
Efficient and Portable ALS Matrix Factorization for Recommender Systems

Jing Chen∗, Jianbin Fang∗, Weifeng Liu†, Tao Tang∗, Xuhao Chen∗ and Canqun Yang∗

∗Software Institute, College of Computer, National University of Defense Technology, Changsha, China

Email: jingchen95@yeah.net, {j.fang, taotang84, chenxuhao, canqun}@nudt.edu.cn
†Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Email: weifeng.liu@nbi.ku.dk

Abstract—Alternating least squares (ALS) has been proved to
be an effective solver of matrix factorization for recommender
systems. To speedup factorizing performance, various parallel
ALS solvers have been proposed to leverage modern multi-core
CPUs and many-core GPUs/MICs. Existing implementations
are limited in either speed or portability (constrained to certain
platforms). In this paper, we present an efficient and portable
ALS solver for recommender systems. On the one hand,
we diagnose the baseline implementation and observe that it
lacks the awareness of the hierarchical thread organization
on modern hardware. To achieve high performance, we apply
the thread batching technique and three architecture-specific
optimizations. On the other hand, we implement the ALS solver
in OpenCL so that it can run on various platforms (CPUs,
GPUs, and MICs). Based on the architectural specifics, we
select a suitable code variant for each platform to efficiently
mapping it to the underlying hardware. The experimental
results show that our implementation performs 5.5× faster
on a 16-core CPU and 21.2× faster on K20c than the baseline
implementation. Our implementation also outperforms cuMF

on various datasets.

Keywords-Matrix factorization; Alternating least squares;
Performance

I. INTRODUCTION

In a recommender system, we aim to build a model by

training with observed incomplete rating data (i.e., a user’s

preference over all items) and then predict his/her preference

over items not rated [1]. Among the recommendation ap-

proaches, matrix factorization was empirically shown to be a

better solution than traditional nearest-neighbour approaches

in the Netflix Prize competition [2]. Since then, there has

been a large amount of work dedicated to the design of

fast and scalable methods for large-scale matrix factorization

problems [3], [1], [4].

Among the matrix factorization techniques, alternating

least squares (ALS) has been proved to be an effective

one [1]. Compared to stochastic gradient descent (SGD) [5],

[6], the ALS algorithm is not only inherently parallel, but

can incorporate implicit ratings [1]. Nevertheless, the ALS

algorithm involves parallel sparse matrix manipulation [7]

which is challenging to achieve high performance due to

imbalanced workload [8], [9], random memory access [10]

and task dependency [11]. This particularly holds when

parallelizing and optimizing ALS on modern multi-/many-

cores. To address the issue, researchers have investigated

various solutions. In [12], Rodrigues et al. present a CUDA-

based ALS implementation on GPU, which is claimed to run

faster than the implementation on a multi-core CPU. In [13],

Tan et al. provides a CUDA-based matrix factorization

library (cuMF). It uses various techniques to maximize the

performance on multiple GPUs.

In spite of the common efforts, these solutions are still

very limited in speed and portability. In terms of speed,

we observe that the CUDA implementation on K20c runs

much slower than the OpenMP implementation on a 16-core

CPU (Figure 1). We argue that this is possibly because the

parallel ALS code has been mapped to the massive cores

in an inappropriate manner. According to the architectural

specifics, converting the code into a right form is highly re-

quired. In terms of portability, the available implementations

are often limited to vendor-specific platforms. Running the

code on emerging hardware often needs from-scratch code

engineering. The two motivating observations are further

detailed in Section II-C.

In this paper, we present an efficient and portable ALS

solver. On the one hand, we diagnose the baseline imple-

mentation and observe that it is lack of awareness of the

hierarchical thread organization on modern hardware. This

leads to an inefficient use of hardware resources: unbalanced

thread use and scattered memory access. Thus, we apply

the thread batching technique and three architecture-specific

optimizations to mine the hardware potentials. On the other

hand, we implement the ALS solver in OpenCL so that it

can run on various platforms (CPUs, GPUs, and MICs).

Based on the architectural specifics, we select a suitable

code variant for each platform to efficiently map it to the

underlying hardware. The experimental results show that

our implementation performs 5.5× faster on E5-2670 and

21.2× faster on K20c than the baseline implementation.

