
Exploring and Analyzing the Real Impact of Modern
On-Package Memory on HPC Scientific Kernels

Ang Li
Pacific Northwest National Lab, USA

Ang.Li@pnnl.gov

Weifeng Liu1,2

1. University of Copenhagen,
Denmark

2. Norwegian University of Science
and Technology, Norway

weifeng.liu@ntnu.no

Mads R.B. Kristensen
University of Copenhagen, Denmark

madsbk@nbi.dk

Brian Vinter
University of Copenhagen, Denmark

vinter@nbi.dk

Hao Wang
Virginia Tech, USA
hwang121@vt.edu

Kaixi Hou
Virginia Tech, USA

kaixihou@vt.edu

Andres Marquez
Pacific Northwest National Lab, USA

Andres.Marquez@pnnl.gov

Shuaiwen Leon Song1,2

1.Pacific Northwest National Lab
2. College of William and Mary, USA

Shuaiwen.Song@pnnl.gov

ABSTRACT
High-bandwidth On-Package Memory (OPM) innovates the conven-

tional memory hierarchy by augmenting a new on-package layer

between classic on-chip cache and off-chip DRAM. Due to its rela-

tive location and capacity, OPM is often used as a new type of LLC.

Despite the adaptation in modern processors, the performance and

power impact of OPM on HPC applications, especially scientific

kernels, is still unknown. In this paper, we fill this gap by conducting

a comprehensive evaluation for a wide spectrum of scientific kernels

with a large amount of representative inputs, including dense, sparse
and medium, on two Intel OPMs: eDRAM on multicore Broadwell

and MCDRAM on manycore Knights Landing. Guided by our gen-

eral optimization models, we demonstrate OPM’s effectiveness for

easing programmers’ tuning efforts to reach ideal throughput for

both compute-bound and memory-bound applications.

CCS CONCEPTS
•Hardware → Memory and dense storage; Power estimation and
optimization; •Computer systems organization → Multicore ar-
chitectures; •Computing methodologies → Model development
and analysis;
ACM Reference format:
Ang Li, Weifeng Liu1,2, Mads R.B. Kristensen, Brian Vinter, Hao Wang,

Kaixi Hou, Andres Marquez, and Shuaiwen Leon Song1,2. 2017. Exploring

and Analyzing the Real Impact of Modern On-Package Memory on HPC

Scientific Kernels . In Proceedings of SC17, Denver, CO, USA, November
12–17, 2017, 14 pages.

ACM acknowledges that this contribution was authored or co-authored by an employee,
or contractor of the national government. As such, the Government retains a nonexclu-
sive, royalty-free right to publish or reproduce this article, or to allow others to do so,
for Government purposes only. Permission to make digital or hard copies for personal
or classroom use is granted. Copies must bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must
be honored. To copy otherwise, distribute, republish, or post, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

SC17, Denver, CO, USA
© 2017 ACM. 978-1-4503-5114-0/17/11. . . $15.00
DOI: 10.1145/3126908.3126931

DOI: 10.1145/3126908.3126931

1 INTRODUCTION
In the past four decades, perhaps no other topics in the HPC domain

have drawn more attention than reducing the overheads of data move-

ment between compute units and memory hierarchy. Right from

the very first discussion about exploiting “small buffer memories”

for data locality in the 1970’s [40], caches have evolved to become

the key factor in determining the execution performance and power

efficiency of an application on modern processors.

Although today’s memory hierarchy design is already deep and

complex, the bandwidth mismatch between on-chip and off-chip

memory, known as the off-chip “memory-wall”, is still a big obstacle

for high performance delivery on modern systems. This is especially

the case when GPU modules or other manycore accelerators are

integrated on chip. As a result, high-bandwidth memory (HBM)

becomes increasingly popular. Recently, as a good representative of

HBM, on-package memory (OPM) has been adopted and promoted

by major HPC vendors in many commercial CPU products, such

as IBM Power-7 and Power-8 [14], Intel Haswell [16], Broadwell,

Skylake [28] and Knights Landing (KNL) [42]. For instance, five

of the top ten supercomputers in the newest Top 500 list [1] have

equipped OPM (primarily on Intel Knights Landing).

On-package Memory, as its name has implied, is a memory stor-

age manufactured in a separate chip but encapsulated onto the same

package where the main processor locates. OPM has several unique

characteristics: (i) they are located between on-chip cache and off-

package DRAM, (ii) their capacity is larger than on-chip scratchpad

memory or cache but often smaller than off-package DRAM; (iii)

their bandwidth is smaller than on-chip storage but significantly

larger than off-package DRAM; (iv) their access latency is smaller

or similar to off-package DRAM. Although these properties portray

OPM similar to last-level cache (LLC), their actual impact on per-

formance and power for real HPC applications, especially critical

scientific kernels, remains unknown.

SC17, November 12–17, 2017, Denver, CO, USA A. Li et al.

Figure 1: Probability density for achievable GEMM performance (GFlop/s) using 1024
samples with different tiling size and problem size. With eDRAM, the function curve as
a whole shifts more to the upper-right, implying that more samples can reach near-peak
(e.g., 90%) performance. In other words, having eDRAM increases the chance for users’
less-optimized applications to reach the “vendor-claimed” performance. However, the
right boundary only moves a bit, indicating that eDRAM cannot significantly improve
the raw peak performance.

Exploring and analyzing such impact of modern OPM on HPC

scientific kernels is essential for both application developers and

HPC architects. Figure 1 shows an example. For a HPC system,

there is often a huge implicit gap between “claimed” attainable per-

formance and real “deliverable” performance, even with the same

algorithm. This is because the specific implementation used for

benchmarking or ranking is usually carefully hand-tuned for param-

eterization. Such an expert version is significantly different from

the one commonly used by an application developer or a HPC user.

With regard to OPM, although conventional wisdom may question

its usefulness for computation-bound applications such as GEMM,

Figure 1 uses eDRAM as an example to show that it can greatly

improve the chance for a less-optimized code to harvest near-peak
performance, dramatically mitigating the aforementioned perfor-

mance gap. In addition, recent released OPM such as MCDRAM

on Intel KNL has many architectural tuning options available so it

is important to understand how these features affect applications’

performance and energy profile. With these in mind, we conduct

a thorough evaluation to quantitatively assess the effectiveness of

two types of widely-adopted OPM. To the best of our knowledge,

this is the first work on quantitatively evaluating modern OPM on

real hardware for essential HPC application kernels while develop-

ing evaluation methodology to assist analysis on complex results to

provide useful insights.

Such evaluation is not only necessary but also fundamental for

enabling reliable technical advancement, e.g., motivating software-

architecture co-design exploration and assisting validation of mod-

eling/simulation. Particularly, this study benefits three types of

audience: (A) procurement specialists considering purchasing OPM-

equipped processors for the applications of interest; (B) application

developers who intend to estimate the potential gain through OPM

and customize optimizations; and (C) HPC researchers and archi-

tects who want to design efficient system software and architectures.

Complex scenarios observed from our evaluation can extend the

current design knowledge which can then help pave the road for new

research directions.

Contributions. In summary, this work makes the following three-

fold contributions.

• We experimentally characterize and analyze the performance

impact from two modern Intel OPM (i.e., eDRAM on Intel Broad-

well architecture and MCDRAM on Intel Knights Landing) on

several major HPC scientific kernels that covers a wide design

space. We also evaluate a very large set of their representative

input matrices (e.g., 968 matrices for sparse kernels).

• We demonstrate the observations and quantitatively analyze each

kernel’s performance insights on these two OPM. We also derive

an intuitive visual analytical model to better explain complex

scenarios and provide architectural design suggestions.

• We provide a general optimization guideline on how to tune

applications and architectures for superior performance/energy

efficiency on platforms equipped with these two types of OPM.

2 MODERN ON-PACKAGE MEMORY
2.1 eDRAM
eDRAM is a capacitor-based DRAM that can be integrated on the

same die as the main processors. It is evolved from DRAM, but

often viewed as a promising solution to supplement, or even re-

place SRAM as the last-level-cache (LLC). eDRAM can be either

DRAM-cell based or CMOS-compatible gain-cell based; both rely

on capacitors to store data bits [38]. In comparison, DRAM-cell

based eDRAM requires additional process to fabricate the capaci-

tor, in turn exhibiting higher storage density. Both IBM and Intel

adopt DRAM-cell based eDRAM design in their recent processors.

However, unlike IBM that digs trench capacitors into the silicon

substrate of the main processor chip, Intel fills the metal-insulator-

metal (MIM) trench capacitors above the transistors, and fabricates

an isolated chip (Figure 2). Such fabrication simplifies the manu-

facturing process and reduces cost. Nevertheless, being on-package

is less efficient than being on-die, although Intel proposed a new

high-speed On-Package I/O (OPIO) to connect the eDRAM and the

CPU chip. Up to date, IBM has integrated eDRAM in Power-7 and

Power-8 while Intel has included it in its Haswell, Broadwell and

Skylake architectures. eDRAM acts as the LLC in their memory

hierarchies.

Compared with SRAM (typical building blocks for today’s on-

chip caches), eDRAM has two major advantages: (I) Higher density.

The Intel eDRAM cell size is reported as 0.029μm2, 3.1x smaller

than their densest SRAM cell. Other existing works report similar

density advancement [35, 43, 8, 15]. The density increase has

two positive impacts on performance when utilized as a cache: (a)

with the same area, the 3x cache capacity fits larger applications’

footprint and significantly reduces capacity-related cache misses (i.e.,

approximately 1.7x miss rate reduction for a 3x capacity increase

according to the
√

2 rule [20]); (b) on the other hand, with the

same capacity, area reduction implies wire-length reduction and

shorter latency for retrieving data [15]. (II) Lower leakage power.

