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ABSTRACT
Segmented sort, as a generalization of classical sort, orders a batch
of independent segments in a whole array. Along with the wider
adoption of manycore processors for HPC and big data applications,
segmented sort plays an increasingly important role than sort. In
this paper, we present an adaptive segmented sort mechanism on
GPUs. Our mechanisms include two core techniques: (1) a dif-
ferentiated method for di�erent segment lengths to eliminate the
irregularity caused by various workloads and thread divergence;
and (2) a register-based sort method to support N -to-M data-thread
binding and in-register data communication. We also implement
a shared memory-based merge method to support non-uniform
length chunk merge via multiple warps. Our segmented sort mecha-
nism shows great improvements over the methods from CUB, CUSP
and ModernGPU on NVIDIA K80-Kepler and TitanX-Pascal GPUs.
Furthermore, we apply our mechanism on two applications, i.e.,
su�x array construction and sparse matrix-matrix multiplication,
and obtain obvious gains over state-of-the-art implementations.
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1 INTRODUCTION
Sort is one of the most fundamental operations in computer science.
A sorting algorithm orders entries of an array by their ranks. Even
though sorting algorithms have been extensively studied on various
parallel platforms [26, 33, 38, 40], two recent trends necessitate
revisiting them on throughput-oriented processors. �e �rst trend
is that manycore processors such as GPUs are more and more used
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both for traditional HPC applications and for big data processing.
In these cases, a large amount of independent arrays o�en need to
be sorted as a whole, either because of algorithm characteristics
(e.g., su�x array construction in pre�x doubling algorithms from
bioinformatics [15, 44]), or dataset properties (e.g., sparse matrices
in linear algebra [4, 28–31, 42]), or real-time requests from web
users (e.g., queries in data warehouse [45, 49, 51]). �e second
trend is that with the rapidly increased computational power of
new processors, sorting a single array at a time usually cannot fully
utilize the devices, thus grouping multiple independent arrays and
sorting them simultaneously are crucial for high utilization.

As a result, the segmented sort that involves sorting a batch of
segments of non-uniform length concatenated in a single array
becomes an important computational kernel. Although directly
sorting each segment in parallel could work well on multicore CPUs
with dynamic scheduling [39], applying similar methods such as
“dynamic parallelism” on manycore GPUs may cause degraded per-
formance due to high overhead for context switch [14, 43, 46, 48].
On the other hand, the distribution of segment lengths o�en exhibits
the skewed characteristics, where a dominant number of segments
are relatively short but the rest of them can be much longer. In
this context, the existing approaches, such as the “one-size-�ts-all”
philosophy [37] (i.e., treating di�erent segments equally) and some
variants of global sort [3, 10] (i.e., traditional sort methods plus seg-
ment boundary check at runtime), may not give best performance
due to load imbalance and low on-chip resource utilization.

We in this work propose a fast segmented sort mechanism on
GPUs. To improve load balance and increase resource utilization,
ourmethod �rst constructs basic work units composed of adaptively
de�ned elements from multiple short segments of various sizes or
part of long segments, and then uses appropriate parallel strategies
for di�erent work units. We further propose a register-based sort
method to support N -to-M data-thread binding and in-register data
communication. We also design a shared memory-based merge
method to support variable-length chunksmerge viamultiple warps.
For the grouped short and medium work units, our mechanism
does the segmented sort in the registers and shared memory; and
for those long segments, our mechanism can also exploit on-chip
memories as much as possible.

Using segments of uniform and synthetic power-law length
on NVIDIA K80-Kepler and TitanX-Pascal GPUs, our segmented
sort can exceed state-of-the-art methods in three vendor libraries
CUB [37], CUSP [10] and ModernGPU [3] by up to 86.1x, 16.5x,
and 3.8x, respectively. Furthermore, we integrate our mechanism
with two real-world applications to con�rm their e�ciency. For
the su�x array construction (SAC) in bioinformatics, our mecha-
nism results in a factor of 2.3–2.6 speedup over the latest skew-SA
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method [44] with CUDPP [19]. For the sparse matrix-matrix multi-
plication (SpGEMM) in linear algebra, our method delivers a factor
of 1.4–86.5, 1.5–2.3, and 1.4–2.3 speedups over approaches from
cuSPARSE [35], CUSP [10], and bhSPARSE [30], respectively. �e
contributions of this paper are listed as follows:
• We identify the importance of segmented sort on various appli-

cations by exploring segment length distribution in real-world
datasets and uncovering performance issues of existing tools.

• We propose an adaptive segmented sort mechanism for GPUs,
whose key techniques contain: (1) a di�erentiated method for
di�erent segment lengths to eliminate load imbalance, thread
divergence, and irregular memory access; and (2) an algorithm
that extends sorting networks to support N -to-M data-thread
binding and thread communication at GPU register level.

• We carry out a comprehensive evaluation on both kernel level
and application level to demonstrate the e�cacy and generality
of our mechanism on two NVIDIA GPU platforms.

2 BACKGROUND AND MOTIVATION
2.1 Segmented Sort
Segmented sort (SegSort) performs a segment-by-segment sort on
a given array composed of multiple segments. If there is only one
segment, the operation converts into the classical sort problem that
gains much a�ention in the past decades. �us sort can be seen as
a special case of segmented sort. �e complexity of segmented sort
can be

Pp
i=1 ni logni

1, where p is the number of segments in the
problem and ni is length of each segment. Fig. 1 shows an example
of segmented sort, where an array stores a list of keys (integer in
this case) plus an additional array seg ptr used for storing head
pointers of each segment.

4 1 2 11 8 1 6 5

0 3 5 7 seg_ptr

input output
1 2 4 8 11 1 6 5

Segmented sort

Figure 1: An example of segmented sort. It sorts four integer segments of various lengths
pointed by seg ptr.

