have most nonzero
entries in diagonal blocks. For those matrices, the optimizing strategy of using both scratchpad and
off-chip memory improves the overall performance. Also, it can be seen that our method achieves
speedups of 2.73, 2.56, 2.8 and 2.65, respectively, for matrix hollywood-2009. This matrix requires
82,735 runtime synchronizations (see Table III) limiting its performance for the level-set methods.
In contrast, our method avoids synchronizations and obtains much superior performance. For the
same reason, our method shows comparable performance compared to existing methods on matrix
nlpkkt160, which requires only two runtime synchronizations.

We also notice that compared to the Kepler- and Maxwell-based GPUs used in our previous
work [27], the Pascal-based Titan X GPU offers higher performance. The major reason is that
the Pascal architecture is equipped with higher bandwidth and improved micro-architectures for
atomic operations, which are extensively utilized in our approach. Actually, Scogland and Feng [39]

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAST SYNCHRONIZATION-FREE ALGORITHMS FOR PARALLEL SPARSE TRIANGULAR SOLVES 13

n
lp
kk

t1
6
0

ro
a
d
_c
e
n
tr
a
l

ro
a
d
_u

sa

w
e
b
b
a
se

-1
M

w
ik
i-T
a
lk

ch
ip
co

o
l0

ca
n
t

cr
a
n
ks

e
g
_1

sh
ip
_0

0
3

h
o
lly

w
o
o
d
-2
0
0
9

W
o
rd
n
e
t3

ra
ja
t1
8

lu
n
g
2

d
c2

so
c-
si
g
n
-e
p
in
io
n
s

T
S
O
P
F_
R
S
_b

1
6
2
_c
4

ci
t-
H
e
p
T
h

ra
ja
t2
5

e
p
b
3

g
7
ja
c1

4
0
sc

H
a
rm

o
n
ic
 m

e
a
n

Matrix

0

1

2

3

4

5

G
Fl
o
p
/s

8
.0
8

1
1
.6
2

5
.6
7

MKL serial (Intel E5-2630 v4)

MKL parallel (Intel E5-2630 v4)

cuSPARSE (NVIDIA Titan X)

Sync-Free (NVIDIA Titan X)

Sync-Free (AMD Fury X)

(a) forward substitution

n
lp
kk

t1
6
0

ro
a
d
_c
e
n
tr
a
l

ro
a
d
_u

sa

w
e
b
b
a
se

-1
M

w
ik
i-T
a
lk

ch
ip
co

o
l0

ca
n
t

cr
a
n
ks

e
g
_1

sh
ip
_0

0
3

h
o
lly

w
o
o
d
-2
0
0
9

W
o
rd
n
e
t3

ra
ja
t1
8

lu
n
g
2

d
c2

so
c-
si
g
n
-e
p
in
io
n
s

T
S
O
P
F_
R
S
_b

1
6
2
_c
4

ci
t-
H
e
p
T
h

ra
ja
t2
5

e
p
b
3

g
7
ja
c1

4
0
sc

H
a
rm

o
n
ic
 m

e
a
n

Matrix

0

1

2

3

4

5

G
Fl
o
p
/s

8
.0
1

1
1
.6
1

MKL serial (Intel E5-2630 v4)

MKL parallel (Intel E5-2630 v4)

cuSPARSE (NVIDIA Titan X)

Sync-Free (NVIDIA Titan X)

Sync-Free (AMD Fury X)

(b) backward substitution

Figure 8. The SpTRSV (double precision) performance of the 20 matrices on three platforms.

also confirmed that atomic operations have been continuously improved in the latest generations
of modern GPUs. Moreover, although the AMD Fury X GPU has slightly higher bandwidth than
the NVIDIA Titan X, it is in general slower for our synchronization-free SpTRSV algorithm. The
main reason is probably the implementation differences for warp/wavefront scheduling in the two
vendor’s products.

To further measure the impact of using the on-chip memory for lower latency, we list the
performance improvement obtained by this optimization technique in Figure 9. Because an NVIDIA
CUDA thread block allows up to 1024 threads (i.e., 32 warps of 32 threads), we report different
thread block configurations of 4-, 8-, 16- and 32-warps in Figures 9 (a)–(d), respectively. In contrast,
OpenCL on AMD cards can use up to 256 threads (i.e., four wavefronts of 64 threads). Thus we only
test performance of thread block of four wavefronts and plot it in Figure 9 (e). In each subfigure,
the forward and backward substitution of the 20 test matrices are listed (see 40 sample points on the
x axis), and the median and harmonic mean values of the speedups are highlighted. As can be seen,
the on-chip memory optimization technique yields higher performance in most of the cases (i.e.,
with speedups higher than 1.0). Specifically, the 32-warp setting (Figure 9 (d)) yields the highest
speedups since its diagonal blocks (recall red areas in Figures 4 and 5) are larger than those in other
settings. However, the absolute throughput of the 32-warp setting (not shown here for brevity) is in
general a bit slower than the other three with very similar performance. So in this paper we always

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



14 W. LIU ET AL.

set the number of warps to 16. As for the AMD Fury X, we also notice obvious speedups from
the on-chip memory optimization. But because of the limited combinations, we use the 4-wavefront
configuration in our test.