Compared with SRAM, eDRAM can reduce leakage power by a

factor of 8 [25]. For large on-chip or on-package LLCs, this is very

important as leakage power is becoming one of the major power

contributors on modern processors. With the extraordinary growth

of the working sets for today’s high-end applications, eDRAM turns

to be even more appealing.

For Haswell and Broadwell processors, eDRAM was originally

featured to satisfy the high bandwidth requirement from the Iris Pro

GPU, as appending several extra DDR channels is too costly. Shown

in Figure 2, the on-package eDRAM-based L4 cache is 128 MB

and claimed to offer 104 GB/s peak bandwidth at one watt for the

OPIO interface. As a non-inclusive victim cache, the eDRAM L4

is reported to bring 30% to 40% performance speedup for selected

graphics applications [16]. For Haswell and Broadwell, eDRAM

L4 cache tags are resident in the on-chip L3 cache. Although this

setup simplifies the LLC design and allows earlier tag-checking

The Real Impact of Modern On-Package Memory on HPC Scientific Kernels SC17, November 12–17, 2017, Denver, CO, USA

Figure 2: Intel Haswell and Broadwell Processor Architecture with eDRAM

Figure 3: Intel Xeon-Phi Knights Landing Architecture with MCDRAM

for fetches from the processor, it makes the accessing to eDRAM

LLC from other devices (e.g., independent GPUs via PCIe) slower

as these memory requests have to be forwarded to on-chip L3 first

before being handled by the LLC. To address this, eDRAM has been

moved to the position upon DRAM controllers in Skylake (more

like a memory-side buffer rather than a cache).

2.2 MCDRAM
Another type of popular OPM is MCDRAM, a 3D-stacked DRAM

that is adopted in the recent Intel Knights Landing (KNL) processor.

MCDRAM has more channels than its DDR memory counterpart.

The high channel count brings substantial bandwidth, greatly reduc-

ing the memory wall effect.

As shown in Figure 3, there are 8 MCDRAM modules in a KNL

processor, each with 2 GB capacity. These modules are connected

to their corresponding on-chip memory controllers (EDCs) via a

similar OPIO. Each MCDRAM module has its own read and write

ports to its EDC. The 8 modules offer over 400 GB/s bandwidth,

around 5 times of the DDR4 deployed in the same KNL board.

Despite the high bandwidth, MCDRAM does not show obvious

latency advantage over DDR with single data access. Actually, when

memory bandwidth demand is low, MCDRAM even has a higher

access latency than DDR [27]. It can also be configured in BIOS to

one of the three following modes:

(i) Cache mode: MCDRAM is acting as a direct-mapped LLC

that caches the entire addressable memory and is managed by hard-

ware. Unlike eDRAM-based L4 cache that uploads tags to on-chip

L3, the tags of MCDRAM in cache mode are stored locally.

(ii) Flat mode: the entire MCDRAM is used as addressable mem-

ory and cached by LLC (on-die L2 cache on KNL). If the memory

footprint of an application is smaller than the MCDRAM capacity

(i.e., 16GB), using the “numactl” command tool can bind the appli-

cation to the ‘MCDRAM NUMA node’ (i.e., a MCDRAM-based

storage node without cores attached). In this case, all the memory

allocations within the application by default will be performed in

Table 1: On-Package Memory Tuning Options

Memory Options Remarks

eDRAM
Off eDRAM is disabled

On 128MB high-throughput, low-latency L4

MCDRAM

Off MCDRAM is not used

Cache 16GB high-throughput L3

Flat 16GB high-throughput memory

Hybrid 8GB L3 + 8GB memory

MCDRAM. If the memory footprint exceeds MCDRAM, alloca-

tion will occur in DDR. Since numactl is used at runtime, no code

modification or recompilation is essentially required.

(iii) Hybrid mode: it is the combination of the cache mode and

flat mode, in which 25% or 50% of MCDRAM can be configured as

LLC, while the remaining 75% or 50% as flat memory. The hybrid

mode is ideal for a multi-user environment or in applications which

can benefit from both general caching and throughput boosting for

critical and frequently accessed data.

2.3 Comparison: Commonality and Differences
eDRAM and MCDRAM are both high-throughput OPM and can be

configured as LLC between processor and DRAM, offering substan-

tially amplified bandwidth to the processor via the OPIO interface.

However, they exhibit several differences in terms of architectural

features and tuning methods: (a) eDRAM can be switched on/off in

BIOS, but MCDRAM cannot; (b) eDRAM has a shorter access la-

tency than DDR while MCDRAM does not; (c) the size of eDRAM

is much smaller than MCDRAM (i.e., 128 MB vs.16 GB); (d) MC-

DRAM can be configured as either flat mode or hybrid mode in order

to be addressable in memory space, while eDRAM can only behave

as a cache. In theory, eDRAM in Haswell and Broadwell is still a

CPU-side cache, which is generally closer to the cores and offers

fast data access. In contrast, eDRAM in Skylake and MCDRAM

in KNL are more like a memory-side buffer. They show memory

semantics and provide caching service for DRAM (i.e., no consis-

tency issues though). The real-system tuning options for eDRAM

and MCDRAM are summarized in Table 1.

3 EVALUATION METHODOLOGY
In this section, we describe the targeted scientific algorithms, the

detailed platform information and the evaluation process.

3.1 Scientific Computing Kernels
To analyze the effects from OPM, the algorithms used for evalua-

tion should exhibit divergent characteristics, especially for memory

access. We have selected eight scientific algorithms based on the

following criteria: (1) they have different arithmetic intensity, or

flops-to-bytes ratios, so as to cover a wide design spectrum (shown

in Figure 4); (2) they should be widely used kernels that play cru-

cial roles in scientific computing; and (3) for each algorithm, we

choose the implementation that is state-of-the-art, open-sourced and

reported to achieve the best performance. For fairness, we do not

modify the original algorithm codes in our evaluation, treating them

as “black-box”. The evaluated algorithms are listed in Table 2, and

each of them is evaluated using double-precision. Also, all the dense

and sparse matrix-operating kernels we use are square matrices.

Based on their arithmetic intensity shown in Figure 4, we group

SC17, November 12–17, 2017, Denver, CO, USA A. Li et al.

Table 2: Scientific Kernels Characteristics. All the kernels use double-precision (DP). Thds are the optimal thread number running on Broadwell and KNL.

Algorithm Implementation Dwarf Class Type Complexity Operations Bytes Arithmetic Intensity Threads
GEMM Plasma[4] Dense Linear Algebra Dense O(n3) 2n3 32n2 n/16 4/64

Cholesky Plasma[5, 4] Dense Linear Algebra Dense O(n3) n3/3 8n2 n/24 4/64
SpMV CSR5[33] Sparse Linear Algebra Sparse O(nnz) nnz+2M 12nnz+20M (nnz+2M)/(12nnz+20M) 8/256

SpTRANS Scan/MergeTrans[44] Sparse Linear Algebra Sparse O(nnz lognnz) nnz lognnz 24nnz+8M (nnz lognnz)/(24nnz+8M) 4/64
SpTRSV P2P-SpTRSV[39] Sparse Linear Algebra Sparse O(nnz) nnz+2M 12nnz+20M (nnz+2M)/(12nnz+20M) 8/256

FFT FFTW[17] Spectral Methods Others O(n logn) 5n logn 48n 5logn/48 8/256

Stencil YASK[49] Structured Grid Others O(n2) 61n2 8n2 7.625 8/256
Stream Stream[36] N/A Others O(1) 2n 32n 0.0625 8/256

Table 3: Platform Configuration. “SP Perf.” and “DP Pref.” are the theoretical maximum single- and double-precision floating-point operation throughput, respectively. “C/” stands
for memory capacity. “B/” stands for memory bandwidth. “OPM” is the on-package memory. “Cache” refers to the upper-level cache respect to OPM in the memory hierarchy. Note
that all the performance and bandwidth listed here are the theoretic values calculated from the spec sheet; the actual number can be worse.

CPUs Architecture Cores Frequency SP Perf. DP Prof. DRAM DRAM C/ DRAM B/ OPM OPM C/ OPM B/ Cache
i7-5775c Broadwell 4 3.7 GHz 473.6 GFlop/s 236.8 GFlop/s DDR3-2133 16 GB 34.1 GB/s eDRAM 128 MB 102.4 GB/s 6 MB L3

Xeon Phi-7210 Knights Landing 64 1.5 GHz 3072 GFlop/s 6144 GFlop/s DDR4-2133 96 GB 102 GB/s MCDRAM 16 GB 490 GB/s 32 MB L2

Figure 4: Arithmetic Intensity Spectrum. The eight scientific kernels in different arith-
metic intensity cover the whole spectrum.

them into three categories: dense, sparse and medium, correspond-

ing to strong compute-bound applications, strong bandwidth-bound

applications, and the types of applications in between.

3.1.1 Dense Algorithms. General Matrix-Matrix Multipli-
cation (GEMM) is one of the most widely used computation kernels

in scientific computing. It calculates the product of two dense matri-

ces: C = αA∗B+βC. GEMM is generally compute-bound and has

a high arithmetic intensity. The algorithm complexity is O(n3). In

this paper, we use the implementation from PLASMA [4].