2.2 Skewed Segment Length Distribution
We use real-world datasets from two applications to analyze the
characteristics of data distribution in segmented sort. �e �rst ap-
plication is the su�x array construction (SAC) from Bioinformatics,
where the pre�x doubling algorithm [15, 44] is used. �is algorithm
calls SegSort to sort each segment in one iteration step, and the
duplicated elements will form another sets of segments for the next
iteration. �is procedure continues until no duplicated element
exists. �e second one is the sparse matrix-matrix multiplication
(SpGEMM). In this algorithm, SegSort is used for reordering entries
in each row by their column indices.

As shown in Fig. 2, the statistics of segments derived from these
two algorithms shares one feature that the small/medium segments
dominate the distribution, where around 96% segments in SpGEMM
and 99% segments in SAC have less than 2000 elements, and the rest
can be much longer but contributes less to the number of entries
in the whole problem. Such highly skewed data stems from either
1For generality, we only focus on comparison-based sort in this work.

(a) Segments from squaring three di�erent matrices in SpGEMM

(b) Segments from the �rst three iterations in SAC
Figure 2: Histogram of segment length changes in SpGEMM and SAC

the input data or the intermediate data generated by the algorithm
at runtime. As a result, the segments of various lengths require
di�erentiate processing methods for high e�ciency. Later on, we
will present an adaptive mechanism that constructs basic work
units composed of multiple short segments of various sizes or part
of long segments, and processes them in a very �ne grained way
for achieving load balance on manycore GPUs.

2.3 Sorting Networks and�eir Limitations
A sorting network consisting of a sequence of independent compar-
isons is usually used as a basic primitive to build the corresponding
sorting algorithm. Fig. 3a provides an example of bitonic sorting
network that accepts 8 random integers as input. Each vertical line
in the sorting network represents a comparison of input elements.
�rough theses comparisons, the 8 integers are sorted.

Although a sorting network provides a view of how to compare
input data, it does not give a parallel solution of how the data are dis-
tributed into multiple threads. A straightforward solution is directly
mapping one element of input data to one GPU thread. However,
this method will waste the computational power of GPU, because
every comparison represented by a vertical line is conducted by two
threads. �is method also leads to poor instruction-level parallelism
(ILP), since the insu�cient operations per thread cannot fully take
advantage of instruction pipelining. �erefore, it is important to
investigate how many elements in a sorting network processed
by a GPU thread can lead to best performance on GPU memory
hierarchy. In this paper, we call it the data-thread binding on GPUs.
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(a) A 8-way bitonic sorting network

rg0
rg1
rg2
rg3

tid=0

rg0
rg0
rg0
rg0

tid=0
tid=1
tid=2
tid=3

1. All-to-one 
data-thread 

binding

2. One-to-one 
data-thread 

binding

(b) Data-thread bindings
Figure 3: One sorting network and existing strategies using registers on GPUs

Fig. 3b presents two examples of using data-thread binding to
realize a part of sorting network shown in Fig. 3a. Fig. 3b-1 shows
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the most straightforward method of simply conducting all the com-
putation within a single thread [3]. �is option can exhibit be�er
ILP but at the expense of requesting too many register resources.
On the contrary, Fig. 3b-2 shows the example to bind one element
to one thread [13]. Unfortunately, this method wastes computing
resources, i.e., the �rst two threads perform the comparison on
the same operands as the last two threads do. �erefore, we will
investigate a more sophisticated solution that allows N -to-M data-
thread binding (N elements binding to M threads) and evaluate
the performance a�er applying this solution to di�erent lengths of
segments on di�erent GPU architectures.

Another related but distinct issue is that even if we know the best
N -to-M data-thread binding for a given segment on a GPU archi-
tecture, how to e�ciently exchange data within/between threads
is still challenging, especially at GPU register level. Di�erent with
the communications via the global and shared memory of GPU that
have been studied extensively, data sharing through registers may
require more research.

3 METHODOLOGY
3.1 Adaptive GPU SegSort Mechanism
�e key idea of our SegSort mechanism is to construct relatively
balanced work units to be consumed by a large amount of warps
(i.e., a group of 32 threads in NVIDIA CUDA semantics) running on
GPUs. Such work units can be a combination of multiple segments
of small sizes, or part of a long segment split by a certain interval.
To prepare the construction, we �rst group di�erent lengths of
segments into di�erent bins, then combine or split segments for
making the balanced work units, �nally apply di�erentiated sort
approaches in appropriate memory levels to those units.

Speci�cally, we categorize segments into four types of bins as
shown in Fig. 4: (1) A unit bin, which segments only contain 1 or 0
element. For these segments, we simply copy them into the output
in the global memory. (2) Several warp bins, which segments are
short enough. In some warp bins, a segment will be processed
by a single thread, while in others, a segment will be handled by
several threads, but a warp of threads at most. �at way, we only
use GPU registers to sort these segments. �is register-based sort
is called reg-sort (Sec. 3.2), which allows the N -to-M data-thread
binding and data communication between threads. Once these
segments are sorted in registers, we write data from the registers to
the global memory, and bypass the shared memory. To achieve the
coalesced memory access, the sorted results may be wri�en to the
global memory in a striped manner a�er an in-register transpose
stage (Sec. 3.4). (3) Several block bins, which consist of medium
size segments. In these bins, multiple warps in a thread block
cooperate to sort a segment. Besides of using the reg-sort method
in GPU registers, a shared memory based merge method, called
smem-merge, is designed to merge multiple sorted chunks from
reg-sort in a segment (Sec. 3.3). A�er that, the merged results will
be wri�en into the output array from the shared memory to the
global memory. As shown in the �gure, the number of warps
in the thread block is con�gurable. (4) A grid bin, designed for
the su�cient long segments. For these segments, multiple blocks
work together to sort and merge data. Di�erent with the block
bins, multiple rounds of smem-merge have to move data back

and forth between the shared memory and the global memory to
process these extremely long segments. In each round of calling
smem-merge, the synchronization betweenmultiple thread blocks
is necessary: a�er the execution of reg-sort and smem-merge in
each block, intermediate results need to be synchronized across
all cooperative blocks via the global memory [47]. A�er that, the
partially sorted data will be repartitioned and assigned to each
block by using a similar partitioning method in smem-merge, and
utilizing inter-block locality will in general further improve overall
performance [27].