0 5 10 1520 2530 3540
Matrix

0.8

1.0

1.2

1.4

1.6

1.8

2.0
S
p
e
e
d
u
p
s 
(w

/ 
v
s.
 w
/o
 s
m
e
m
)

Median = 1.37

H.mean = 1.25

Forward substitution of the 20 matrices Backward substitution of the 20 matrices

0 5 10 1520 2530 3540
Matrix

0.8

1.0

1.2

1.4

1.6

1.8

2.0

S
p
e
e
d
u
p
s 
(w

/ 
v
s.
 w
/o
 s
m
e
m
)

Median = 1.25

H.mean = 1.18

(a) Titan X (4-warp)

0 5 10 1520 2530 3540
Matrix

0.8

1.0

1.2

1.4

1.6

1.8

2.0

S
p
e
e
d
u
p
s 
(w

/ 
v
s.
 w
/o
 s
m
e
m
)

Median = 1.24

H.mean = 1.16

(b) Titan X (8-warp)

0 5 10 1520 2530 3540
Matrix

0.8

1.0

1.2

1.4

1.6

1.8

2.0

S
p
e
e
d
u
p
s 
(w

/ 
v
s.
 w
/o
 s
m
e
m
)

Median = 1.2

H.mean = 1.14

(c) Titan X (16-warp)

0 5 10 1520 2530 3540
Matrix

0.8

1.0

1.2

1.4

1.6

1.8

2.0

S
p
e
e
d
u
p
s 
(w

/ 
v
s.
 w
/o
 s
m
e
m
)

Median = 1.25
H.mean = 1.23

(d) Titan X (32-warp)

0 5 10 1520 2530 3540
Matrix

0.8

1.0

1.2

1.4

1.6

1.8

2.0

S
p
e
e
d
u
p
s 
(w

/ 
v
s.
 w
/o
 s
m
e
m
)

Median = 1.37

H.mean = 1.25

(e) Fury X (4-
wavefront)

Figure 9. The impact of using the on-chip memory for better performance. The y axis shows speedups with
this optimization technique, and the x axis shows forward and backward substitution of the 20 test matrices.

The median and harmonic mean of the speedups are highlighted.

5.3. SpTRSM Performance

In this paper, we only show forward and backward substitution SpTRSM in double precision for
brevity. Figures 10 and 11 show the performance of the serial/parallel methods in vendor libraries
MKL and cuSPARSE, and three optimization strategies: (1) Sync-free opt1 (parallelizing
column entries in our synchronization-free method), (2) Sync-free opt2 (parallelizing
right-hand sides in our synchronization-free method), and (3) Sync-free adaptive (our
synchronization-free method with the adaptive parameter selection illustrated in Figure 6 and
described in Algorithm 4) running on NVIDIA and AMD GPUs.

It can be seen that our synchronization-free method is in general much faster than cuSPARSE,
especially when the number of right-hand sides is large. This trend is the same as that shown for
SpTRSV. However, there are two exceptions where cuSPARSE behaves better. One is for matrix
nlpkkt160, where its parallelism is much higher than other matrices, and so cuSPARSE outperforms
our method. But since cuSPARSE requires more space to save level-set information, it cannot
process as many right-hand sides as the synchronization-free algorithm can (specifically, cuSPARSE
does not work for more than 8 right-hand sides in our test). Another exception is from the backward
substitution of matrices rajat18 an dc2, where the row/column lengths of their upper triangular
part are distributed in a power-law fashion (i.e., several are of size O(n) and the rest are of size
O(1)). In this case, the in-degree of some components is relatively high thus causing more load
unbalanced traffic for the atomic operations in our method. As a result, the performance of the
cuSPARSE method is relatively higher. Nevertheless, for most of the cases, our synchronization-free
algorithm achieves significant speedups (up to a few tens) over MKL and cuSPARSE. In addition,
cuSPARSE fails to solve both the L and U parts of matrices road central and road usa, maybe due
to its complex approach analysing their sparsity structures. It can also be seen that the speedups in
SpTRSM are more noticeable than in the SpTRSV test. The reason may be that cuSPARSE does
not select the best parallel scheme for multiple right-hand sides.