Our implementation also outperforms cuMF for various

datasets (Netflix, Movielens, YahooMusic R1, and

YahooMusic R4).

To summarize, we make the following contributions.

• We present an efficient and portable ALS recommender

system by applying the thread batching parallelization

technique and the architecture-specific optimizations.

• We implement the recommender system with OpenCL

and customize code variants for different architec-

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-0-7695-6149-3/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.91

409

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-3408-0/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.91

409

Authorized licensed use limited to: China University of Petroleum. Downloaded on October 18,2021 at 13:07:23 UTC from IEEE Xplore. Restrictions apply.

tures. The portable implementation facilitates us to

enable/disable an optimization in an easy way.

• We evaluate the ALS solver on various platforms (CPU,

GPU and MIC) and datasets, and demonstrate that our

ALS solver is an efficient and portable one.

The remainder of this paper is organized as follows.

Section II describes the background and the motivation.

We present our approach in Section III and evaluate it in

Section IV and Section V. Section VI lists the related work

and Section VII concludes our work.

II. BACKGROUND

In this section, we describe the matrix factorization prob-

lem and the ALS algorithm. Then we present the motivation

of our work with two observations.

A. Problem Definition

The input of matrix factorization is a relation matrix

between users and items, R(m × n), where m denotes the

number of users and n denotes the number of items. Due to

the sparsity of R, matrix factorization maps both users and

items to a joint factor space of dimensionality k, a.k.a. latent

factor, so that predicting unknown ratings can be estimated

by the inner products of two vectors, xu of matrix X(m×k)
and yi of matrix Y (n× k),

rui = xuyi
T , (1)

where xu denotes the extent of user’s interest on items.

Similarly, yi denotes the extent to which the item owns these

factors, rui denotes an entry of the rating matrix R. The key

of the problem is how to obtain xu and yi so that R ≈ XY T .

The basic idea for matrix factorization is to minimize the

regularized squared error on the observed ratings to learn

the factors,

L(X,Y) =
∑

u,i∈Ω

(rui − xT
u yi)

2 + λ(|xu|
2 + |yi|

2), (2)

where Ω is the known nonzero ratings of R, and xT
u are the

uth row vectors of the matrix X , yi are ith column vectors

of matrix Y , the constant λ is the regularized coefficient to

avoid over-fitting. Therefore, the key to solve this problem

is to find approaches of getting the matrices X and Y .

B. The ALS Algorithm

Alternating least squares (ALS) is an efficient matrix

factorization technique for recommender systems. Because

Function 2 is not convex, the minimization principle of alter-

nating least squares is to keep one fixed while calculating the

other: we fix Y matrix to calculate X matrix to get vectors

xu, and vice versa. In this way, the problem becomes a

quadratic function. The procedure iterates until it converges.

First, we minimize the equation over X while fixing Y , and

the function becomes

Algorithm 1 The ALS algorithm

1: procedure ALS(R, k, λ; X , Y)

2: X ← 0, Y ← random initial guess

3: repeat

4: for row u← 1,m do

5: xu ← (Y TY + λI)−1Y T ru
6: end for

7: for column i← 1, n do

8: yi ← (XTX + λI)−1XT ri
9: end for

10: until reached max iterations

11: end procedure

L(X) =
∑

i∈Ωu

(rui − xT
u yi)

2 + λ|xu|
2 (3)

By calculating the partial derivative of xu in Function 3

and letting the partial derivative equal zero, we can obtain

xu = (Y TY + λI)−1Y T ru, (4)

where I is the unit matrix ranked k, and ru is the uth rows

of R. In the same way, we can obtain yi

yi = (XTX + λI)−1XT ri. (5)

The ALS algorithm is shown in Algorithm 1. We initialize

Y with small random numbers instead of zeros when starting

to update the X matrix. The algorithm iterates until it

reaches the maximum specified cycles or error rate.

C. Motivation

When running the parallel ALS implementation on multi-

/many-cores [12], we have the following two observations.

Observation 1: ALS on CPUs runs faster than on GPUs.