Cholesky Decomposition decomposes a positive-definite Her-

mitian matrix A into a lower triangular matrix L, and its conjugate

transpose L∗: A = L ∗L∗. When applicable, it is a much more ef-

ficient way to solve systems of linear equations than normal LU

decomposition. Cholesky is traditionally compute-bound and has a

high arithmetic intensity. The algorithm complexity is O(n3). We

use the implementation by Buttari et. al [5] and in PLASMA [4].

3.1.2 Sparse Algorithms. Sparse Matrix-Vector Multiplica-
tion (SpMV) is probably the most used and studied sparse linear

algebra algorithm. SpMV multiplies a sparse matrix with a dense

vector and returns a dense vector. It has low arithmetic intensity and

is normally bounded by memory bandwidth. In this paper, we use

the recent CSR5 data structure based implementation [33], which

uses load balanced data partitioning and SIMD-friendly operations

to achieve better performance over the conventional compressed

sparse row (CSR) based SpMV [34] on various multi-/many-core

platforms.

Sparse Matrix Transposition (SpTRANS) transposes a sparse

matrix A of order m×n to AT of order n×m, in which the CSR for-

mat is converted to the compressed sparse column (CSC) format, or

vise versa. SpTRANS mainly rearranges nonzero entries of the input

matrix, thus requiring little computation. We select implementations

ScanTrans and MergeTrans of O(nnz lognnz) complexity [44] for

evaluating SpTRANS on the CPU and KNL platforms, respectively.

The two methods use two rounds of scan or multiple rounds of merge

operations to locate the target position in the output format for each

nonzero element to avoid atomic writes and utilize small on-chip

caches more efficiently on both devices.

Sparse Triangular Solve (SpTRSV) computes a dense solution

vector x from a sparse linear system Lx = b, where L is a square

lower triangular sparse matrix and b is a dense vector. Unlike other

sparse BLAS routines [30, 44, 33, 34, 32], SpTRSV is generally

more difficult to parallelize as it is inherently sequential [31]. It has

complexity of O(nnz) and very low arithmetic intensity as SpMV,

but is often much slower than SpMV due to the dependencies among

components of x. Its implementation is chosen from SpMP [39].

3.1.3 Other Algorithms. Stencil applications are a class of

iterative kernels, which constitute the core of many scientific appli-

cations. The kernels sweep the same stencil computation on cells

in a given multi-dimensional grid iteratively. Stencils could exhibit

diverse arithmetic intensities depending on the specific stencil func-

tions adopted. However, optimized stencil algorithms often see high

arithmetic intensity under orchestrated spatial and temporal blocking

techniques [23]. The benchmark we evaluate is called 3D Finite

Difference with Isotropic (“iso3dfd”) in YASK [49], which is a finite

difference kernel with 16th-order in space and 2nd-order in time.

The computation conducts 61 operations for each grid cell through

accessing its neighboring 48 cells.

Fast Fourier Transform (FFT) is an algorithm to compute the

discrete Fourier transform (DFT) of a sequence, or the inverse. It

rapidly converts a signal from its original time or space domain into

frequency domain or vice versa, by factorizing the DFT matrix into

a product of sparse factors. In this evaluation, we apply the FFTW

library [17] to perform 3D-FFT. The 3D-FFTW implementation

first executes 1D-FFT along Y-dimension and then 1D-FFT along

X-dimension by multiple threads in parallel, followed by an all-to-all

communication among threads. After that, another 1D-FFT along

Z-dimension is carried out. The Cooley-Tukey algorithm based

computation requires 5N logN floating-point operations and has an

arithmetic intensity of O(logn).
Stream is a synthetic benchmark that measures sustainable mem-

ory throughput for simple vector kernels. We use the TRIAD kernel

for evaluation, which calculates elementary-wise vector computation

x = a+b∗α . The algorithm complexity is O(1) and the arithmetic

intensity is very low. Stream benchmark is available at [36].

3.2 Platform Configuration
The two widely-adopted OPM platforms are selected for evalua-

tion, shown in Table 3. They represent contemporary CPU (e.g.,

The Real Impact of Modern On-Package Memory on HPC Scientific Kernels SC17, November 12–17, 2017, Denver, CO, USA

Figure 5: Theoretical Roofline figures for eDRAM and MCDRAM. The specific arithmetic intensities here (i.e., the kernel locations) are calculated using Table 2 with the assumption
that n = 1024, nnz = 1024, M = 32.

Figure 6: Stepping Model. (A) With only memory, the throughput curve looks like a
slope. But once cache is added, a cache peak will appear, which may be followed by a
cache valley when the memory-level-parallelism at this point is insufficient to saturate
the bandwidth of the lower memory hierarchy. (B) With multiple cache levels, there can
be a series of cache peaks and possible cache valleys. The declining height of the peaks
imply that the bandwidth decreases with lower-level memory hierarchy.

Broadwell) and manycore accelerator (e.g., KNL) that are equipped

with OPM. A Broadwell-based platform is tested here because it is

the only recent processor offering tuning options shown in Table 1.

Haswell and Skylake processors do not support switching on/off

eDRAM in BIOS. Nevertheless, the observations we draw are inde-

pendent of processor types. For both platforms, it is possible to adopt

Simultaneous Multithreading (SMT) to increase parallelism and hide

latency. However, this functionality is sometimes disabled in HPC

practice since it may harm performance, especially for compute-

bound applications. In our evaluation, we choose the number of

threads delivering the best performance for each application, shown

in Table 2. Figure 5 uses the roofline model [48] to demonstrate how

these two OPMs can impact the theoretical peak performance of the

aforementioned algorithms (i.e., with and without OPM; we also

draw single-precision performance ceiling for reference).

3.3 Evaluation Process
During the evaluation process, we take both important architectural

tuning options and algorithmic tuning features into consideration.

For the former, each selected algorithm is evaluated on the two plat-

forms shown in Table 3, with different architectural tuning options

illustrated in Table 1. For the latter, algorithms belong to different

categories of arithmetic intensity are evaluated through their indi-

vidual essential tuning factors, but without modifying the algorithm

itself. For dense algorithms, we focus on changing the input matrix

size and tiling size gradually. For sparse algorithms, we evaluate the

impact of their inputs’ sparse structures on performance. Specifi-

cally, we conduct the testing using a very large set of sparse matrices.

We select all the square matrices with the number of nonzeros larger

than 200,000 from the UF Sparse Matrix Collection [11], with total

number of 968 out of 2757 matrices. The rows of all matrices are

ordered by using the segmented sort [22] for best performance. Such

a testing volume is sufficient to cover a large feature space, and it is

considerably larger than the previous research on evaluating sparse

algorithms, most of which only tests dozens of UF matrices. All the

results shown in the figures are the average of multiple executions.

For the applications running on KNL, we use the quadrant-cluster
mode. It is the default mode in which both MCDRAM and DDR

are Unified-Memory-Access (UMA) while all the DDR-DIMMs

connected to KNL have the same capacity. For general applications,

quadrant-mode normally achieves the optimal performance without

explicit NUMA complexity. Furthermore, we use “numactl -p” to

allocate data on MCDRAM as the preference. When the MCDRAM

node is exhausted, the extra data will be allocated on the DDR node.

4 RESULTS AND GENERAL ANALYSIS
In this section, we will demonstrate and analyze the general perfor-

mance results of the two OPMs using the kernels listed in Table 2.

After this, we will provide a comprehensive results summary on

performance and power features of these two OPMs and then give

some general optimization guidelines.

4.1 eDRAM for Broadwell CPU
4.1.1 Dense Kernels. The results for GEMM and Cholesky are

shown as 2D heat maps in Figures 7 and 8. The x-axis represents

matrix size while the y-axis represents tiling size. The color spectrum

from blue to red indicates increasing of throughput (i.e., GFlop/s).

The left and right subfigures show the heat map with (w/) and without

(w/o) eDRAM, respectively. We summarize the observations as

follows: (1) As both algorithms are compute-bound, having eDRAM

does not significantly improve the peak performance (depicted as

burnt maroon color, e.g., without to with: 204.5 to 206.1 GFlop/s for

GEMM while 184.3 to 192.6 GFlop/s for Cholesky). (2) The near-
peak performance (orange to burgundy color) region is significantly

expanded with eDRAM, indicating that it offers more opportunities

for less-optimal configurations to achieve higher throughput. (3)

The size of the blue region largely remains the same before and after

enabling eDRAM, suggesting that it is not an universal performance

optimization solution. (4) With or without eDRAM, the “heated

area” appears on the right section of each figure, implying that

sufficient data size is required for delivering good performance

(maintaining high arithmetic intensity). (5) The impact from tiling is

heavily correlated with problem size (nearly triangular shape) under

eDRAM. For achieving better throughput, appropriate matrix size

helps maintain healthy arithmetic intensity while optimized tiling

builds better data locality.

4.1.2 Sparse Kernels. Figures 9, 10 and 11 show the impact of

using eDRAM on the sparse kernels SpMV, SpTRANS and SpTRSV,

respectively. We first demonstrate the performance points scattering

of the 968 matrices according to their memory footprints in their top

subfigures (raw throughputs). Memory footprints are utilized here

because for sparse matrices, the key parameter to define the problem

SC17, November 12–17, 2017, Denver, CO, USA A. Li et al.

Figure 7: GEMM on Broadwell CPU. Figure 8: Cholesky on Broadwell CPU.