We can further see that any one of the two optimization methods (parallelizing column elements
or right-hand sides) does not always behave the best, but our adaptive strategy outperforms both in
most cases. For instance, although the optimization method 2 commonly outperforms the method
1, matrices nlpkkt160 and webbase-1M actually show that the method 1 can be much faster than
the method 2. In contrast, our adaptive scheme almost always behaves faster than both optimization
methods 1 and 2 on the two matrices. In addition, for the matrices preferring optimization method
2, our adaptive strategy can almost always offer identical or better performance.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAST SYNCHRONIZATION-FREE ALGORITHMS FOR PARALLEL SPARSE TRIANGULAR SOLVES 15

2 4 8 16 32 64 128 256 512
0

10

20

30

40

50

60

<Intel E5-2630 v4 CPU>

<Intel E5-2630 v4 CPU>

MKL serial

MKL parallel

Sync-free adaptive

2 4 8 16 32 64 128 256 512
0

10

20

30

40

50

60

<Intel E5-2630 v4 CPU>

<NVIDIA Titan X GPU>

cuSPARSE

Sync-free opt1

Sync-free opt2

Sync-free adaptive

Sync-free adaptive

2 4 8 16 32 64 128 256 512
0

10

20

30

40

50

60

<Intel E5-2630 v4 CPU>

<AMD Fury X GPU>

Sync-free opt1

Sync-free opt2

Sync-free adaptive

Sync-free adaptive

2 4 8 16 32 64 128256512

#right-hand sides
0

10

20

30

40

50

60

G
Fl
o
p
/s

nlpkkt160

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

G
Fl
o
p
/s

road central

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

G
Fl
o
p
/s

road usa

2 4 8 16 32 64 128256512

#right-hand sides
0

2

4

6

8

10

G
Fl
o
p
/s

webbase-1M

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

G
Fl
o
p
/s

wiki-Talk

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

G
Fl
o
p
/s

chipcool0

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

30

35

40

45

G
Fl
o
p
/s

FEM/Cantilever

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

30

35

40

G
Fl
o
p
/s

crankseg 1

2 4 8 16 32 64 128256512

#right-hand sides
0

10

20

30

40

50

G
Fl
o
p
/s

FEM/ship 003

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

30

35

G
Fl
o
p
/s

hollywood-2009

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

G
Fl
o
p
/s

Wordnet3

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

30

35

G
Fl
o
p
/s

rajat18

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

G
Fl
o
p
/s

lung2

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

30

35
G
Fl
o
p
/s

dc2

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

G
Fl
o
p
/s

soc-sign-epinions

2 4 8 16 32 64 128256512

#right-hand sides
0

10

20

30

40

50

G
Fl
o
p
/s

TSOPF RS b162 c4

2 4 8 16 32 64 128256512

#right-hand sides
0

10

20

30

40

50

60

G
Fl
o
p
/s

cit-HepTh

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

30

35

40

45

G
Fl
o
p
/s

rajat25

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

30

35

40

45

G
Fl
o
p
/s

epb3

2 4 8 16 32 64 128256512

#right-hand sides
0

10

20

30

40

50

60

G
Fl
o
p
/s

g7jac140sc

Figure 10. The SpTRSM (forward substitution) performance of the 20 matrices on three platforms. Note that
some numbers of right-hand sides are not tested because of the memory capacity limitations.

We also test the impact of changing the parameter p. Figure 12 shows relative performance of
setting p = 4, 8, 16, 32 and 64 over p = 4 on the Titan X and Fury X platforms. Note that the
relative performance is calculated as the harmonic mean of speedups between forward/backward
substitutions for the 20 test matrices. It can be seen that setting p to 8 in general brings the best
performance for all cases, in particular for the case of 16 right-hand sides. Hence in this work we
always set p to the fixed value 8.

On the other hand, because the parameter q is a split point for column length (recall Figure 6),
setting a proper value for q depends strongly on the test matrices selected. In our benchmark suite,
we fix p to 8 and extensively test SpTRSM with q = 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192
and 16384 and empirically set q to 8192 for the best observed throughput. In fact the majority