unit-bin warp-bin block-bin grid-bin

Segments (seg_ptr & input)

w

Global memory: sorted segments (output)

… … … … … … … … … …

w
w w w w w w w w

b bb bt

… …

t t t

t = thread
w = warp
b = block

ww

reg-sort

smem-mergestriped-write

Figure 4: Overview of our GPU Segsort design

As shown in Fig. 4, the binning is the �rst step of our mecha-
nism and a speci�c requirement of segmented sort compared to
the standard sort. It is crucial to design an e�cient binning ap-
proach onGPUs. Such an approach usually needs carefully designed
histogram and scan kernels, such as those proposed in previous
research [25, 47]. We adopt a simple and e�cient “histogram-scan-
bin” strategy generating the bins across GPU memory hierarchy.
We launch a GPU kernel which number of threads is equal to the
number of segments. Each thread will process one element in the
segs ptr array. Histogram: each thread has a boolean array as the
predicates and the array length is equal to the number of total
bins. �en, each thread calculates its segment length from segs ptr
and sets the corresponding predicate to true if the segment length
is in the current bin. A�er that, we use the warp vote function
ballot() and the bit counting function popc() to accumulate

the predicates for all threads in a warp for the warp-level histogram.
Finally, the �rst thread of each warp atomically accumulates the bin
sizes in the shared memory to produce the block-level histogram,
and a�er that the �rst thread in each block does the same accumu-
lation in the global memory to generate the �nal histogram. Scan:
We use an exclusive scan on the histogram bin sizes to get starting
positions for each bin. Binning: all threads put their corresponding
segment IDs to positions atomically obtained from the scanned
histogram. With such highly e�cient designs, the overhead of
grouping is limited and will be evaluated in Sec. 4.2.

3.2 Reg-sort: Register-based Sort
Our reg-sort algorithm is designed to sort data in GPU registers
for all bins. As a result, our method needs to support N -to-M
data-thread binding, meaning M threads cooperate on sorting N
elements. In order to leverage GPU registers to implement fast data
exchange for sorting networks,M is set up to 32, which is the warp
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size. For the medium and long segments where multiple warps are
involved, we still use reg-sort to sort each chunk of a segment and
use smem-merge to merge these sorted chunks. On the other hand,
although our method theoretically supports any value of N , N is
bound to the number of registers: if N is too large, the occupancy
is degraded signi�cantly because too many registers are used.

rg0
rg1
rg0
rg1

tid=0

① _shuf_xor(rg1, 0x1);  // Shuffle data in rg1
② cmp_swp(rg0, rg1);      // Compare data of rg0 & rg1 locally
③ if( bfe(tid,0) ) swp(rg0, rg1);   // Swap data of rg0 & rg1 if 0 bit of tid is set
④ _shuf_xor(rg1, 0x1);  // Shuffle data in rg1

① ② ③ ④

_exch_primtive(rg0,rg1,tmask,swbit): 

tid=1

rg0(4)
rg1(3)
rg0(2)
rg1(1)

(4)
(3)
(2)
(1)

(1)
(2)
(3)
(4)

(4)
(1)
(2)
(3)

(1)
(4)
(2)
(3)

(1)
(4)
(3)
(2)

(1)
(2)
(3)
(4)

_exch_primtive(rg0,rg1,0x1,0) 

Figure 5: Primitive communication pattern and its implementation

Fig. 5 shows the data exchange primitive in the bitonic sorting
network 3a with the details of implementation on GPU registers
by using shu�e instructions. In this example, each thread holds
two elements as the input: the thread 0 has 4 and 3 in its register
rg0 and rg1; and the thread 1 has 2 and 1 accordingly. �is situ-
ation corresponds to a 4-to-2 data-thread binding. �e primitive
is implemented in four steps. First, each thread needs to know
the communicating thread by the parameter tmask. �e line 12
of Alg. 1 shows how to calculate its value, which is equal to the
current cooperative thread group size minus 1. In this example, M
is 2 because there are two threads in a cooperative group, and tmask
is 1 (represented as 0x1 in the �gure). �is step uses the shu�e in-
struction shfl xor(rg1, 0x1)

2 to shu�e data in rg1: the thread
0 gets data from the rg1 of thread 1, and similar to the thread 1. �is
step makes the data changed from “4, 3, 2, 1” to “4, 1, 2, 3”. Second,
each thread will compare and swap data in rg0 and rg1 locally to
change the data to “1, 4, 2, 3”. A�er the second step, the rg0 in
each thread has the smaller data and the rg1 has the larger one.
�us, the third step is necessary to exchange the data in thread 1 to
make the smaller data in its rg1 and the larger data in it rg0 for the
following shu�e, because the shu�e instruction can only exchange
data in registers having the same variable name, i.e., rg1. In a more
general case where there are more threads are involved, we use the
parameter swbit to control which threads need to execute this local
swap operation. �e line 13 of Alg. 1 shows how to calculate the
value of swbit, which is equal to log coop thrd size� 1. In this case,
the current cooperative thread group size is 2, the swbit is 0, and
the thread 1 will do the swap when bfe(1, 0) returns 1. A�er the
third step, we get “1, 4, 3, 2”. Fourth, we shu�e again on rg1 to
move the larger data of thread 0 to thread 1 and the smaller data of
thread 1 to thread 0, and then get the output “1, 2, 3, 4”.