Thanks to a larger memory bandwidth and more hard-

ware cores, using GPUs can often bring a much better

performance than using a traditional multi-core CPU. This

particularly holds for the data-intensive codes such as the

ALS solver. However, we observe that this is not necessary

the case. Figure 1 compares the performance of ALS on a

16-core CPU and on a K20c GPU. We see that ALS runs, on

average, 8.4× faster on the CPU than on the GPU. This un-

satisfactory performance of the current implementation leads

us to restructure the algorithm and customize optimizations

according to the architectural specifics.

Observation 2: The current implementation cannot run

on the coprocessors such as Intel Xeon Phi.

Nowadays platforms often incorporate specialized pro-

cessing capabilities (e.g., GPUs, MICs, FPGAs and DSPs)

to handle particular tasks. Adding the specialized units

gains performance or energy efficiency. However, using

such platforms is challenging. In particular, programmers

410410

Authorized licensed use limited to: China University of Petroleum. Downloaded on October 18,2021 at 13:07:23 UTC from IEEE Xplore. Restrictions apply.

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

MVLE
NTFX

YMR1
YMR4

E
xe

cu
tio

n
tim

e
[s

]
OpenMP CUDA

Figure 1. Performance comparison of an OpenMP implementation on a
16-core CPU versus a CUDA implementation on K20c.

have to use vendor-specific programming interface to exploit

the diversity. This is the same for the ALS recommender

systems, i.e., the OpenMP version of ALS can run only on

the traditional multi-core CPUs, while the CUDA version

is constrained to NVIDIA GPUs. The current implementa-

tion cannot be offloaded to run on Intel Xeon Phi and/or

FPGAs. Porting it, which requires restructuring the code

from scratch, is time-consuming and error-prone. Thus, a

portable recommender system is required. Further, a simple

code rewriting in portable programming interfaces such as

OpenCL will again lead to a poor hardware utilization.

Speed and portability need to be taken into account as a

whole.

III. DESIGN AND IMPLEMENTATION

In this section, we give the baseline design of ALS and

then present our approach. We customize the optimization

techniques for different architectures and detail how to select

an appropriate code variant.

A. Baseline Design

In [12], Rodrigues et al. present an ALS solver in CUDA

and OpenMP, which is taken as our baseline implementation.

Algorithm 2 illustrates the algorithm skeleton. Since updat-

ing X is similar to updating Y , we only show the former

part. Lines 6–7 calculate (Y TY + λI) and smat (a matrix

sized of k× k) is introduced to store the temporary results.

Lines 8–15 evaluate Y T ru which is stored temporally in

a vector svec sized of k. The baseline implementation

employs the Cholesky method to factorize smat shown in

Line 16 and evaluates the current row (xu) in Line 17.

For the baseline design, each thread updates a row xu or

a column yi. In total, we have m (or n) tasks and at most

m (or n) threads can run concurrently.

Notation. To save memory space, we use the compressed

sparse row (CSR) form to store the sparse rating matrix

R. Three arrays are introduced to represent the original

matrix: a value array stores the nonzero elements of R

Algorithm 2 The Baseline ALS algorithm (updating X).

1: procedure UPDATE X OVER Y(R, X , Y , k, λ; X)
2: for u← 1,m do � Foreach row
3: xu ← GetBaseAddr(X,u, k)
4: omegaSize← CountNonZeros(R, u)
5: if omegaSize > 0 then

6: smat← Y TY � smat: sub-matrix
7: smat← smat+ λI
8: for c← 0, k do
9: for idx← row ptr[u], row ptr[u+ 1] do

10: idx2← colMajored sparse id[idx]
11: idx3← col idx[idx]× k + c
12: svec[c]← svec[c] +R[idx2]× Y [idx3]
13: � svec: sub-vector
14: end for
15: end for

16: LLT ← smat � with Cholesky

17: solve LLT
x = svec for x

18: end if
19: end for
20: end procedure

Figure 2. An example of the compressed sparse row storage (CSR)
format. The matrix R has 5 rating scores out of 16 elements and three
data structures are used in the representation.

in a row-major manner, and its size equals the number

of nonzero elements; a col idx array stores the column

index of each nonzero element in R, and its size equals

the number of nonzero elements; and a row ptr array stores

the index of each row’s first element, and its size is the

number of rows plus 1. Figure 2 illustrates the structure

of CSR. The data structures (value, col idx, row ptr) are

introduced to represent the rating matrix R (See Lines 8–

15 of Algorithm 2). Note that we use the compressed

sparse column (CSC) format when updating yi. The CSC

representation is similar to that of CSR, except that CSC

stores the nonzero entries in a column-major manner.