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



16 W. LIU ET AL.

2 4 8 16 32 64 128 256 512
0

10

20

30

40

50

60

<Intel E5-2630 v4 CPU>

<Intel E5-2630 v4 CPU>

MKL serial

MKL parallel

Sync-free adaptive

2 4 8 16 32 64 128 256 512
0

10

20

30

40

50

60

<Intel E5-2630 v4 CPU>

<NVIDIA Titan X GPU>

cuSPARSE

Sync-free opt1

Sync-free opt2

Sync-free adaptive

Sync-free adaptive

2 4 8 16 32 64 128 256 512
0

10

20

30

40

50

60

<Intel E5-2630 v4 CPU>

<AMD Fury X GPU>

Sync-free opt1

Sync-free opt2

Sync-free adaptive

Sync-free adaptive

2 4 8 16 32 64 128256512

#right-hand sides
0

10

20

30

40

50

60

G
Fl
o
p
/s

nlpkkt160

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

G
Fl
o
p
/s

road central

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

G
Fl
o
p
/s

road usa

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

30

G
Fl
o
p
/s

webbase-1M

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

30

35

40

G
Fl
o
p
/s

wiki-Talk

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

G
Fl
o
p
/s

chipcool0

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

30

35

40

45

G
Fl
o
p
/s

FEM/Cantilever

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

30

35

40

45

G
Fl
o
p
/s

crankseg 1

2 4 8 16 32 64 128256512

#right-hand sides
0

10

20

30

40

50

G
Fl
o
p
/s

FEM/ship 003

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

30

35

G
Fl
o
p
/s

hollywood-2009

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

G
Fl
o
p
/s

Wordnet3

2 4 8 16 32 64 128256512

#right-hand sides
0

2

4

6

8

10

12

14

G
Fl
o
p
/s

rajat18

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

25

30

35

G
Fl
o
p
/s

lung2

2 4 8 16 32 64 128256512

#right-hand sides
0

2

4

6

8

10

12

14
G
Fl
o
p
/s

dc2

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

G
Fl
o
p
/s

soc-sign-epinions

2 4 8 16 32 64 128256512

#right-hand sides
0

10

20

30

40

50

G
Fl
o
p
/s

TSOPF RS b162 c4

2 4 8 16 32 64 128256512

#right-hand sides
0

10

20

30

40

50

G
Fl
o
p
/s

cit-HepTh

2 4 8 16 32 64 128256512

#right-hand sides
0

5

10

15

20

G
Fl
o
p
/s

rajat25

2 4 8 16 32 64 128256512

#right-hand sides
0

10

20

30

40

50

G
Fl
o
p
/s

epb3

2 4 8 16 32 64 128256512

#right-hand sides
0

10

20

30

40

50

60

G
Fl
o
p
/s

g7jac140sc

Figure 11. The SpTRSM (backward substitution) performance of the 20 matrices on three platforms.

of the matrices (specifically, 19 out of 20) do not have columns with more than a few tens of
nonzeros, meaning that they are insensitive to a larger q, thus no noticeable performance difference
is observed. The exception is the factorized matrix g7jac140sc, which is much denser than the other
test matrices (see Table III). In this case, setting q to values larger than 1024 gradually improves
performance, since this scheme exploits more parallelism over the right-hand sides for updating
subsequent components with lower latency.

It is also worth noting that tuning parameters in general needs further extensive benchmarking
with more combinations of parameters p, q for more test matrices. As can be seen, the parameter
tuning method presented in this paper is a reasonable initial attempt, and we leave more flexible and
efficient autotuning as future work.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAST SYNCHRONIZATION-FREE ALGORITHMS FOR PARALLEL SPARSE TRIANGULAR SOLVES 17

2 4 8 16 32 64 128 256 512
#right-hand sides

0
2
4
6
8

10
12
14
16
18

S
p
e
e
d
u
p
s 
o
v
e
r 
p
 =
 4

p = 4

p = 8

p = 16

p = 32

p = 64

(a) Titan X.

2 4 8 16 32 64 128 256 512
#right-hand sides

0

1

2

3

4

5

S
p
e
e
d
u
p
s 
o
v
e
r 
p
 =
 4

p = 4

p = 8

p = 16

p = 32

p = 64

(b) Fury X.

Figure 12. The impact of setting p to different values 4, 8, 16, 32 and 64. Note that the y axis is the relative
performance of all settings over p = 4. Note that q is set to 8192 for all tests.

5.4. Overhead for Preprocessing

Tables IV and V show the preprocessing overheads of the parallel forward and backward SpTRSV
and SpTRSM implementations from MKL, cuSPARSE and our approach on the three platforms. As
can be seen, our method achieves an average speedup of over 48.4 (maximum of 121, from backward
substitution of matrix chipcool0) over the SpTRSV method in the cuSPARSE library on the Titan
X card. For the SpTRSM operation, the speedups are on average over 322.9 with a maximum of
690 (from backward substitution of matrix cit-HepTh). The major reason is that the vendor supplied
implementation attempts to find level-sets in the preprocessing phase. Moreover, the AMD Fury X
GPU offers comparable cost for preprocessing, due to similar off-chip memory bandwidth.