Based on the primitive, we extend two pa�erns of the N -to-M
binding to implement the bitonic sorting network, which are (1)
exch intxn: �e di�erences of corresponding data indices for com-
parisons decrease as the register indices increase in the �rst thread.
(2) exch paral: �e di�erences of corresponding data indices for
comparisons keep consistent as the register indices increase in the
�rst thread. �e le� hand sides of Fig. 6a and Fig. 6b show these
2�e shu�e operation shfl xor(v, mask) lets the calling thread x obtain register
data v from thread x ˆ mask, and the operation shfl(v, y) lets the calling thread x

fetch data v from thread y.

two pa�erns. In these �gures, each thread handling k elements,
where k = N /M of the N -to-M data-thread binding. �ese two
pa�erns can be easily constructed from the primitive exch primitive
by simply swapping corresponding registers in each thread locally
as shown in the right hand side of Fig. 6a and Fig. 6b. Di�erent
with these two pa�erns involving the inter-thread communication,
a third pa�ern in the N -to-M data-thread binding only has the
intra-thread communication. As shown in Fig. 6d, we can directly
use the compare and swap operation for the implementation with-
out any shu�e-based inter-thread communication. We call this
pa�ern exch local. �is pa�ern can be an extreme case of N -to-M
binding, i.e., N -to-1, where the whole sorting network is processed
by one thread. All of these three pa�erns are used in Alg. 1 to
implement a general N -to-M binding and the corresponding data
communication for the bitonic sorting network.

Algorithm 1: Reg-sort: N -to-M data-thread binding and communication for bitonic sort

/* segment size N, thread number M, workloads per thread wpt = N/M,

r e�List is a group of wpt registers. */

1 int p = (int) logN;
2 int pt = (int) logM;
3 for l  p; l >= 1; l -- do
4 int coop elem num = (int)pow (2, l � 1);
5 int coop thrd num = (int)pow (2,min (pt, l � 1));
6 int coop elem size = (int)pow (2, p � l + 1);
7 int coop thrd size = (int)pow (2, pt �min (pt, l � 1));
8 if coop thrd size == 1 then
9 int rmask = coop elem size � 1;
10 exch local(regList, rmask);
11 else
12 int tmask = coop thrd size � 1;
13 int swbit = (int) log coop thrd size � 1;
14 exch intxn(regList, tmask, swbit);
15 for k  l + 1; k <=p; k + + do
16 int coop elem num = (int)pow (2, k � 1);
17 int coop thrd num = (int)pow (2,min (pt, k � 1));
18 int coop elem size = (int)pow (2, p � k + 1);
19 int coop thrd size = (int)pow (2, pt �min (pt, k � 1));
20 if coop thrd size == 1 then
21 int rmask = coop elem num � 1;
22 rmask = rmask � (rmask >> 1);
23 exch local(regList, rmask);
24 else
25 int tmask = coop thrd num � 1;
26 tmask = tmask � (tmask >> 1);
27 int swbit = (int)lo�coop thrd size � 1;
28 exch paral(regList, tmask, swbit);

�e pseudo-codes are shown in Alg. 1, which essentially com-
bine exch intxn and exch paral pa�erns (ln. 14 and ln. 28) in each
iteration, and use exch local when no inter-thread communication
is needed. In each step where all comparisons can be performed in
parallel, we group data elements as coop elem num, representing
the maximum number of groups that the comparisons can be con-
ducted without any interaction with elements in other group (ln. 4
and ln. 16); and the coop elem size represents how many elements
in each group. For example, in the step 1 of Fig. 6d, the data is put
into 4 groups, each of which has 2 elements. �us, coop elem num
is 4 and coop elem size is 2. In the step 4 of this �gure, there is
only 1 group with the size of 8 elements. �us, coop elem num is 1
and coop elem sizeis 8. Similarly, the algorithm groups threads into
coop thrd num and coop thrd size for each step to represent the
maximum number of cooperative thread groups and the number
of threads in each group. For example, the step 1 of Fig. 6d has
4 cooperative thread groups and each group has 1 thread. �us,
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(a) exch intxn pattern
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(b) exch paral pattern
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_exch_local(rg0, rg1,…,rgk-1,rmask):

t0

t1

(c) exch local pattern

reg_sort(N=8,M=4)

①_exch_local(rg0,rg1);
②_exch_intxn(rg0,rg1,0x1,0);
③_exch_local(rg0,rg1);
④_exch_intxn(rg0,rg1,0x3,1);
⑤_exch_paral(rg0,rg1,0x1,0);
⑥_exch_local(rg0, rg1);

t0
rg0
rg1
rg0
rg1
rg0
rg1
rg0
rg1

t1

t2

t3

① ② ③ ④ ⑤ ⑥

(d) An example of bitonic sorting where N = 8 andM = 4
Figure 6: Generic exch intxn, exch paral and exch local patterns, shown in (a,b,c). �e transformed patterns can be easily implemented by using primitives. A code example of Alg. 1 for is
shown in (d)

coop thrd num is 4 and coop thrd size is 1. In contrast, the step 4,
coop thrd num is 1 and coop thrd size is 4 that means the 4 threads
need to communicate with each other to get required data for the
comparisons in this step.

If there is only one thread in a cooperative thread group (ln. 8
and ln. 20), the algorithm will switch to the local mode exch local
because the thread already has all comparison operands. Once
there are more than one thread in a cooperative thread group, the
algorithm uses exch intxn and exch paral pa�erns and calculates
corresponding tmask and swbit to determine the thread for the
communication pair and the thread that needs the local data re-
arrange aforementioned in the previous paragraph. In the step 1
of this �gure, where coop thrd size is 1 and exch local is executed,
the algorithm calculates rmask, which controls the local compar-
ison on registers (ln. 9). In the step 4, where coop elem size is 8
and coop thrd size is 4, all 8 elements will be compared across all
4 threads. In this case, the tmask is 0x3 (ln. 12) and swbit is 1
(ln. 13). In the step 5 where the exch paral pa�ern is used, the algo-
rithm calculates coop elem size is 4 and coop thrd size is 2. �us,
the tmask is 0x1 and swbit is 0. Note that although our design in
Alg. 1 is for bitonic sorter, our ideas are also applicable to other
sorting networks by swapping and padding registers based on the
primitive pa�ern.