B. Thread Batching Parallelization

As shown in Algorithm 2, the baseline implementation

uses one thread to update a row of X or a column of Y .

This straightforward implementation can provide sufficient

parallelism to utilize the massive hardware threads on GPUs,

MICs or multi-core CPUs. Nevertheless, the baseline imple-

mentation is unaware of the hierarchical thread organization

(i.e., the two-level parallelism) of modern hardware architec-

tures, which results in two major issues: unbalanced thread

use and scattered memory access [14].

On the one hand, threads are organized in a hierarchical

fashion on modern many-core architectures (Figure 4). On

411411

Authorized licensed use limited to: China University of Petroleum. Downloaded on October 18,2021 at 13:07:23 UTC from IEEE Xplore. Restrictions apply.

1 float sum[k*k]={0};

2 for (int i = lx; i < k; i+=ws){

3 for (int j = i; j < k; j++) {

4 for (int z = 0; z < omegaSize; z++){

5 int d = col_idx[row_ptr + z] * k;

6 sum[i*k+j] += Y[d + i] * Y[d + j];

7 }

8 smat[(j*k)+i] = sum[i*k+j];

9 smat[(i*k)+j] = sum[i*k+j];

10 }

11 }

(a) Original code.

1 float sum0=0,sum1=0,sum2=0,sum3=0,sum4=0;

2 for (int z = 0; z < omegaSize; z++){

3 int d = col_idx[row_ptr + z] * k;

4 if(0<=lx<k) sum0 += Y[d + lx] * Y[d + 0];

5 if(1<=lx<k) sum1 += Y[d + lx] * Y[d + 1];

6 if(2<=lx<k) sum2 += Y[d + lx] * Y[d + 2];

7 if(3<=lx<k) sum3 += Y[d + lx] * Y[d + 3];

8 if(4<=lx<k) sum4 += Y[d + lx] * Y[d + 4];

9 ...

10 }

11 // updating the smat matrix

(b) Unrolling the code.

Figure 3. An example of unrolling the code to calculate Y T Y . lx is the local work-item index, ws is the work-group size, k denotes the latent factor,
omegaSize is the number of non-zero entries of the current row, smat is the allocated matrix to store temporary results, col idx and row ptr are the
structures introduced in Figure 2. This example is the case when k = 5.

GPUs, a warp of threads are organized into a SIMT core (i.e.,

Streaming Multiprocessor, SM). When the threads diverge

(i.e., follow different paths), they are serialized. Meanwhile,

the threads from different groups can run concurrently. On

CPUs or MICs, a group of fine-grained threads are to be

vectorized/packed into a vector core thanks to the compilers

or manual efforts. The threads within a group are similarly

serialized when they diverge. For a typical recommender

dataset, the number of nonzeros varies over rows/columns.

When two neighbouring threads updating two continuous

rows/columns, it is likely that the thread on the longer

row takes more time while the other thread stays idle. The

problem becomes severe when the length of rows/columns

is significantly uneven, leading to unbalanced thread use.

On the other hand, this baseline implementation accesses

the off-chip memory in an inefficient manner. On GPUs,

the threads within a workgroup prefer accessing data ele-

ments near each other, i.e., coalesced memory accesses. On

CPUs/MICs, the memory accessing requests are performed

in a cacheline granularity. For the baseline implementation,

each thread calculates a matrix (smat sized of k× k) and a

vector (sized of k). Thus, the distance between two accesses

is at least (k+1)×k. The uncoalesced scattered accesses by

neighbouring threads lead to a poor bandwidth utilization.

Therefore, we apply the thread batching technique and

let a SIMT/SIMD core update a row or a column of ALS.