Matrix name

Forward substitution
Intel E5-2630 v4 NVIDIA Titan X (Pascal) AMD Fury X

MKL v11.3 U3 cuSPARSE v8.0 Sync-Free Sync-Free
SpTRSV SpTRSM

nlpkkt160 2675.80 12.18 479.32 5.19 4.95
road central 3735.04 27.21 Failed 5.44 5.68
road usa 6190.39 55.82 Failed 2.69 2.33
webbase-1M 351.72 3.86 23.76 0.10 0.12
wiki-Talk 783.44 7.27 39.39 0.17 0.16
chipcool0 14.68 1.18 6.90 0.01 0.03
FEM/Cantilever 78.70 5.19 24.09 0.08 0.09
crankseg 1 125.70 4.13 45.94 0.23 0.20
FEM/ship 003 196.49 3.14 44.76 0.15 0.16
hollywood-2009 14116.38 148.04 919.10 3.25 2.86
Wordnet3 23.9 0.57 4.12 0.01 0.01
rajat18 34.85 1.11 5.71 0.03 0.02
lung2 56.92 1.30 8.83 0.05 0.08
dc2 55.73 6.68 14.13 0.13 0.07
soc-sign-epinions 88.32 0.89 5.17 0.01 0.06
TSOPF RS b162 c4 78.23 0.98 11.76 0.10 0.12
cit-HepTh 68.68 3.29 23.81 0.13 0.08
rajat25 83.03 5.55 25.24 0.08 0.07
epb3 212.49 3.21 44.09 0.18 0.20
g7jac140sc 517.86 7.94 107.86 0.38 0.53
Harmonic mean 76.26 2.28 13.90 0.05 0.07

Table IV. Preprocessing cost (in millisecond) of the tested methods for forward substitution on three devices.
Note that the SpTRSV and SpTRSM routines in cuSPARSE do not use the same strategies for preprocessing

and thus have different costs.

6. RELATED WORK

Existing parallel SpTRSV and SpTRSM methods can be classified into two groups: those
constructing level-sets and those generating colour-sets.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



18 W. LIU ET AL.

Matrix name

Backward substitution
Intel E5-2630 v4 NVIDIA Titan X (Pascal) AMD Fury X

MKL v11.3 U3 cuSPARSE v8.0 Sync-Free Sync-Free
SpTRSV SpTRSM

nlpkkt160 2624.59 12.34 492.49 5.17 4.33
road central 3770.27 27.51 Failed 5.35 5.64
road usa 6218.89 56.32 Failed 2.72 2.35
webbase-1M 336.78 3.32 22.42 0.14 0.11
wiki-Talk 778.67 16.11 49.36 0.55 0.55
chipcool0 15.02 1.21 7.18 0.01 0.03
FEM/Cantilever 83.78 4.30 25.59 0.08 0.10
crankseg 1 124.02 4.07 45.05 0.28 0.20
FEM/ship 003 167.07 3.21 46.85 0.14 0.16
hollywood-2009 13781.93 153.73 938.82 3.33 2.79
Wordnet3 19.68 0.82 3.83 0.01 0.01
rajat18 26.02 0.92 7.78 0.02 0.04
lung2 37.94 1.61 12.76 0.06 0.07
dc2 54.30 2.27 17.60 0.08 0.13
soc-sign-epinions 33.67 1.64 18.57 0.04 0.02
TSOPF RS b162 c4 35.50 1.66 22.15 0.22 0.05
cit-HepTh 101.71 2.18 89.89 0.10 0.14
rajat25 75.28 3.26 29.26 0.09 0.09
epb3 126.24 5.41 71.13 0.23 0.12
g7jac140sc 304.55 6.64 176.20 0.61 0.32
Harmonic mean 61.75 2.56 18.39 0.05 0.06

Table V. Preprocessing cost (in millisecond) of the tested methods for backward substitution on three
devices.

Anderson and Saad [1] and Saltz [37] proposed that level-sets can expose parallelism in sparse
triangular solves. A few recently developed parallel SpTRSV implementations have improved the
level-set method for better data locality and faster synchronization [17, 33, 45]. Maumov [32]
implemented a level-set method on NVIDIA GPUs with a tradeoff for decreasing the number
of synchronizations. Li and Saad [23] demonstrated that reordering the input matrix can further
improve parallelism but requires longer preprocessing time. Unlike the above level-set methods,
our synchronization-free SpTRSV and SpTRSM algorithms do not analyse the sparsity structure
of the input matrix and thus completely avoid the costs for generating sets and executing barrier
synchronization. As a result, our method in general shows much better performance than level-set
methods.

Schreiber and Tang [38] first used graph colouring for constructing colour-sets for SpTRSV on
multiprocessors. When the input sparse matrix is coloured, it is reorganized as multiple triangular
submatrices located on its diagonal. Because all the submatrices can be solved in parallel, this
method can be very efficient in practice. Suchoski et al. [41] recently extended the graph colouring
method for SpTRSV to GPUs. However, as graph colouring is known to be an NP-complete
problem, finding good colour-sets for SpTRSV is in general more time consuming. Thus it may
be impractical for real-world applications. Picciau et al. [34] recently proposed a method that
partitions the graph form of an input matrix into multiple sub-graphs to obtain better data locality
and higher concurrency. However, its pre-processing cost can be even more expensive than colour-
set approaches.