3.3 Smem-merge: Shared Memory-based Merge
As shown in Fig. 4, for medium and large sized segments in the
block bins and grid bin, multiple warps are launched to handle one
segment and the sorted intermediate data from each warp need to
merge. �e smem-merge algorithm is designed to merge such data
in the shared memory.

Our smem-mergemethod enablesmultiplewarps tomerge chunks
having di�erent numbers of elements. We assign �rst m warps
with x-warp size and the lastm0 warps with �-warp size to keep
load balance between warps as possible as we can. Inside each
warp, we also try to keep balance among cooperative threads in the
merge. We design a searching algorithm based on the MergePath
algorithm [17] to search the spli�ing points to divide the target
segments into balanced partitions for each threads.

Fig. 7 shows an example of smem-merge. In this case, there are 4
sorted chunks in the shared memory belonging to a segment. �ey
have 4, 4, 4, and 5 elements, respectively. We assume each warp
has 2 threads. As a result, the �rst 3 warps will merge 4 elements,
and each thread in these warps will merge two elements; while
the last warp will work on 5 elements, and the �rst thread will
merge 2 elements and second thread will merge 3 elements. In the

smem_merge(4,spA,spB) smem_merge(5,spA,spB)

spA spBStage0

t0 = smem[spA];
t1 = smem[spB];
// Repeat …
p = (spB >= lenB) || 

((spA < lenA) && (t0 <= t1));
rg0 = p ? t0 : t1;
if(p) t0 = smem[++spA];
else t1 = smem[++spB];
// … for registers rg1, rg2

smem_merge(5,spA,spB): 
1st thread merges 2 data
2nd thread merges 3 data2 4 6 8 1 12 14 17 3 5 9 15 7 10 11 13 16

Warp 0

(shared)
inp

Warp 1 Warp 2 Warp 3

1 2 4 6 8 12 14 17 3 5 7 9 10 11 13 15 16

Stage1
1 2 4 6 8 12 14 17 3 5 7 9 10 11 13 15 16

spA spB

(shared)
out

(shared)
inp

(global)
out

smem_merge(4,spA,spB) smem_merge(5,spA,spB)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

lenA lenB

lenA lenB

Figure 7: An example of warp-based merge using shared memory

�gure, the spli�ing points spA and spB for the second thread of
warp 3 (in blue color) are computed by the MergePath algorithm.
�e right part of the �gure shows the merge codes executed by
this thread that process 3 elements. Our merge method �rst loads
data from spA and spB to two temporary registers t0 and t1. By
checking if spA and spB is out-of-bound and comparing t0 and t1,
the merge algorithm selects the smaller element to �ll �rst result
register rg0. �e algorithm continues loading the next element
to �ll t0 or t1 from corresponding chunks pointed by spA or spB,
until assigned number of elements is encountered. A�er that, the
merged data in registers, e.g., rg0, rg1 for �rst thread, and rg0, rg1,
rg2 for the second thread, will be stored back to shared memory for
another iteration of merge. As shown in the �gure, two iterations
of smem-merge are used to merge four chunks belonging to one
segment.

3.4 Other Optimizations
Load data from global memory to registers: we decouple the
data load from global memory to registers and the actual segmented
sort in registers. Our data load kernel uses successive threads to
load contiguous data for coalesced memory access. Although we
don’t keep the original global indices of input data in registers, that
doesn’t ma�er because the input data is unsorted and the global
indices are not critical for the following sort routine.

1 2
3 4
5 6
7 8

1 2
4 3
5 6
8 7

swap

1 3
4 2
5 7
8 6

shuf_xor(rg1,0x1)

1 3
2 4
5 7
6 8

1 3
2 4
7 5
8 6

swap swap

1 5
2 6
7 3
8 4

shuf_xor(rg1,0x2)

swap

input

rg0 rg1

t0

t1

t2

t3

exchange exchange

1 5
2 6
3 7
4 8

output

Stride=1 Stride=2

Figure 8: An example of in-register transpose

Store data from registers to global memory: when the seg-
ments in the warp bins are sorted, we directly store them back to
global memory without the merge stage. However, because the
sorted data may distributed into di�erent registers of threads in a
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Figure 9: Performance of reg-sort routines with di�erent combinations of data-thread binding policies, write methods, and block sizes

warp, directly storing them back will lead to uncoalesced memory
access. When the number of elements per thread grows, the situ-
ation will become even worse. �erefore, as well as keeping the
direct store back method, which is labeled as orig in our evaluation,
we design the striped write method, which is labeled as strd in
the evaluation. We implement an in-register transpose method to
sca�er the sorted data in registers of threads. �e transpose method
starts from shu�ing registers by the stride of 1, then doubles the
stride to 2, and �nishes the shu�es until log 32 = 5 iterations,
where 32 is the warp size. A�er that, the successive threads can
write data to global memory in a cyclic manner for coalesced mem-
ory access. Fig. 8 shows an example of using 4 threads to transpose
data in their two registers. �is example shows that the number
of iterations for the in-register transpose depends on the number
of threads but not on the number of elements each thread has3.
As a result, a�er log 4 = 2 iterations, the successive elements are
sca�ered to these threads. In the evaluation, we will investigate the
best scenarios for orig and strd, considering the orig method has
the uncoalesced memory access problem, while the strid method
has the in-register transpose overhead.

4 PERFORMANCE RESULTS
We conduct the experiments on two generations of NVIDIA GPUs
K80-Kepler and TitanX-Pascal. Tab. 1 lists the speci�cations of
the two platforms. �e input dataset is two arrays holding key
and value pairs separately. �e total dataset size is �xed at 228
and segment numbers are varied accordingly to the target segment
sizes. We report the throughput in the experiments equal to 228/t
pairs/s, where t is the execution time.