Figure 4. An illustration of a flat thread organization and a hierarchical
hardware organization. The GPU cores are in a SIMT form while the
CPU/MIC cores are in a SIMD form.

This can not only avoid unbalanced thread use but batch the

data accessing requirements. The thread batching technique

is applicable on CPUs, GPUs, and MICs.

C. Architecture-Specific Optimizations

CPUs, GPUs and MICs share a lot in common, but they

differ in many details. To exploit such details, we need

to customize optimizations according to the architectural

differences. In this section, we investigate the architecture-

oriented optimization techniques.

1) Using Registers: The recent GPUs feature abundant

registers with a very small accessing latency. For example,

each SM of K20c has 256 KB registers and this architecture

increases the maximum number of registers addressable per

thread from 63 to 255. Factorizing rating matrix is a typical

bandwidth-limited kernel. Thus, an efficient utilization of

these registers can improve the kernel performance. When

calculating Y TY (Line 6 of Algorithm 2), the original code

uses a private array (sum[k ∗ k]) to store the temporary

results before updating smat (Figure 3). Depite that the

structure is private to a thread, register spilling occurs with a

large k. We observe that allocating a k ∗ k buffer per thread

is not required. In fact, a buffer sized of k is sufficient. The

restructured code is shown in Figure 3(b).

2) Using the Scratch-pad Memory: Compared with the

off-chip memory, the scratch-pad memory, which is termed

local memory in OpenCL, is a high-speed memory unit

located on-chip. Staging data with scratch-pads can enhance

performance by (1) data reusing, and/or (2) increasing the

data moving bandwidth between the off-chip memory space

and the on-chip memory space [15].

As shown in Algorithm 2 (Lines 8–15), calculating Y T ru
needs to load data from R (i.e., the value array) and

Y . Specifically, updating svec of the row ru requires the

columns of Y identified by the non-zero elements in ru.

Due to the sparsity of R, the data columns are often not

contiguous. Thus, staging the data columns is necessary.

Figure 5 shows we allocate a local memory buffer (3 × 5)

to cache the required data columns of Y . At the same time,

updating svec requires all the non-zero entries of the current

row. Loading them into the scratch-pad will improve data

sharing for the threads within a workgroup. Figure 5 shows

412412

Authorized licensed use limited to: China University of Petroleum. Downloaded on October 18,2021 at 13:07:23 UTC from IEEE Xplore. Restrictions apply.

Figure 5. Using local memory to stage the R and Y matrix. R is sized
of 7× 8, and Y is sized of 3× 8 when k = 7.

how a local memory vector is allocated to store all the non-

zero entries of ru.

3) Using Vector Units: Both the traditional multi-core

CPUs and Intel MIC have vector cores. Merely relying on

compilers is difficult to fully use the vector units and explicit

vectorization is often required [16]. OpenCL provides vector

data types to exploit the vector cores, e.g., float16 is a

vector containing 16 scalar data elements typed of float.

The arithmetic operators can perform the corresponding

operations in an element-wise manner. We use vload to

fill vectors while using vstore to write results to memory.

D. Code Variant Selection

Code variants represent alternative implementations of a

computation. Each code variant has the same interface, and

is functionally equivalent to the other variants but may em-

ploy fundamentally different algorithms or implementation

strategies [17], [18]. Based on the thread batching version,

we will yield 8 versions of code variants by individually

applying different optimization techniques or combining

them. To achieve high performance, it is necessary to select

the most appropriate implementation for a specific execution

context (target architecture and input dataset).

In this context, we use an empirical approach to select

a right code variant. In total, we provide 8 code variants

of the ALS solver by combining different optimizations.

Evaluating different code variants and various datasets shows

the optimization has an ’unpredictable’ impact on the fac-

torization performance (Figure 6). For example, due to the

missing scratch-pad on CPU/MIC, using local memory can-

not theoretically bring a performance increase on CPU/MIC.

But our evaluation results show that using local memory

gives a performance boost on these two architectures. This

’unpredictable’ performance motivates us to use a machine-

learning based approach to select a code variant in future.

IV. EXPERIMENTAL SETUP

In this section, we introduce the hardware and software

configurations used in the context. We also present the

details of the datasets used to evaluate our implementation.