There are also several classes of methods that do not create sets in advance. Mayer [30] pointed
out that 2D decomposition can accelerate SpTRSV but needs to reorganize the data structure of the
input matrix. Smith and Zhang [40] and Totoni et al. [42] reported that reformatting the input matrix
can bring higher performance. Chow and Patel [8] and Anzt et al. [2, 4, 3, 5] recently developed
several iterative methods for SpTRSV for use with incomplete factorization. Because iterative
methods only give approximate solutions, they should not be used more generally for other scenarios
such as using SpTRSV and SpTRSM in sparse direct solvers. For the tridiagonal case, another non-
trivial inherently sequential problem, there are very specific fast algorithms [44]. In contrast, the

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAST SYNCHRONIZATION-FREE ALGORITHMS FOR PARALLEL SPARSE TRIANGULAR SOLVES 19

method we have proposed in this paper uses the unchanged CSC sparse matrix format and works
for general problems.

Some researchers have also utilized atomic operations for improving fundamental algorithms
such as bitonic sort [46], prefix-sum scan [47], wavefront [18], sparse transposition [43], and sparse
matrix-vector multiplication [22, 28, 29, 48]. Unlike those problems, the SpTRSV operation is
inherently serial and thus more irregular and complex. We also use atomic operations both in on-chip
and off-chip memory, and set atomic operations as the central part of the whole algorithm. Moreover,
we recently noticed that bypassing caches [19], improving thread-groups locality by clustering [21]
and utilizing on-package high bandwidth memory [20] can further improve algorithm performance.
We leave this extension as future work.

7. CONCLUSIONS

In this paper, we have proposed synchronization-free algorithms for parallel SpTRSV and SpTRSM.
These methods completely eliminate the overheads for generating level-sets or colour-sets (in
the preprocessing stage) and for explicit runtime barrier synchronization (in the solving stage).
Meanwhile, they adaptively select optimization paths for best parallelism in the case of multiple
right-hand sides. Experimental results show that our approach makes preprocessing up to two orders
of magnitude faster than level-set methods, and demonstrates significant speedups over vendor
supplied parallel routines for forward and backward SpTRSV and SpTRSM in single and double
precision.

ACKNOWLEDGEMENT

The authors would like to thank our anonymous reviewers from Euro-Par 2016 and Concurrency and
Computation: Practice and Experience for their invaluable feedback. We also thank Shuai Che for helpful
discussion about OpenCL programming. The research leading to these results has received funding from
the European Union’s Horizon 2020 research and innovation programme under the NLAFET project (grant
number 671633) and the Marie Sklodowska-Curie TICOH project (grant number 752321). This research
is also partially supported by the U.S. DOE Office of Science, Office of Advanced Scientific Computing
Research, under the CENATE project (award number 66150). The Pacific Northwest National Laboratory is
operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL01830.

REFERENCES

1. Anderson, E., Saad, Y.: Solving Sparse Triangular Linear Systems on Parallel Computers. International Journal of
High Speed Computing 1(1), 73–95 (1989)

2. Anzt, H., Chow, E., Dongarra, J.: Iterative Sparse Triangular Solves for Preconditioning. In: Euro-Par 2015: Parallel
Processing. Lecture Notes in Computer Science, Springer Berlin Heidelberg (2015)

3. Anzt, H., Chow, E., Huckle, T., Dongarra, J.: Batched Generation of Incomplete Sparse Approximate Inverses on
GPUs. In: 2016 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA). pp.
49–56 (2016)

4. Anzt, H., Chow, E., Szyld, D.B., Dongarra, J.: Domain Overlap for Iterative Sparse Triangular Solves on GPUs. In:
Software for Exascale Computing - SPPEXA 2013-2015. pp. 527–545. Springer International Publishing (2016)

5. Anzt, H., Huckle, T., Bräckle, J., Dongarra, J.: Incomplete Sparse Approximate Inverses for Parallel
Preconditioning. Parallel Computing (2017)

6. Björck, Å.: Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics (1996)
7. Che, S., Sheaffer, J.W., Skadron, K.: Dymaxion: Optimizing Memory Access Patterns for Heterogeneous Systems.

In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and
Analysis. pp. 13:1–13:11. SC ’11 (2011)

8. Chow, E., Patel, A.: Fine-Grained Parallel Incomplete LU Factorization. SIAM Journal on Scientific Computing
37(2), C169–C193 (2015)

9. Davis, T.: Direct Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics (2006)
10. Davis, T.A., Hu, Y.: The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 38(1), 1:1–1:25

(dec 2011)
11. Duff, I.S., Reid, J.K.: The Design of MA48: A Code for the Direct Solution of Sparse Unsymmetric Linear Systems

of Equations. ACM Trans. Math. Softw. 22(2), 187–226 (1996)
12. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford University Press, Inc., 2nd edn.