Table 1: Experiment Testbeds
Tesla K80 (Kepler-GK210) TitanX (Pascal-GP102)

Cores 2496 @ 824 MHz 3584 @ 1531 MHz
Register/L1/LDS per core 256/16/48 KB 256/16/48 KB
Global memory 12 GB @ 240 GB/s 12 GB @ 480 GB/s
So�ware CUDA 7.5 CUDA 8.0

3�e number of elements each thread has will determine howmany shu�e instructions
are needed in each iteration.

4.1 Kernel Performance
For the reg-sort kernels, we alternate the thread group size M in
{2, 4, 8, 16, 32}. At the same time, each thread varies its bound data
N /M in {1, 2, 4, 8, 16} (N /M is labeled as pairs per thread ppt in
�gures). We use the maximum bound data of 16 because we observe
the performance deteriorates obviously for higher numbers than
16. �us, the target segment size N is a variable number ranging
from 2 (i.e., 2 threads each bind 1 pair) to 512 (i.e., 32 threads each
bind 16 pairs). Since reg-sort might exhaust register resources, we
also vary the block sizes as 64, 128, 256, and 512 for maximizing
occupancy. Fig. 9 shows the diversi�ed performance numbers of
reg-sort kernels, which actually demonstrates that choosing a single
solution for all segments would lead to suboptimal performance
even among GPUs from the same vendor.

In Fig. 9, we notice that the impact of data-thread binding poli-
cies varies widely depending on the GPU devices. For example,
when the segment size N equals to 16, the possible candidates are
2(threads):8(ppt), 4:4, 8:2, and 16:1. On K80-Kepler GPU, the high-
est performance is given by 8:2, achieving 30% speedups over the
slowest policy of 2:8. In contrast, the TitanX-Pascal GPU shows
very similar performance for these policies. �is insensitivity to
register resources exhibited on Pascal architecture can contribute
to its larger available register �les per thread. Note, the policies of
each thread binding only 1 pair is equivalent to the method pro-
posed in [13]. �is method actually wastes computing resources,
because each comparison over two operands is conducted twice by
two threads, resulting in suboptimal performance numbers.

�e striped write method (strd) in reg-sort kernels is particularly
e�ective when each thread binds more than 4 pairs. �is is because
when the ppt is small (<4), consecutive threads can still access
almost consecutive memory locations for coalesced memory trans-
action. However, larger ppt indicates the thread access locations are
highly sca�ered, causing ine�ciently memory transaction instead.
In this case, the striped write method is of great necessity. On the
other hand, the block size also has the e�ect on the performance
and the optimal one is usually achieved by using 128 or 256 threads.

For the smem-merge kernels, Fig. 10 shows the performance
numbers of changing the number of cooperative warps and ppt. �e
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warp numbers are in {2, 4, 8, 16}, while the ppt varies among {2, 4, 8,
16}. In this scenario, the target segment size N ranges from 128 (i.e.,
2 warps each merge 32x2 pairs) to 4096 (i.e., 16 warps each merge
32x8 pairs). Di�ered from reg-sort kernels, the best data-thread
binding policies are more consistent for smem-merge on the two
devices. For example, to merge 1024-length segment, both devices
prefer to use 8 warps with 4 ppt. Considering memory access, the
striped method provides similar performance with original method,
which directly exploits random access of shared memory in order
to achieve coalesced transaction on global memory. Note, in our
implementation, we carefully select shared memory dimensions
and sizes to avoid band con�icts.

Now, we can select best kernels for di�erent segments with
length of the power of two. Other segments can be handled by
directly padding them to the nearest upper power of two in reg-sort
kernels. For smem-merge kernels, we use di�erent ppt for di�erent
warps to minimize padding values. Since our method is based on the
pre-de�ned sorting networks, the characteristics of input datasets
will cause negligible to the selection of best kernels. Moreover, for
each GPU, we only need to conduct the o�ine selection once. �e
results show that we only need 13 bins to handle all the segments.
�e �rst 8 and 9 bins use reg-sort to handle up to 256 pairs on Kepler
GPU and 512 on Pascal respectively. �en, other segments less than
2048 can be handled by smem-merge kernels using 3 and 2 bins on
the two platforms. Finally, our grid-bin kernels can e�ciently sort
the segments longer than 2048, which are all assigned to the last
bin.
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Figure 10: Performance of smem-merge routines with di�erent combinations of data-
thread binding policies and write methods. �e results for 16 warps with 16 ppt are not
available due to exhaustion of shared memory resources

4.2 Segmented Sort Performance
We conduct performance comparison of our best kernels over three
existing tools: (1) cusp-segsort from CUSP [10] library that extends
the segment pointer seg ptr to form an another layer of primary
keys, a�aches it to the input keys and values, and performs the
global sort from�rust library [20] on the new data structure; (2)
cub-segsort [37] that assigns each block to order a segment and uses
radix sort scheme; and (3) mgpu-segsort [3] that evolves from the

global merge sort with runtime segment delimiter checking, thus
can ensure the sort only occurs within segment.

Datasets of uniform distribution: We test a batch of uniform
segments to evaluate the performance of our segsort kernels, which
are plo�ed in Fig. 11. Since the cusp-segsort and mgpu-segsort are
designed from the global sort, their performance is determined by
the total input size. �is “one-size-�t-all” philosophy ignores the
characteristics of the segments and thus shows the plateau perfor-
mance. For the short segments (<256 on Kepler and <512 on Pas-
cal), our segsort can achieve an average of 13.4x and 3.1x speedups
over cusp-segsort and mgpu-segsort respectively on Kepler. �ese
speedups rise to 15.5x and 3.2x on Pascal. For the other segments,
our segsort provides an average of 5.6x and 1.2x improvements on
Kepler (10.0x and 2.1x on Pascal). �e performance improvements
are mainly from our reg-sort and smem-merge, which minimize
shared/global memory transactions.
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(c) TitanX-Pascal: lhs is 32-bit values; rhs is 64-bit values
Figure 11: Performance of di�erent segsort over segments with uniform distribution

In contrast, although cub-segsort conducts a more “real” seg-
mented sort with each block working on one segment, this strategy
falls short when the segments are of great amount and of short
lengths. �e maximum number of segments can be processed in par-
allel in cub-segment is only 65535 (limitation of gridDim.x), which
requires multiple rounds of calling if the segment number is too
large. Furthermore, assigning a block to handle one segment may
waste computing resources severely, especially when the segments
are very short. �us, our segsort can achieve an average of 211.2x
and 30.4x speedups on Kepler and Pascal devices respectively. As
the segment size increases, we can still keep 3.7x and 3.2x aver-
age improvements on the two platforms. Note, the staircase-like
performance of our segsort is caused by the padding used in our
method.