Figure 9: SpMV on Broadwell Figure 10: SpTRANS on Broadwell Figure 11: SpTRSV on Broadwell

Figure 12: Stream on Broadwell CPU Figure 13: Stencil on Broadwell CPU Figure 14: FFT on Broadwell CPU

size is the volume of nonzero elements, which is proportional to

memory footprint size. To better understand and explain the results

of these algorithms with medium or lower arithmetic intensity (e.g.,

more memory-bound) listed in Figure 4, which often emphasize the

impact from complex memory hierarchy, we modify the original

valley model [19, 29] to facilitate analysis. We name it “Stepping

Model”, shown in Figure 6. It is different from the Valley model

in two ways: (I) The x-axis is not thread volume but problem size

or memory footprint, to better demonstrate problem size related

insights. The two models share a similar performance because a

larger problem size often indicates more thread tasks for data-parallel

scientific algorithms. (II) Stepping model can reflect multiple cache

peaks or valleys due to multi-level cache hierarchy in contemporary

hardware.

For SpMV, the on-chip L3 cache peak at round 4MB can be ob-

served when mapping the data points into Stepping model. This

is true for both with and without eDRAM scenarios. After that,

having eDRAM starts to show clear advantage (blue points): beyond

the L3 cache valley at about 23.5MB, performance rises again to

approach the eDRAM cache peak at about 27MB (the capacity of the

eDRAM). Afterwards, performance drops significantly due to fierce

capacity miss, as memory footprint size has surpassed eDRAM size.

For SpTRANS and SpTRSV, the L3 cache peak is not very obvious

in the figures, but the eDRAM cache peak can be clearly observed.

Table 4 shows the comparison stats for with and without eDRAM

(e.g., max peak throughput gap). Furthermore, the middle subfigures

(green spots) show the normalized speedups against without eDRAM

scenarios. They clearly illustrate the eDRAM effective region, i.g.,

speedup over 1 falls in the middle before reaching the DRAM mem-

ory plateau. Users should consider this eDRAM effectiveness region

for tuning their sparse algorithms before deployment.

Another observation from the normalized speedup subfigures is

that even with the same memory footprint size, the performance of

different input matrices can be significantly different. One major

The Real Impact of Modern On-Package Memory on HPC Scientific Kernels SC17, November 12–17, 2017, Denver, CO, USA

reason causing this is the sparse matrix structure. Three bottom

subfigures show the heat maps of the speedups with respect to the

number of rows and nonzero entries for the tested sparse matrices.

As can be seen, the matrices’ sparse structures play an important role

in determining their throughputs. For SpMV, the peak performance

region (reddest area) concentrates at the lower-left corner, with the

lower region for the nonzero entries as well. For SpTRANS, the

peak performance region is for small matrices (both small number of

rows and nonzero entries). For SpTRSV, the peak region is for small

number of rows, but small to modest number of nonzero entries.

These observations generally match algorithm characteristics: both

SpMV and SpTRSV commonly reuse vectors of size m (i.e., the

number of rows) thus achieve higher speedups when the vectors are

smaller and can be cached better; SpTRANS has less data reuse thus

behave better when the whole problem size is smaller.

4.1.3 Other Algorithms. Figures 12, 13 and 14 show the perfor-

mance results for Stream, Stencil and FFT, respectively. The x-axis

of these figures is log scaled. For Stream, clear L2 and L3 cache

peaks can be observed for both with and without eDRAM. However,

without eDRAM, there is a L3 cache valley before the DRAM band-

width can be fully exploited at the plateau. With eDRAM, this valley

is avoided with an eDRAM cache peak being formed. This is then

followed by a dropping of throughput due to poor eDRAM hit rate.

For Stencil, the “iso3dfd” (the essential kernel) implementation is

optimized by vector folding and cache blocking, with the blocking

dimension as 64x64x96 (3MB). Thus, the total memory footprint

size on the Broadwell is approximately 24MB, which is significantly

larger than the 6MB L3 cache but is smaller than the eDRAM. This

explains the throughput curve of Stencil with eDRAM continuously

outperforms that without eDRAM. For FFT, it can be seen that the

L3 cache peak is at about 6MB, or 212.6 KB. After that, without

eDRAM shows a clear cache valley while with eDRAM offers an-

other performance “sweetspot” at the eDRAM cache peak (≈ 214

KB). Beyond this cache peak (after 217 KB or 128MB), the perfor-

mance drops and converges to the one without eDRAM. Table 4

shows the detailed stats for these kernels when enabling eDRAM.

4.2 Observations on MCDRAM of KNL
4.2.1 Dense Kernels. The results for GEMM and Cholesky on

KNL are shown in Figures 15 and 16. The upper-left, upper-right,

lower-left and lower-right subfigures represent preferring DDR (i.e.,

without MCDRAM), using MCDRAM in cache mode, flat mode,

and hybrid mode, respectively. We have the following observations:

(I) Similar to the observations in eDRAM (Figure 7), using MC-

DRAM as cache does not significantly increase the peak throughput

of GEMM (i.e., without MCDRAM to cache mode: 1425.5 GFlop/s

to 1483.4 GFlop/s) because GEMM has been well blocked for on-

chip L2 cache, but it does expand the opportunities for more inputs

to reach higher throughput. However, this phenomenon does not ap-

ply to Cholesky in which the peak performance increases noticeably

due to suboptimal tiling for L2. (II) MCDRAM as flat memory can

significantly boost throughput before certain boundary (around the

center of x-axis), implying it can help small sized problems achieve

better throughput without requiring large problem size to maintain

high arithmetic intensity. However, beyond the boundary (around the

MCDRAM capacity of 16GB), the performance becomes extremely

poor for both GEMM and Cholesky. This is interesting because

general wisdom believes that the performance of using MCDRAM

should be better or at least the same as that without MCDRAM (i.e.,

only using DDR). However, our results show otherwise: when an

array is partially allocated on both MCDRAM and DDR, the perfor-

mance becomes extremely poor. We suspect this is due to: (a) the

significantly increased bus conflicts in the network of cores on KNL,

when fetching data from MCDRAM and DDR at the same time; and

(b) significant set conflict in L2 when two entries in DDR and MC-

DRAM are mapped to the same L2 cache set. Additional conflicts on

L2 also include dual ports support for DDR and MCDRAM, result-

ing in extra cache transactions (e.g., synchronization). (III) Another

interesting finding is that the hybrid mode can be more effective than

the pure cache mode, which is against existing knowledge [27]. This

is especially true for GEMM, in which the cache tiling technique

has ensured that the memory footprint in cache is smaller than 8GB

(the cache capacity of hybrid mode). As such, the other 8GB, when

employing as flat memory, can be more beneficial than as pure cache

since cache is not always hit and requires additional tag checking

overhead (note that the flat memory and cache in MCDRAM are

at the same memory hierarchy due to sharing the same physical

hardware). However, when the memory footprint size is larger than

8GB, the cache mode becomes a better choice. (IV) These figures

also demonstrate the advantage of using MCDRAM as cache since

hardware-managed cache can dynamically shift its scope with the

moving of the kernel’s hotspot region but the flat memory cannot.

In summary, if the data size is large (e.g., larger than MCDRAM

capacity), but the frequently accessed memory footprint size is small,

the hybrid mode (when footprint size < 8GB) or cache mode (when

footprint size ≥ 8GB) is a better choice.

4.2.2 Sparse Kernels. Figures 17, 18, and 19 illustrate the

results for running three sparse algorithms on KNL, including SpMV,

SpTRANS and SpTRSV, respectively. Similar to the demonstration

for eDRAM, we show raw performance, relative speedups (with

respect to without MCDRAM) and the impact from sparse structures.

SpMV: In the top subfigure for raw performance, SpMV’s L2

cache peak can be easily identified at around 32M. After that, the

four modes diverge. Without MCDRAM, the performance drops

dramatically and saturates at DRAM memory plateau. After experi-

encing a short L2 cache valley, the performance of the other three

modes climbs back to approach MCDRAM’s throughput peak. Since

the memory footprints for most sparse matrices from UF sparse ma-

trix collection are much smaller than 8GB (i.e., within the hybrid

mode cache capacity), it is difficult to distinguish the three modes

since they have not reached the potential state that can separate them

apart. This phenomenon also occurs for SpTRANS and SpTRSV.

Therefore, we only draw one heatmap to represent all three modes

using MCDRAM since they share similar impact from sparse struc-

tures. Figure 20 shows that SpMV performs well on KNL when the

number of rows is small due to efficient vector caching.

SpTRANS: The behavior for SpTRANS is completely different

from SpMV. Based on the speedup figures, MCDRAM modes do

not deliver clear performance benefit over DDR. This is because

SpTRANS code already targets L2 cache for optimal tiling, resulting

in negligible performance improvement when enabling MCDRAM

modes. SpTRANS’ heat map (Figure 21) shows that it performs

the best (reddest) when both the number of rows and nonzeros are

smaller. This is because SpTRANS has less data reuse thus behave

better when the whole problem size is smaller.

SC17, November 12–17, 2017, Denver, CO, USA A. Li et al.

Figure 15: GEMM on KNL Figure 16: Cholesky on KNL

Figure 17: SpMV on KNL. Figure 18: SpTRANS on KNL. Figure 19: SpTRSV on KNL.

Figure 20: Structure impact of SpMV on KNL. Figure 21: Structure impact of SpTRANS on KNL. Figure 22: Structure impact of SpTRSV on KNL.