(2017)

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



20 W. LIU ET AL.

13. Duff, I.S., Heroux, M.A., Pozo, R.: An Overview of the Sparse Basic Linear Algebra Subprograms: The New
Standard from the BLAS Technical Forum. ACM Trans. Math. Softw. 28(2), 239–267 (2002)

14. Hogg, J.D.: A Fast Dense Triangular Solve in CUDA. SIAM Journal on Scientific Computing 35(3), C303–C322
(2013)

15. Hou, K., Liu, W., Wang, H., Feng, W.c.: Fast Segmented Sort on GPUs. In: Proceedings of the 31st ACM
International Conference on Supercomputing. ICS ’17 (2017)

16. HSL: Hsl: A collection of fortran codes for large scale scientific computation. Tech. rep., http://www.hsl.rl.ac.uk/
(2002)

17. Kabir, H., Booth, J.D., Aupy, G., Benoit, A., Robert, Y., Raghavan, P.: STS-k: A Multilevel Sparse Triangular
Solution Scheme for NUMA Multicores. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. pp. 55:1–55:11. SC ’15 (2015)

18. Li, A., van den Braak, G.J., Corporaal, H., Kumar, A.: Fine-Grained Synchronizations and Dataflow Programming
on GPUs. In: Proceedings of the 29th ACM on International Conference on Supercomputing. pp. 109–118. ICS ’15
(2015)

19. Li, A., van den Braak, G.J., Kumar, A., Corporaal, H.: Adaptive and Transparent Cache Bypassing for GPUs. In:
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis.
pp. 17:1–17:12. SC ’15 (2015)

20. Li, A., Liu, W., Kristensen, M.R.B., Vinter, B., Wang, H., Hou, K., Marquez, A., Song, S.L.: Exploring And
Analyzing the Real Impact of Modern On-Package Memory on HPC Scientific Kernels. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis. SC ’17 (2017)

21. Li, A., Song, S.L., Liu, W., Liu, X., Kumar, A., Corporaal, H.: Locality-Aware CTA Clustering For Modern
GPUs. In: Proceedings of the Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS ’17 (2017)

22. Li, J., Tan, G., Chen, M., Sun, N.: SMAT: An Input Adaptive Auto-Tuner for Sparse Matrix-Vector Multiplication.
In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation.
pp. 117–126. PLDI ’13 (2013)

23. Li, R., Saad, Y.: GPU-Accelerated Preconditioned Iterative Linear Solvers. The Journal of Supercomputing 63(2),
443–466 (2013)

24. Liang, C.K., Prvulovic, M.: MiSAR: Minimalistic Synchronization Accelerator with Resource Overflow
Management. In: Proceedings of the 42Nd Annual International Symposium on Computer Architecture. pp. 414–
426. ISCA ’15 (2015)

25. Liu, W.: Parallel and Scalable Sparse Basic Linear Algebra Subprograms. Ph.D. thesis, University of Copenhagen
(2015)

26. Liu, W., Li, A., Hogg, J., Duff, I.S., Vinter, B.: A Synchronization-Free Algorithm for Parallel Sparse Triangular
Solves. In: Euro-Par 2016: Parallel Processing: 22nd International Conference on Parallel and Distributed
Computing, Grenoble, France, August 24-26, 2016, Proceedings. pp. 617–630 (2016)

27. Liu, W., Vinter, B.: A Framework for General Sparse Matrix-Matrix Multiplication on GPUs and Heterogeneous
Processors. Journal of Parallel and Distributed Computing 85, 47–61 (2015)

28. Liu, W., Vinter, B.: CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector Multiplication.
In: Proceedings of the 29th ACM International Conference on Supercomputing. pp. 339–350. ICS ’15 (2015)

29. Liu, W., Vinter, B.: Speculative Segmented Sum for Sparse Matrix-Vector Multiplication on Heterogeneous
Processors. Parallel Computing 49, 179–193 (2015)

30. Mayer, J.: Parallel Algorithms for Solving Linear Systems with Sparse Triangular Matrices. Computing 86(4),
291–312 (2009)

31. Morrison, A.: Scaling Synchronization in Multicore Programs. Commun. ACM 59(11), 44–51 (2016)
32. Naumov, M.: Parallel Solution of Sparse Triangular Linear Systems in the Preconditioned Iterative Methods on the