Datasets of power-law distribution: In this test, we use a col-
lection of synthetic power-low data. Since segment lengths are non-
uniform, we include binning overhead and use overall wall time for
our segsort. �e data generation tool is from PowerGraph [16] and
its generated samples follow a Zipf distribution [1]. �e equation
of P (l ) / l�� shows the probability of segments with length l is
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proportional to l�� , where � is a positive number. �is implies that
the higher � will result in high skewness to shorter segments. For
di�erent segment bounds, we vary the skewness to test our segsort.
We vary � from 0.1 to 1.6 (with stride of 0.1) and limit maximum
segment size from 50 to 2000 (with stride of 50). �erefore, each
method is tested with 640 sampling points of di�erent parameter
con�gurations.

Fig. 12 plots the speedups of our segsort over the existing tools on
both 32-bit and 64-bit values. For cusp-segsort and mgpu-segsort,
we �x the total key-value pairs as 228. However, for the cub-segsort,
we set the segment number to 65535. Otherwise, multiple rounds of
calling are required. Fig. 12(a,b) show the speedups of our segsort
over the cub-segsort. Because of high cost for radix sort on short
segments, our segsort can provide signi�cant speedups, reaching
up to 63.3x and 86.1x (top-le� corner). For longer segment lengths
with power-law distribution, our method can keep 1.9x speedups
on both GPU devices due to be�er load balancing strategy.

Compared to cusp-segsort in Fig. 12(c,d), our segsort achieves
up to 12.5x and 16.5x improvements on Kepler and Pascal, and
compared with mgpu-segsort in Fig. 12(e,f), our method gets up
to 3.0x and 3.8x performance gains. In both situations, we can
notice that the top-le� corners are blue, indicating less speedups
(vs. cusp-segsort) or similar performance (vs. mgpu-segsort). �is
is because that the condition of � = 1.6 and segment bound of 50
make almost all the segments to be 1. �us, the segmented sorts
become a copying procedure and exhibit the similar performance.
On the other hand, we observe that the Pascal shows higher per-
formance bene�ts over Kepler. �e reasons are two-fold: faster
atomic operations for binning and larger register �les for sorting.
Moreover, for the 64-bit values, we usually get higher performance
gains compared to 32-bit values. �is is mainly because we can
handle the permutation indices more e�ciently in the registers
rather than the shared memory or global memory. To evaluate the
binning overhead, we calculate the arithmetic mean for the ratio of
binning to overall kernel time, which are only 5.9% for Kepler and
3.4% for Pascal.

5 SEGSORT IN REAL-WORLD APPLICATIONS
In order to further evaluate our approach, we choose two real-world
applications, characterized by skewed segment distribution: (i) �e
su�x array construction to solve problems of pa�ern matching,
data compression, etc. in text processing and bioinformatics [15, 44].
(ii)�e sparse general matrix-matrix multiplication (SpGEMM) to
solve graph and linear solver problems, e.g., sub-graphs, shortest
paths, and algebraic multigrid [4, 8, 41]. We use our approach
to optimize the applications and compare the results with state-
of-the-art tools, i.e., skew/DC3-SA [19, 44], ESC(CUSP) [4, 10],
cuSPARSE [35], and bhSPARSE [30].

5.1 Su�x Array Construction
�e su�x array stores lexicographically sorted indices of all su�xes
of a given sequence. Our approach for the su�x array construction
is based on the pre�x doubling algorithm [32] with the computa-
tional complexity of O (Nlo�(N )), where N is the length of input
sequence. �e main idea is that we can deduce the orders of two
same 2h-size strings Si and Sj , if the orders of all h-size strings
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(a) K80-Kepler: speedups over
cub segsort (32- and 64-bit values)
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(b) TitanX-Pascal: speedups over
cub segsort (32- and 64-bit values)
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(c) K80-Kepler: speedups over
cusp segsort (32- and 64-bit values)
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(d) TitanX-Pascal: speedups over
cusp segsort (32- and 64-bit values)
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(e) K80-Kepler: speedups over
mgpu segsort (32- and 64-bit values)
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(f) TitanX-Pascal: speedups over
mgpu segsort (32- and 64-bit values)

Figure 12: Segmented sort v.s. existing tools over segments of power-law distribution

are known, which is stored in an un�nished su�x array h-SA. For
example, we treat Si as two concatenated h-size pre�xes Sia and
Sib . Similarly, Sj is split into two Sja and Sjb . �en, by looking up
the known h-SA, the comparison rule for Si and Sj becomes: if the
pre�x Sia di�ers from Sja , we can directly determine the order of
Si and Sj accordingly; otherwise, we need to check the order of Sib
and Sjb . �at way, if they are di�erent, the order of Si and Sj can
also be induced. However, if they are same, we have to mark Si and
Sj unsolved and put them under the same category (i.e., updating
h-SA to 2h-SA with position i and j storing the same value). �e or-
dering will proceed for O (lo�(N )) iterations by doubling the pre�x
length. �is is a segmented sort with the customized comparison,
and a segment corresponds to a category that contains a group of
su�xes whose orders are not determined.