SpTRSV: SpTRSV has the same arithmetic intensity as SpMV

but it has much lower peak throughput due to heavy input-defined

data dependency. Thus, SpTRSV has lower memory level paral-

lelism and bandwidth demand, making MCDRAM access latency

higher than DDR (Section 2.2). Reflected by the speedup subfig-

ure in the middle (e.g., below 1 when memory footprint is larger),

whether enabling MCDRAM modes is better than DDR depends

on if the algorithm is latency bound (worse than DDR) or memory

bandwidth bound (better than DDR). Shown in the heatmap (Figure

22, a small number of rows and a moderate number of nonzeros in

SpTRSV benefit performance greatly due to better vector caching.

4.2.3 Other Kernels. The figures for Stream, Stencil and FFT
are shown in Figures 23, 24, and 25, respectively. As can be seen,

the figure for Stream matches the Stepping model very well. The

L2 cache peak appears at about 32MB. All the four modes converge

before this point but diverge thereafter. We can also observe that

DDR mode’s performance quickly drops to the DRAM plateau after

The Real Impact of Modern On-Package Memory on HPC Scientific Kernels SC17, November 12–17, 2017, Denver, CO, USA

Figure 23: Stream on KNL. Figure 24: Stencil on KNL. Figure 25: FFT on KNL.

Table 4: Summarized Statistics for Applying eDRAM

Kernel w/o eDRAM Best GFlop/s w/ eDRAM Best GFlop/s Avg Perf. Gap (GFlop/s) Max Perf. Gap (GFlop/s) Average Speedup Max Speedup
GEMM 204.5 206.1 5.19 32.14 1.034x 1.243x

Cholesky 184.3 192.6 5.27 39.55 1.051x 3.537x
SpMV 8.7 9.6 1.20 4.48 1.296x 2.644x

SpTRANS 19.0 21.8 3.79 9.40 1.574x 2.979x
SpTRSV 61.0 70.3 0.88 9.38 1.255x 2.233x
Stream 201.3 201.3 7.00 38.99 1.094x 2.421x
Stencil 57.4 61.9 5.22 8.82 1.106x 1.171x

FFT 38.4 44.7 1.42 18.55 1.076x 1.894x

L2 cache peak. Meanwhile, since Stream has almost no data locality,

cache mode performs worse than flat and hybrid modes. For the

hybrid mode, the 8GB MCDRAM partition maintains the curve

the same level as the flat mode, but falls when memory footprint

surpasses its capacity (i.e., at one point ahead of the flat mode since

its capacity is half of the flat mode. Note that x-axis is in log scale.).

For Stencil, the figure also matches the Stepping model although

we cannot observe L2 cache peak since the starting data point is

larger than the L2 cache capacity. Compared with Stream, the Sten-

cil kernel exhibits a very significant MCDRAM cache peak at about

212 MB. Beyond this point, MCDRAM in cache mode starts to ex-

perience significant misses, causing performance drop. Meanwhile,

the hybrid and flat modes do not suffer from cache misses when the

memory footprint is less than 8GB capacity, remaining consistent

with the memory plateau. Note that the plateau is sufficiently long

since x-axis is log scaled. Then the hybrid case drops one step be-

fore the flat mode when the memory footprint surpasses its cache

capacity.

For FFT, the four modes diverge from the same performance

point at 8MB, and beyond this point, MCDRAM modes show clear

advantage over DDR. It is worth noting that for a large data size

(e.g., > 214 MB or 16G, which is MCDRAM total capacity), the

flat mode performance drops while the cache and hybrid modes still

hold at a higher throughput. This again demonstrates the advantage

of using MCDRAM as cache since it can dynamically shift its scope

with the kernel’s hotspot region but the flat memory cannot.

5 RESULTS SUMMARY
5.1 Performance
eDRAM: Table 4 lists the detailed performance statics for all the

tested kernels using eDRAM. It is a summarized evaluation of the

results discussed in Section 4.1. For dense kernels, although the

enhancement on the best achievable peak performance by having

eDRAM is only 0.8% and 4.5% for GEMM and Cholesky respec-

tively, eDRAM significantly increases overall probability for differ-

ent inputs to reach good throughput without explicit and complicated

configuration tuning. For sparse kernels, the peak performance en-

hancement through eDRAM is 10.3%, 14.7%, and 15.2% for SpMV,

SpTRANS and SpTRSV, respectively. This suggests that eDRAM

is effective for memory bandwidth bound applications. For Stream,

the peak performance is not improved at all by eDRAM usage, as

there is no data locality and the performance is completely bounded

by DDR bandwidth. For Stencil and FFT, the peak performance

improvements are 7.8% and 16.4%. Note that all these numbers are

not necessarily for the same data input.

Across all the kernels and inputs, eDRAM brings an average of

3.8 GFlop/s and up to 39.55 GFlop/s performance improvement, cor-

responding to on average of 18.6% and up to 3.54x (i.e., Cholesky)

performance speedup. This is an impressive gain considering the

diversity of the kernels and input scaling.

To summarize, eDRAM behaves the best within the eDRAM

cache effective region (discussed in Section 4.1.2). Kernels with

general data inputs commonly fall in such region, in which ker-

nel’s data locality cannot be fully addressed by upper-level caches.

Additionally, it is worth noting that we have not observed worse

performance using eDRAM than without eDRAM.

MCDRAM: Table 5 lists the performance summary for KNL’s

MCDRAM evaluation results discussed in Section 4.2. As can be

seen, the enhancements on the best achievable peak performance

over the pure DDR option are not always positive, i.e, GEMM in flat

mode, SpTRANS in hybrid mode, the SpTRSV cases. The detailed

reasons for these have been discussed in Section 4.2.

Across all the kernels and inputs, MCDRAM in flat mode can in-

troduce an average of 41.9 GFlop/s and up to 212.2 GFlop/s through-

put improvement, corresponding to on average 65.2% and up to

3.9x% performance speedup. MCDRAM in cache mode brings an

average of 64.1 GFlop/s and up to 215.9 GFlop/s throughput im-

provement, corresponding to an average of 58.0% and up to 3.6x
speedup. MCDRAM in hybrid mode leads to an average of 77.6

GFlop/s and up to 226.2 GFlop/s throughput improvement, corre-

sponding to an average of 64.9% and up to 3.8x speedup.

Generally, MCDRAM shows some impressive performance im-

provement across the board. However, as discussed in Section 4.2,

when to use which hardware mode for the optimal achievable perfor-

mance is trickier than applying eDRAM. We will further discuss the

general usage guideline for MCDRAM in Section 6.

5.2 Power and Energy
Power consumption might be an important evaluation metric for

some users. To estimate it, we use the widely adopted RAPL [10]

SC17, November 12–17, 2017, Denver, CO, USA A. Li et al.

Table 5: Summarized Statistics for Applying Different Modes of MCDRAM

Kernel DDR Best GFlop/s Flat/Cache/Hybrid Best GFlop/s Avg Perf. Gap (GFlop/s) Max Perf. Gap (GFlop/s) Average Speedup Max Speedup
GEMM 1425.5 1404.0/1483.4/1544.4 -135.7/98.3/124.7 379.2/469.6/463.3 0.879/1.141/1.160 1.544/1.613/1.685

Cholesky 907.8 966.0/1104.7/1079.7 -24.3/29.6/29.4 246.8/269.0/281.4 0.998/1.063/1.064 5.345/3.242/5.411
SpMV 39.8 46.5/46.3/45.9 5.1/5.6/5.5 36.3/36.0/35.4 1.572/1.623/1.610 4.714/4.603/4.609

SpTRANS 4.3 4.6/5.2/3.5 0.076/0.307/-0.088 2.7/2.6/1.08 1.068/1.233/0.915 2.527/2.477/1.609
SpTRSV 10.4 25.2/38.8/37.9 0.200/0.492/0.436 17.4/29.5/28.5 1.034/1.059/1.035 3.223/4.154/4.054
Stream 792.9 792.9/792.9/792.9 126.7/58.9/115.0 312.4/243.6/309.4 2.808/1.854/2.643 5.443/4.723/5.403
Stencil 189.9 808.6/784.4/798.7 324.9/279.9/308.3 618.7/597.4/609.7 2.764/2.522/2.673 4.265/4.195/4.226

FFT 71.5 118.0/113.4/114.6 37.9/39.3/37.6 83.9/79.3/80.5 2.095/2.148/2.093 3.823/3.961/3.530

Figure 26: Broadwell Power. Figure 27: KNL Power.

and PAPI [45] tools. The tools are issued for measuring and record-

ing energy consumption of the two systems running all benchmarks

used in this work. The results for with/without eDRAM and MC-

DRAM are shown in Figures 26 and 27. We also show the power

breakdown of the platform by measuring the whole package and

DDR separately. Note that eDRAM on Broadwell can be physi-

cally disabled in BIOS so no static power is consumed from it when

turned off. But for MCDRAM, “w/o MCDRAM” simply implies

not accessing MCDRAM so it still consumes static power. So far,

there is no feasible approach to physically turn off MCDRAM on

KNL. As can be seen, by using eDRAM and MCDRAM (i.e., flat

mode), the power consumption is increased on average by 5.6W and

9.8W across kernels, respectively, corresponding to an average of

8.6% and 6.9% power increase. Figure 27 also shows that using

MCDRAM sometimes can help reduce DDR power and even overall

power consumption (e.g., GEMM, Choleksky, SpTRANS and FFT),

due to significantly reduced DDR access.

In terms of energy, which the HPC center administrators mostly

concern, using OPM can dissipate extra power. Assume energy

consumption is the top priority and suppose the on-package memory

brings P% performance gain at the cost of on average W% power in

addition, to essentially save energy, we should have

Energyw/OPM =
1

1+P
∗ (1+W) < Energyw/oOPM = 1 (1)

This implies that on average the performance benefit by having OPM

should be larger than 8.6% for eDRAM and 6.9% for MCDRAM to

gain energy savings. Other metrics such as Energy-Delay products

[18] can also be used to adjust users’ final optimization objective,

i.e., more towards performance or energy for the optimal tuning

option. But how to decide this user-dependent evaluation metric is

beyond the scope of this work.