A. Platform Configurations

We use three multi-/many-core platforms in the experi-

ment: Intel Xeon CPU, NVIDIA Tesla GPU and Intel MIC,

where the GPU and the MIC are connected to the CPU with

different PCIe slots. The Intel CPU is a dual-socket Intel

Xeon E5-2670, each with 8 cores running at 2.60GHz. The

NVIDIA GPU is Tesla K20c, which contains 13 streaming

multiprocessors (SM), and 192 CUDA cores on each SM.

The Intel Many Integrated Cores (MIC) is Intel Xeon Phi

31SP, with 57 cores and 6GB global memory.

Our ALS solver is implemented in OpenCL (v1.2) and is

then installed on the experimental platforms. The OpenCL

implementations for the three devices are from their vendors

respectively. The host CPU runs Redhat Linux (v7.0) and

uses GCC (v4.9.2), while the MIC coprocessor runs a

customized uOS (v2.6.38.8). Intel MPSS (v3.6) is used as

the driver and the communication backbone between the host

and the coprocessor. The Intel OpenCL SDK for both CPU

and MIC is of version 14.1_x64_4.5.0.8. Also, we use

NVIDIA CUDA (v7.5) for Tesla K20c to run the cuMF code

and the baseline code.

B. Input Datasets

We use four datasets (Movielens1, Netflix2,

YahooMusic R1, and YahooMusic R43) to measure

the factorization performance. The format of each dataset

is

< userID, itemID, rating > .

We preprocess each dataset according to this format. The

details of the four datasets are shown in Table I. m is the

number of users, n is the number of items, and Nz is the

number of non-zero entries in the rating matrix R. In the

context, k = 10 and λ = 0.1 unless otherwise specified.

Table I
DATASETS

Abbr. m n Training Nz

Movielens10M MVLE 71567 65133 8000044

NetFlix NTFX 480189 17770 99072112

YahooMusic R1 YMR1 1948882 98212 115248575

YahooMusic R4 YMR4 7642 11916 211231

1http://files.grouplens.org/datasets/movielens/
2http://www.select.cs.cmu.edu/code/graphlab/datasets/
3http://webscope.sandbox.yahoo.com

413413

Authorized licensed use limited to: China University of Petroleum. Downloaded on October 18,2021 at 13:07:23 UTC from IEEE Xplore. Restrictions apply.

 0
 2
 4
 6
 8

 10
 12

GPU MIC CPU

E
xe

cu
tio

n
tim

e
[s

]
thread batching
+local memory

+local memory + register
+vector

(a) Movielens

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

GPU MIC CPU

E
xe

cu
tio

n
tim

e
[s

]

thread batching
+local memory

+local memory + register
+vector

(b) Netflix

 0
 20
 40
 60
 80

 100
 120
 140

GPU MIC CPU

E
xe

cu
tio

n
tim

e
[s

]

thread batching
+local memory

+local memory + register
+vector

(c) YahooMusic R1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

GPU MIC CPU

E
xe

cu
tio

n
tim

e
[s

]

thread batching
+local memory

+local memory + register
+vector

(d) YahooMusic R4

Figure 6. A performance comparison of the ALS solver on different architectures and datasets. We use the thread configuration of 8192 × 32 and 5
iterations, while k = 10.

V. PERFORMANCE RESULTS

In this section, we first show how our ALS solver per-

forms by comparing with the state-of-the-art implementa-

tions. Then we evaluate the performance impact of the

optimization techniques and how we apply optimizations.

We also demonstrate the performance results on the three

platforms and the performance sensitivity to thread blocks.

A. Comparing with State-of-the-Art

We compare the performance of our ALS implementation

with that in SAC15 [12] and HPDC16 [13]. On the E5-2670

CPU, our implementation runs 5.5× faster than the SAC15

OpenMP implementation, while it runs 21.2× faster on

the K20c GPU. This significant performance improvement

comes from the usage of the thread batching parallelization

and the architecture-specific optimizations.

Compared with the HPDC16 implementation, we also

notice a remarkable speedup ranging from 2.2× to 6.8×.