GPU. Tech. rep., NVIDIA (2011)
33. Park, J., Smelyanskiy, M., Sundaram, N., Dubey, P.: Sparsifying Synchronization for High-Performance Shared-

Memory Sparse Triangular Solver. In: Supercomputing, Lecture Notes in Computer Science, vol. 8488, pp. 124–
140. Springer International Publishing (2014)

34. Picciau, A., Inggs, G.E., Wickerson, J., Kerrigan, E.C., Constantinides, G.A.: Balancing Locality and Concurrency:
Solving Sparse Triangular Systems on GPUs. In: Proc. IEEE Int. Conf. on High Performance Computing, Data,
and Analytics (HiPC ’16) (2016)

35. Ros, A., Kaxiras, S.: Callback: Efficient Synchronization Without Invalidation with a Directory Just for Spin-
waiting. In: Proceedings of the 42Nd Annual International Symposium on Computer Architecture. pp. 427–438.
ISCA ’15 (2015)

36. Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2nd edn. (2003)

37. Saltz, J.H.: Aggregation Methods for Solving Sparse Triangular Systems on Multiprocessors. SIAM Journal on
Scientific and Statistical Computing 11(1), 123–144 (1990)

38. Schreiber, R., Tang, W.P.: Vectorizing the Conjugate Gradient Method. In: Proceedings of the Symposium on
CYBER 205 Applications (1982)

39. Scogland, T.R., Feng, W.c.: Design and Evaluation of Scalable Concurrent Queues for Many-Core Architectures.
In: Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering. pp. 63–74. ICPE ’15
(2015)

40. Smith, B., Zhang, H.: Sparse Triangular Solves for ILU Revisited: Data Layout Crucial to Better Performance.
International Journal of High Performance Computing Applications 25(4), 386–391 (2011)

41. Suchoski, B., Severn, C., Shantharam, M., Raghavan, P.: Adapting Sparse Triangular Solution to GPUs. In:
Proceedings of the 2012 41st International Conference on Parallel Processing Workshops. pp. 140–148. ICPPW
’12 (2012)

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAST SYNCHRONIZATION-FREE ALGORITHMS FOR PARALLEL SPARSE TRIANGULAR SOLVES 21

42. Totoni, E., Heath, M.T., Kale, L.V.: Structure-Adaptive Parallel Solution of Sparse Triangular Linear Systems.
Parallel Computing 40(9), 454–470 (2014)

43. Wang, H., Liu, W., Hou, K., Feng, W.c.: Parallel Transposition of Sparse Data Structures. In: Proceedings of the
30th ACM International Conference on Supercomputing. pp. 33:1–33:13. ICS ’16 (2016)

44. Wang, X., Xue, W., Zhai, J., Xu, Y., Zheng, W., Lin, H.: A Fast Tridiagonal Solver for Intel MIC Architecture. In:
2016 IEEE International Parallel and Distributed Processing Symposium. pp. 172–181. IPDPS ’16 (2016)

45. Wolf, M.M., Heroux, M.A., Boman, E.G.: Factors Impacting Performance of Multithreaded Sparse Triangular
Solve. In: High Performance Computing for Computational Science – VECPAR 2010, Lecture Notes in Computer
Science, vol. 6449, pp. 32–44. Springer Berlin Heidelberg (2011)

46. Xiao, S., Feng, W.c.: Inter-Block GPU Communication via Fast Barrier Synchronization. In: Parallel Distributed
Processing, 2010 IEEE International Symposium on. pp. 1–12. IPDPS ’10 (2010)

47. Yan, S., Long, G., Zhang, Y.: StreamScan: Fast Scan Algorithms for GPUs Without Global Barrier Synchronization.
In: Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. pp.
229–238. PPoPP ’13 (2013)

48. Zhang, Y., Li, S., Yan, S., Zhou, H.: A Cross-Platform SpMV Framework on Many-Core Architectures. ACM Trans.
Archit. Code Optim. 13(4), 33:1–33:25 (2016)

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe


	1 Introduction
	2 Background
	2.1 Solving a Sparse Triangular System with a Single Right-Hand Side (SpTRSV)
	2.1.1 Serial SpTRSV Algorithm
	2.1.2 Level-Set Method for Parallel SpTRSV
	2.1.3 Motivation for Avoiding Synchronization

	2.2 Solving a Sparse Triangular System with Multiple Right-Hand Sides (SpTRSM)
	2.2.1 Data-Parallel SpTRSM Algorithm
	2.2.2 Motivation for an Adaptive Method


	3 Synchronization-Free Algorithm for SpTRSV
	4 Synchronization-Free Algorithm for SpTRSM
	5 Experimental Results
	5.1 Experimental Setup
	5.2 SpTRSV Performance
	5.3 SpTRSM Performance
	5.4 Overhead for Preprocessing

	6 Related Work
	7 Conclusions