6 OPTIMIZATION GUIDELINES
Previously, we used Stepping model (Figure 6) to explain the mem-

ory access behaviors of different kernels. Here we use Stepping

model to make a more general tuning guideline for these two OPMs.

eDRAM: As shown in Figure 28, after an upper-level cache

peak (L3 in this case), if there is no eDRAM, the performance

drops and flattens out to the DDR plateau. If eDRAM is integrated,

there will be another cache peak, as what we have seen previously

Figure 28: eDRAM tuning via Stepping model.

Figure 29: MCDRAM tuning via Stepping model.

in Section 4. Beyond the eDRAM cache peak, the performance

degrades. Whether the performance converges with the DDR plateau

depends on the eDRAM cache hit rate in a steady state. If the hit

rate is zero, they converge (Figure 28-(A)); otherwise, there will be

a performance gap (Figure 29-(B)). From performance perspective,

eDRAM has shorter latency and higher bandwidth than DDR and

it can be effective to improve performance for both latency and

bandwidth-bound applications, as long as data size fits into the

eDRAM performance-effective-region (PER). Outside of this region,

eDRAM still does not degrade the performance. Therefore, to HPC

users whose major concern is performance, we suggest to keep

this OPM enabled. If users’ priority is saving energy, as shown in

Figure 28-(A), the energy-effective-region (EER) is more narrow

than PER. If the steady state hit rate of the eDRAM is insufficient to

draw a performance gain, having it is probably not cost-effective.

MCDRAM: For MCDRAM, the condition is much more compli-

cated. Based on the experience we have gained from the analysis in

previous sections, we summarize the features of MCDRAM modes

into a Stepping model figure, shown in Figure 29. The “w/o MC-

DRAM” curve here is similar to that in eDRAM in Figure 28, and

the cache mode curve here is similar to the “w/ eDRAM” curve.

For the flat mode curve, we represent it using the memory plateau

The Real Impact of Modern On-Package Memory on HPC Scientific Kernels SC17, November 12–17, 2017, Denver, CO, USA

Figure 30: Example: tuning eDRAM hardware for throughput.

shape since all accesses are essentially hits. As discussed in Sec-

tion 4.2.1, its performance drops sharply beyond the memory capac-

ity, e.g.,16GB for flat mode. For the hybrid curve, before allocated

cache capacity (e.g., 8GB), it has very similar throughput as flat

mode. Before the data volume reaching to full MCDRAM capac-

ity, it has slightly worse performance than flat mode but does have

a cache peak (marked as MCDRAM hybrid peak in Figure 29).

From Figure 29, we have the following guidelines: (I) The “w/o

MCDRAM” curve generally shows the worst performance. One

exception is for flat mode, when the data allocation occur on both

MCDRAM and DDR, generating high NoC conflicts and upper-level

cache thrashing; (II) Flat mode shows the best performance when

the application data set is ensured to be less than MCDRAM’s ca-

pacity (all hits); (III) Hybrid mode shows its advantage when the

most-frequently-used memory footprint size is less than the allo-

cated cache size in the MCDRAM but the data size itself is larger

than the MCDRAM total capacity. Under this condition, hybrid

mode shows superior performance than both flat mode and cache

mode, as seen in the GEMM example. (IV) Cache mode behaves

the best when the data size cannot fit into MCDRAM capacity and

the most-frequently-used memory footprint size is larger than the

allocate cache size in the hybrid mode. This condition mostly occurs

for large problem size with relatively good locality. Note that we

do not analyze energy consumption tradeoff for MCDRAM due

to the mixed average power results in Figure 27 and the fact that

MCDRAM on the current KNL cannot be disabled.

Tuning OPM Hardware for Performance: Using the Stepping

model, we can also theoretically analyze how to tune the OPM

hardware for better performance. Using eDRAM as an example,

Figures 30-(A) and (B) show the results of increasing OPM cache

capacity and cache bandwidth. As can be seen, increasing OPM

cache size scales the cache peak while increasing OPM bandwidth

amplifies the peak.

7 RELATED WORK
Scientific kernels are the essential building blocks for today’s major

applications running in large-scale HPC environments, which often

consume tremendous execution cycles and resources. Analyzing the

performance of these scientific kernels on state-of-the-art emerging

architectures thus becomes a critical task, as it offers useful insights

on the potential of these latest hardware on performance boosting

as well as how to further optimize them. Such type of studies pre-

viously have been performed on Cell processor [47], GPGPU [7],

cloud servers [24], IBM Power-8 [2], Intel Xeon Phi Knights-Cornor

[26], etc. Most of these studies were focusing on processors. How-

ever, the last two decades’ practice in HPC has already shown that

memory effects are becoming the most prominent limiting factor for

continuous performance scaling towards exascale [13]. Therefore,

analyzing the performance impact from advances in memory tech-

nology (such as on-package memory) on scientific kernels becomes

a mission critical task for the HPC community.

In this work, we conducted an extensive study on two popular

OPMs: eDRAM and MCDRAM. In terms of eDRAM, the major-

ity of the existing works focus on either optimizing the memory

cell structure of eDRAM for low-power [9], energy-efficient error-

encoding scheme [46], or minimizing refresh operations of eDRAM

[3, 6]. Mittal et. al. [38, 37] provided surveys for embedded DRAM

and DRAM caches. For MCDRAM, since Intel KNL is a recently

released architecture, only less work has been conducted to measure

and optimize for particular algorithms, e.g., accelerating sparse ten-

sor factorization [41] and seismology software on KNL [21]. Some

other work [12] tried to model KNL performance using the classic

roofline model. However, no existing work has provided a compre-

hensive study targeting modern on-package memory and analyzing

their performance/power impact for critical scientific kernels. Fur-

thermore, none of them particularly emphasize the impact from the

recently released MCDRAM.

8 CONCLUSIONS AND FUTURE WORK
In this paper, we conduct a thorough empirical evaluation for the

impact of modern OPM on important HPC scientific kernels. We

evaluate different tuning modes of OPM and how they affect the

application turning for best throughput. To better understand all

the observations, we drive a visual analytic model from the valley

model and use it to explain the interaction between OPM archi-

tecture effects and kernels’ tuning features. Finally, we provide a

general optimization guideline on how to tune application and ar-

chitecture for best performance on platforms equipped with these

two OPM. Several interesting insights have been obtained through

our evaluation, e.g., how sparse structures affect throughput with

OPM, whether eDRAM is cost effective for different applications,

and under what circumstances hybrid MCDRAM can outperform

the other two options.

In future, we plan to investigate whether the configurations of the

OS, libraries, compilers and other features could have a noteworthy

impact on the overall system performance under OPM. For example,

so far we have tested all the kernels on CentOS-7.2 and it would

be interesting to explore the OS impact on performance and power.

There are several interesting research directions regarding OS, in-

cluding (1) under a multi-user/multi-application scenario (less likely

for HPC), how would OS distribute the OPM resources among appli-

cations based on fairness, efficiency and consistency; (2) in a virtual

environment, how would the host OS manage OPM across different

guest OS; (3) would OPM be useful for certain OS functionalities,

e.g., buffering page table? This work serves as an initial study on

OPM-related research in HPC and including a more diverse range

of impact factors can definitely expand the current research scope.

ACKNOWLEDGMENTS
This research is supported by U.S. DOE Office of Science, Office

of Advanced Scientific Computing Research, under the “CENATE”

project (award No. 66150), the European Union’s Horizon 2020

research and innovation programme under the Marie Sklodowska-

Curie “TICOH” project (grant No. 752321), and NSF XPS program

(grant CCF-1337131). The Pacific Northwest National Laboratory

is operated by Battelle for the U.S. Department of Energy under

contract DE-AC05-76RL01830.

SC17, November 12–17, 2017, Denver, CO, USA A. Li et al.

REFERENCES
[1] 2016 november top500 list. https://www.top500.org/lists/2016/11/, 2016.
[2] A. V. Adinetz, P. F. Baumeister, H. Böttiger, T. Hater, T. Maurer, D. Pleiter,

W. Schenck, and S. F. Schifano. Performance Evaluation of Scientific Applications
on POWER8. In High Performance Computing Systems. Performance Modeling,
Benchmarking, and Simulation: 5th International Workshop, PMBS 2014., pages
24–45, 2015.

[3] A. Agrawal, P. Jain, A. Ansari, and J. Torrellas. Refrint: Intelligent Refresh
to Minimize Power in On-Chip Multiprocessor Cache Hierarchies. In 2013
IEEE 19th International Symposium on High Performance Computer Architecture
(HPCA), pages 400–411, 2013.

[4] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,
P. Luszczek, and S. Tomov. Numerical Linear Algebra on Emerging Architectures:
The PLASMA and MAGMA Projects. Journal of Physics: Conference Series,
180(1):012037, 2009.

[5] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A Class of Parallel Tiled
Linear Algebra Algorithms for Multicore Architectures. Parallel Computing,
35(1):38–53, 2009.