We use our method to optimize the pre�x doubling, i.e., PDSS-
SA, and use the baseline from the cuDPP library [19], which is
based on the DC3/skew algorithm on GPUs [44]. Fig. 13 presents
the performance comparison over six DNA sequences of di�erent
lengths from NCBI NR datasets [34]. Our PDSS-SA can provide
up to 2.2x and 2.6x speedups over the baseline on the K80-Kepler
and TitanX-Pascal platforms, respectively. �e improvement can
be explained in two folds. First, although the baseline takes a
linear time algorithm, the pre�x doubling exhibits more ease of
performing parallelization, e.g., global radix sort, pre�x sum, etc.
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Second, for the dominant kernels (taking up 30% to 60% of total
time), we use e�cient segmented sort to handle the considerable
amounts of short segments iteratively, while the baseline uses more
expensive sort and merge kernels recursively.
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Figure 13: Performance of su�x array construction using our segmented sort

5.2 Sparse Matrix-Matrix Multiplication
�e SpGEMM operation multiplies a sparse matrix A with another
sparse matrix B and obtains a resulting sparse matrixC . �is opera-
tion may be the most complex routine in sparse basic linear algebra
subprograms because all the three involved matrices are sparse. �e
expansion, sorting and compression (ESC) algorithm developed by
Bell et al. [4] is one of several representative methods that aim to uti-
lize wide SIMD units for accelerating SpGEMM on GPUs [4, 30, 35].
�e ESC method includes three stages: (1) expanding all candidate
nonzero entries generated by the necessary arithmetic operations
into an intermediate sparse matrix DC , (2) sorting DC by its indices of
rows and columns, and (3) compressing DC into the resulting matrix
C by fusing entries with duplicate column indices in each row.

We use the ESC SpGEMM in the CUSP library [10] as the base-
line, and replace its original sort in the second stage of its ESC
implementation with our segmented sort by mapping row-column
information of the intermediate matrix DC to segment-element data
in the context of segmented sort. Since we have segmented sort
instead of sort in the ESC method, we call our method ESSC (ex-
pansion, segmented sorting and compression). Note that to be�er
understand the e�ectiveness of segmented sort for SpGEMM, all
other stages of the SpGEMM code remain unchanged. We select
six widely used sparse matrices cit-Patents, email-Enron, rajat22,
webbase-1M, web-Google and web-NotreDame from the University
of Florida Sparse Matrix Collection [12] as our benchmark suite.
Squaring those matrices will generate a DC including rows in power-
law distribution. We also include two state-of-the-art SpGEMM
methods in cuSPARSE [35] and bhSPARSE [30] into our comparison.

Fig. 14 plots the performance of the four participating methods.
It can be seen that our ESSC method achieves up to 2.3x and 1.9x
speedups over the ESC method on the Kepler and Pascal archi-
tectures, respectively. �e performance gain is from the fact that
the sorting stage takes up to 85% (from 45%) overall cost of ESC
SpGEMM, and our segmented sort is up to 8x (from 3.2x) faster than
the sort method used in CUSP. Compared with the latest libraries
cuSPARSE and bhSPARSE, our ESSC method brings performance
improvement of up to 86.5x and 2.3x, respectively. �e performance
gain is mainly from the irregularity of the row distribution of DC .
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Figure 14: Performance of SpGEMM using our segmented sort

6 RELATEDWORK
�e sorting kernel has received much a�ention due to the perva-
sive need to order data in a plethora of applications. It has been
parallelized and optimized on x86-based architectures [9, 22] and
GPUs [26, 33, 38, 38, 40]. Several optimized sort implementations
have been included in vendor supplied libraries, e.g., cuDPP [19],
�rust [20], ModernGPU [3], and CUB [37]. �ese methods mainly
focus on the global sort over a complete input array, and extend
the global sort for segmented sort with sub-optimal performance.

Speci�cally, current GPU segmented sort solutions fail to take
advantage of both data distribution and architecture, because most
of them [10, 15, 37] adopt a “one-size-�ts-all” philosophy that treats
di�erent segments equally. �e mechanisms in [10, 15] sort the
whole array a�er extending input with segment IDs as primary
keys, which will consume extra memory space and result in an
increased computational complexity. Another mechanism [37] uses
one thread block to handle a segment, no ma�er how di�erent
the segments are. It will give rise to some de�ciencies when pro-
cessing a numerable batch of short segments, due to the resource
under-utilization. Many GPU applications [30, 44, 50] reformulate
the segmented sort problem in terms of global sort and call APIs
supported by libraries, sacri�cing the bene�ts of segmentation.

�ere are many research e�orts aimed at designing parallel
solutions for a large amount of small independent problems via
segmented data structure, e.g., segmented scan [6], segmented
sum [7, 31], and batched BLAS [18] in the MAGMA library [2].
Due to their high cost for global operations and “one-size-�ts-all”
execution pa�ern, we believe our methods can be applied on these
segmented problems to improve their performance.

Many studies investigate the data-level parallelism on x86-based
systems [21, 23, 36, 42]. Correspondingly, several studies have il-
lustrated the bene�ts of using registers to improve performance
on GPUs. Demouth [13] has presented a set of shu�e based ker-
nels, e.g., the bitonic sort; while this method maps an element to a
thread, leading to the waste of computing resource and the poor
ILP. Ben-Sasson et al. [5] proposes a fast multiplication in binary
�eld by using registers as cache. Hou et al. [24] use registers for
stencil applications on both AMD and NVIDIA GPUs. Davidson
and Owens [11] use registers to speedup a downsweep pa�erned
computation. Distinguished from the above work, our method is
more general to support the N -to-M data-tread binding and can be
extended to support other kernels using GPU registers.
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7 CONCLUSION
In this paper, we have presented an e�cient segmented sort mecha-
nism that adaptively combine or split segments of di�erent sizes for
load balanced processing on GPUs, and have proposed a register-
based sort algorithm with N -to-M data-thread binding and in-
register communication for fast sorting networks on multiple mem-
ory hierarchies. �e experimental results illustrate that our mech-
anism is greatly faster than existing segmented sort methods in
vendor support libraries on two generations of GPUs. Furthermore,
our approach improves overall performance of applications SAC
from bioinformatics and SpGEMM from linear algebra.
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