[6] M. Chang, P. Rosenfeld, S. Lu, and B. Jacob. Technology Comparison for
Large Last-level Caches (L3Cs): Low-leakage SRAM, Low Write-energy STT-
RAM, and Refresh-optimized eDRAM. In Proceedings of the 2013 IEEE 19th
International Symposium on High Performance Computer Architecture, HPCA
’13, pages 143–154, 2013.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron. A
Performance Study of General-Purpose Applications on Graphics Processors
Using CUDA. J. Parallel Distrib. Comput., 68(10):1370–1380, 2008.

[8] K. C. Chun, P. Jain, J. H. Lee, and C. H. Kim. A sub-0.9V logic-compatible
embedded DRAM with boosted 3T gain cell, regulated bit-line write scheme and
PVT-tracking read reference bias. In 2009 Symposium on VLSI Circuits, pages
134–135, 2009.

[9] K. C. Chun, P. Jain, J. H. Lee, and C. H. Kim. A 3T Gain Cell Embedded DRAM
Utilizing Preferential Boosting for High Density and Low Power On-Die Caches.
IEEE Journal of Solid-State Circuits, 46(6):1495–1505, 2011.

[10] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. RAPL: Memory
Power Estimation and Capping. In Proceedings of the 16th ACM/IEEE Inter-
national Symposium on Low Power Electronics and Design, pages 189–194,
2010.

[11] T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Softw., 38(1):1:1–1:25, 2011.

[12] D. Doerfler, J. Deslippe, S. Williams, L. Oliker, B. Cook, T. Kurth, M. Lobet,
T. M. Malas, J. Vay, and H. Vincenti. Applying the Roofline Performance Model
to the Intel Xeon Phi Knights Landing Processor. In ISC Workshops, 2016.

[13] J. Dongarra et al. The International Exascale Software Project Roadmap. Int. J.
High Perform. Comput. Appl., 25(1):3–60, 2011.

[14] E. J. Fluhr et al. POWER8: A 12-core Server-Class Processor in 22nm SOI with
7.6Tb/s Off-Chip Bandwidth. In 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers, pages 96–97, 2014.

[15] J. Barth et al. A 500 MHz Random Cycle, 1.5 ns Latency, SOI Embedded DRAM
Macro Featuring a Three-Transistor Micro Sense Amplifier. IEEE Journal of
Solid-State Circuits, 43(1):86–95, 2008.

[16] P. Hammarlund et al. Haswell: The Fourth-Generation Intel Core Processor. IEEE
Micro, 34(2):6–20, 2014.

[17] M. Frigo and S. G Johnson. The Design and Implementation of FFTW3. Pro-
ceedings of the IEEE, 93(2):216–231, 2005.

[18] R. Ge, X. Feng, and K. W. Cameron. Performance-Constrained Distributed DVS
Scheduling for Scientific Applications on Power-aware Clusters. In Supercom-
puting, 2005. Proceedings of the ACM/IEEE SC 2005 Conference, pages 34–45,
2005.

[19] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C. Weiser. Many-
Core vs. Many-Thread Machines: Stay Away From the Valley. IEEE Computer
Architecture Letters, 8(1):25–28, 2009.

[20] A. Hartstein, V. Srinivasan, T. R. Puzak, and P. G. Emma. Cache Miss Behavior:

Is It
√

2. In Proceedings of the 3rd Conference on Computing Frontiers, pages
313–320, 2006.

[21] A. Heinecke, A. Breuer, M. Bader, and P. Dubey. High Order Seismic Simulations
on the Intel Xeon Phi Processor (Knights Landing). In High Performance Com-
puting: 31st International Conference, ISC High Performance 2016, Proceedings,
pages 343–362, 2016.

[22] K. Hou, W. Liu, H. Wang, and W. Feng. Fast Segmented Sort on GPUs. In
Proceedings of the International Conference on Supercomputing, ICS ’17, pages
12:1–12:10, 2017.

[23] K. Hou, H. Wang, and W. Feng. GPU-UniCache: Automatic Code Generation
of Spatial Blocking for Stencils on GPUs. In Proceedings of the Computing
Frontiers Conference, CF’17, pages 107–116, 2017.

[24] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema.
Performance Analysis of Cloud Computing Services for Many-Tasks Scientific
Computing. IEEE Transactions on Parallel and Distributed Systems, 22(6):931–
945, 2011.

[25] S. S. Iyer, J. E. Barth, P. C. Parries, J. P. Norum, J. P. Rice, L. R. Logan, and
D. Hoyniak. Embedded DRAM: Technology platform for the Blue Gene/L chip.

IBM Journal of Research and Development, 49(2.3):333–350, 2005.
[26] J. Jeffers and J. Reinders. Intel Xeon Phi coprocessor high-performance program-

ming. MK, 1st edition, 2013.
[27] J. Jeffers, J. Reinders, and A. Sodani. Intel Xeon Phi Processor High Performance

Programming. MK, 2nd edition, 2016.
[28] S. Junkins. The Compute Architecture of Intel Processor Graphics Gen8. Techni-

cal report, Intel Corp., 2015.
[29] A. Li, S. L. Song, E. Brugel, A. Kumar, D. Chavarrı́a-Miranda, and H. Corporaal.

X: A Comprehensive Analytic Model for Parallel Machines. In 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages
242–252, 2016.

[30] W. Liu. Parallel and Scalable Sparse Basic Linear Algebra Subprograms. PhD
thesis, University of Copenhagen, 2015.

[31] W. Liu, A. Li, J. Hogg, I. S. Duff, and B. Vinter. A Synchronization-Free
Algorithm for Parallel Sparse Triangular Solves. In Euro-Par 2016: Parallel Pro-
cessing: 22nd International Conference on Parallel and Distributed Computing,
Proceedings, pages 617–630, 2016.

[32] W. Liu and B. Vinter. A Framework for General Sparse Matrix-matrix Multiplica-
tion on GPUs and Heterogeneous Processors. Journal of Parallel and Distributed
Computing, 85:47–61, 2015.

[33] W. Liu and B. Vinter. CSR5: An Efficient Storage Format for Cross-Platform
Sparse Matrix-Vector Multiplication. In Proceedings of the 29th ACM Interna-
tional Conference on Supercomputing, ICS ’15, pages 339–350, 2015.

[34] W. Liu and B. Vinter. Speculative Segmented Sum for Sparse Matrix-Vector
Multiplication on Heterogeneous Processors. Parallel Computing, 2015.

[35] W. Luk, J. Cai, R. Dennard, M. Immediato, and S. Kosonocky. A 3-Transistor
DRAM Cell with Gated Diode for Enhanced Speed and Retention Time. In 2006
Symposium on VLSI Circuits, 2006. Digest of Technical Papers., pages 184–185,
2006.

[36] J. D. McCalpin. Memory Bandwidth and Machine Balance in Current High Per-
formance Computers. IEEE Computer Society Technical Committee on Computer
Architecture Newsletter, 1995.

[37] S. Mittal and J. S. Vetter. A Survey Of Techniques for Architecting DRAM Caches.
IEEE Transactions on Parallel and Distributed Systems, 27(6):1852–1863, 2016.

[38] S. Mittal, J. S. Vetter, and D. Li. A Survey Of Architectural Approaches for Man-
aging Embedded DRAM and Non-Volatile On-Chip Caches. IEEE Transactions
on Parallel and Distributed Systems, 26(6):1524–1537, 2015.

[39] J. Park, M. Smelyanskiy, N. Sundaram, and P. Dubey. Sparsifying Synchro-
nization for High-Performance Shared-Memory Sparse Triangular Solver. In
Supercomputing: 29th International Conference, Proceedings, pages 124–140,
2014.

[40] A. J. Smith. Cache Memories. ACM Comput. Surv., 14(3):473–530, 1982.
[41] S. Smith, J. Park, and G. Karypis. Sparse Tensor Factorization on Many-Core

Processors with High-Bandwidth Memory. In 2017 IEEE International Parallel
and Distributed Processing Symposium, IPDPS ’17, 2017.

[42] A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani, S. Hutsell,
R. Agarwal, and Y. Liu. Knights Landing: Second-Generation Intel Xeon Phi
Product. IEEE Micro, 36(2):34–46, 2016.

[43] D. Somasekhar, Y. Ye, P. Aseron, S. L. Lu, M. Khellah, J. Howard, G. Ruhl,
T. Karnik, S. Y. Borkar, V. De, and A. Keshavarzi. 2GHz 2Mb 2T Gain-Cell
Memory Macro with 128GB/s Bandwidth in a 65nm Logic Process. In 2008 IEEE
International Solid-State Circuits Conference - Digest of Technical Papers, pages
274–613, 2008.

[44] H. Wang, W. Liu, K. Hou, and W. Feng. Parallel Transposition of Sparse Data
Structures. In Proceedings of the 2016 International Conference on Supercomput-
ing, ICS ’16, pages 33:1–33:13, 2016.

[45] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, D. Terpstra,
and S. Moore. Measuring Energy and Power with PAPI. In Proceedings of the
2012 41st International Conference on Parallel Processing Workshops, pages
262–268, 2012.

[46] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar, and S. Lu.
Reducing Cache Power with Low-cost, Multi-bit Error-correcting Codes. In Pro-
ceedings of the 37th Annual International Symposium on Computer Architecture,
ISCA ’10, pages 83–93, 2010.

[47] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick. The
Potential of the Cell Processor for Scientific Computing. In Proceedings of the
3rd Conference on Computing Frontiers, CF ’06, pages 9–20, 2006.

[48] S. Williams, A. Waterman, and D. Patterson. Roofline: An Insightful Visual
Performance Model for Multicore Architectures. Communications of the ACM,
52(4):65–76, 2009.

[49] C. Yount, J. Tobin, A. Breuer, and A. Duran. YASK – Yet Another Stencil
Kernel: A Framework for HPC Stencil Code-Generation and Tuning. In 2016
Sixth International Workshop on Domain-Specific Languages and High-Level
Frameworks for High Performance Computing, pages 30–39, 2016.

The Real Impact of Modern On-Package Memory on HPC Scientific Kernels SC17, November 12–17, 2017, Denver, CO, USA

A APPENDIX: COMPUTATIONAL RESULTS
ANALYSIS OF KERNELS BENCHMARKED

This artifact comprises the system configuration of the two platforms

with on-package memories, and the source code links, datasets, and

algorithm parameters of the scientific kernels benchmarked in our

SC ’17 paper “Exploring and Analyzing the Real Impact of Modern

On-Package Memory on HPC Scientific Kernels”.

A.1 System Configuration
The two platforms, i.e., Intel Core i7-5775c (Broadwell, BRD for

short) and Xeon Phi 7210 (Knights Landing, KNL for short), are

configured exactly the same.

• Binary: OpenMP executables

• Compilation: GNU gcc v4.9.2; Intel icc v17.0.1

• Runtime environment: Intel Parallel Studio XE v2017.1.043;

Papi v5.5.1 (http://icl.cs.utk.edu/papi/software/view.html?

id=250)

• Operating system: 64-bit CentOS v7.3.1611, Linux kernel

version v3.10.0-514.6.1.el7.x86 64

Note that their hardware configurations are listed in Table 3.

A.2 Scientific Kernels
A.2.1 General Matrix-Matrix Multiplication (GEMM).

• Package name: PLASMA (Parallel Linear Algebra Soft-

ware for Multicore Architectures)

• Publication: Emmanuel Agullo, Jim Demmel, Jack Don-

garra, Bilel Hadri, Jakub Kurzak, Julien Langou, Hatem

Ltaief, Piotr Luszczek, and Stanimire Tomov. Numerical

Linear Algebra on Emerging Architectures: The PLASMA

and MAGMA Projects. Journal of Physics: Conference

Series, 180(1):012037, 2009.

• Source code: https://bitbucket.org/icl/plasma

• Serial BLAS back-end: Intel MKL v2017 Update 1

• Dataset: Dense matrices of given size filled with randomly

generated values

• Executable argument: ./test dgemm --m=msz --n=msz
--k=msz --nb=bsz, where msz is matrix size in ranges

{256 .. 16128 .. 512} and {256 .. 32000 .. 1024} on

BRD and KNL, respectively, and bsz is tiling size in range

{128 .. 4096 .. 128} on both platforms

• Output: Dataset statistics, elapsed execution time, GFLOPs

throughput

A.2.2 Cholesky Decomposition.

• Package name: PLASMA (Parallel Linear Algebra Soft-

ware for Multicore Architectures)

• Publication: Emmanuel Agullo, Jim Demmel, Jack Don-

garra, Bilel Hadri, Jakub Kurzak, Julien Langou, Hatem

Ltaief, Piotr Luszczek, and Stanimire Tomov. Numerical

Linear Algebra on Emerging Architectures: The PLASMA

and MAGMA Projects. Journal of Physics: Conference

Series, 180(1):012037, 2009.

• Source code: https://bitbucket.org/icl/plasma

• Serial BLAS back-end: Intel MKL v2017 Update 1

• Dataset: Dense matrices of given size filled with randomly

generated values

• Executable argument: ./test dpotrf --m=msz --n=msz
--k=msz --nb=bsz, where msz is matrix size in ranges

{256 .. 16128 .. 512} and {256 .. 32000 .. 1024} on

BRD and KNL, respectively, and bsz is tiling size in range

{128 .. 4096 .. 128} on both platforms

• Output: Dataset statistics, elapsed execution time, GFLOPs

throughput

A.2.3 Sparse Matrix-Vector Multiplication (SpMV).

• Package name: Benchmark SpMV using CSR5

• Publication: Weifeng Liu and Brian Vinter. CSR5: An

Efficient Storage Format for Cross-Platform Sparse Matrix-

Vector Multiplication. In Proceedings of the 29th ACM In-

ternational Conference on Supercomputing, ICS ’15, pages

339–350, 2015.

• Source code: https://github.com/bhSPARSE/Benchmark

SpMV using CSR5

• Dataset: 968 matrices (in the matrix market format) from

the University of Florida Sparse Matrix Collection (https:

//www.cise.ufl.edu/research/sparse/matrices/)

• Executable argument: ./spmv matrix.mtx

• Output: Dataset statistics, elapsed execution time, GFLOPs

throughput

A.2.4 Sparse Matrix Transposition (SpTRANS).

• Package name: ScanTrans and MergeTrans (for BRD and

KNL, respectively)

• Publication: Hao Wang, Weifeng Liu, Kaixi Hou, and Wu-

chun Feng. Parallel Transposition of Sparse Data Structures.

In Proceedings of the 2016 International Conference on

Supercomputing, ICS ’16, pages 33:1–33:13, 2016.

• Source code: https://github.com/vtsynergy/sptrans

• Dataset: 968 matrices (in the matrix market format) from

the University of Florida Sparse Matrix Collection (https:

//www.cise.ufl.edu/research/sparse/matrices/). They are

transposed from the CSR to the CSC format.

• Executable argument: export VER=5 for BRD or export

VER=7 for KNL, then ./sptranspose matrix.mtx

• Output: Dataset statistics, elapsed execution time, GFLOPs

throughput

A.2.5 Sparse Triangular Solve (SpTRSV).

• Package name: SpMP (sparse matrix pre-processing li-

brary)

• Publication: Jongsoo Park, Mikhail Smelyanskiy, Narayanan

Sundaram, and Pradeep Dubey. Sparsifying Synchroniza-

tion for High- Performance Shared-Memory Sparse Trian-

gular Solver. In Supercomputing: 29th International Con-

ference, ISC 2014, Leipzig, Germany, June 22-26, 2014.

Proceedings, pages 124–140, 2014.

• Source code: https://github.com/IntelLabs/SpMP

• Dataset: 968 matrices (in the matrix market format) from

the University of Florida Sparse Matrix Collection (https:

//www.cise.ufl.edu/research/sparse/matrices/). Note that a

diagonal is added to any singular matrices in the list to

make them nonsingular, and the lower triangular part (i.e.,

forward substitution) is tested.

• Executable argument: ./trsv test matrix.mtx

SC17, November 12–17, 2017, Denver, CO, USA A. Li et al.

• Output: Dataset statistics, elapsed execution time, GFLOPs

throughput

A.2.6 Stencil.

• Package name: YASK (Yet Another Stencil Kernel)

• Publication: C. Yount, J. Tobin, A. Breuer, and A. Du-

ran. YASK – Yet Another Stencil Kernel: A Framework for

HPC Stencil Code Generation and Tuning. In 2016 Sixth In-

ternational Workshop on Domain-Specific Languages and

High-Level Frameworks for High Performance Computing

(WOLFHPC), pages 30–39, 2016.

• Source code: https://github.com/01org/yask

• Dataset: 3D grid of given size filled with randomly gener-

ated values

• Executable argument: First run make stencil=iso3dfd

arch=hsw (or knl) mpi=1, then run ./stencil-run.sh

-arch hsw (or knl) -nr 1 gridsz -b 64 -bz 96, where

gridsz is 3D grid size in ranges {32× 16× 16 .. 1024×
1024×512 .. 2× size in each step} and {128×64×64 ..

20483 .. 2× size in each step} on BRD and KNL, respec-

tively

• Output: Dataset statistics, elapsed execution time, GFLOPs

throughput

A.2.7 Fast Fourier Transform (FFT).

• Package name: FFTW v3.3.5

• Publication: Matteo Frigo and Steven G Johnson. The

Design and Implementation of FFTW3. Proceedings of the

IEEE, 93(2):216–231, 2005.

• Source code: http://www.fftw.org/download.html

• Dataset: 3D dataset of given size filled with randomly

generated values

• Executable argument: ./bench -s irf(or orf, irb,

orb)sizexsizexsize -opatient -onthreads=8 (for BRD,

or 256 for KNL), where size is 3D dataset size in ranges

{96 .. 592 .. 16} and {96 .. 1088 .. 32} on BRD and KNL,

respectively

• Output: Dataset statistics, elapsed execution time, GFLOPs

throughput

A.2.8 Stream.

• Package name: Stream

• Publication: John D. McCalpin. Memory Bandwidth and

Machine Balance in Current High Performance Computers.

IEEE Computer Society Technical Committee on Computer

Architecture (TCCA) Newsletter, 1995.

• Source code: http://www.cs.virginia.edu/stream/ref.html

• Dataset: Array of given size filled with randomly generated

values

• Executable argument: First compile the code with icc

-O3 -xCORE-AVX2 -ffreestanding -qopenmp -mcmodel=medium

-DSTREAM ARRAY SIZE="arraysz" -DNTIMES="nrun" stream.c

-o stream.omp.AVX2.icc, where arraysz is array size in

ranges {24 .. 224 .. 2× size in each step} and {24 .. 226 ..

2× size in each step} on BRD and KNL, respectively, and

nrun is 2000 for arrays of small sizes and 20 for arrays of

large sizes. Then run ./stream.omp.AVX2.icc

• Output: Dataset statistics, elapsed execution time, GB/s

throughput

A.3 Raw Experimental Results
We uploaded our raw experimental data to a repository at Github.

The link can be found at:

https://github.com/bhSPARSE/opm rawdata.