The performance differences are due to several factors. First,

we observe that the latent factor k has an impact on the

overall performance. The HPDC16 implementation has been

specially tuned for the k = 100 case, while it is a generic one

for the other cases. Second, the HPDC16 implementation

employs the cusparse library (e.g., cusparseScsrmm2

and cublasSgeam) while each step of our implementation

is particularly customized and highly tuned according to

the architectures and the datasets. In particular, we achieve

the largest speedup for YahooMusic R4. Although this

dataset is small, our Cholesky-based approach plays a key

role in reducing the time of factorizing smat to be LLT .

B. Evaluating Optimizations

Figure 6 shows how our ALS solver performs on the

K20c GPU, the Intel MIC, and the Intel Xeon E5 CPU

when using our optimization techniques. Starting with using

thread batching, we incrementally apply the optimizations of

registers, local memory and vectors. On GPUs, we observe

that using registers and local memory can significantly

improve the factorizing performance (by upto 2.6×), while

using vectors brings very little change on performance.

On MIC and CPU, using local memory brings a perfor-

mance increase for Movielens, Netflix, YahooMusic

 0

 5

 10

 15

 20

 25

 30

 35

MVLE
NTFX

YMR1
YMR4
S

pe
ed

up
 (x

)

ours vs. SAC15 on E5-2670
ours vs. SAC15 on K20c

ours vs. HPDC16 on K20c

Figure 7. A performance comparison of our implementation versus the
state-of-the-art implementations. We use the thread configuration of 8192×
32 and 5 iterations, while k = 10.

R1, and YahooMusic R4. The performance boost is upto

1.4× for MIC and 1.6× for CPU. Furthermore, using both

registers and local memory degrades the overall performance

remarkably. Therefore, it is not recommended to combine

these two optimization techniques on MIC or CPU. We

also notice a slight performance improvement by explicitly

vectorizing the ALS code. As can be seen in Figure 6, the

performance impact on the CPU resembles that on MIC

because of the architectural similarities.

C. Applying Optimizations

Our implementation consists of three steps when fac-

torizing the rating matrix (Algorithm 2): (S1) Y TY + λI

(Lines 6–7), (S2) Y T ru (Lines 8–15), and (S3) solve the lin-

ear system (Lines 16–17). When applying the optimization

techniques, we give a priority to the most time-consuming

step. Figure 8 shows an illustrative example on how we

apply the optimization techniques in a step-by-step manner.

Figure 8(a) shows the execution time percent of S1–S3,

while Figure 8(b) is the number when applying thread

batching on all the three steps. Although the percentage

changes very slightly, the execution time of each step is

reduced significantly. After applying the optimization, we

notice that S1 takes up around 70% of the total execution

time (i.e., the hotspot).

414414

Authorized licensed use limited to: China University of Petroleum. Downloaded on October 18,2021 at 13:07:23 UTC from IEEE Xplore. Restrictions apply.

65.14% S1

18.90% S2

15.96% S3

(a) Baseline

68.01% S1

19.33% S2

12.66% S3

(b) Thread batching

32.40% S1

43.54% S2

24.06% S3

(c) Optimizing S1

40.80% S1

32.39% S2

26.81% S3

(d) Optimizing S2

Figure 8. Applying optimization techniques in a step-by-step manner. The
data is measured with Netflix on K20c.

As indicated in Section III-C, local memory and registers

are used to reduce the Y TY time from 26 seconds to 6

seconds. Then the time consumption is shown in Figure 8(c).

We see that S2 becomes the most time-consuming step.

When calculating Y T ru, local memory is used to stage

the columns of Y . After that, Figure 8(d) shows that S1

dominates the factorization once again and becomes the new

tuning focus. Besides, we can optimize S3 with the Cholesky

method so that the overall running time (S1+S2+S3) is

reduced to 12 seconds from 15 seconds. To summarize,

we apply the optimization techniques and tune the ALS

performance in a hotspot-guided manner.

D. Comparing Different Architectures

Figure 9 compares how our implementation performs on

various architectures. We see that the 16-core CPU performs

the best, GPU runs the second and then MIC follows.

Specifically, our code on the K20c GPU runs 1.5× slower

than it on the E5-2670 CPU, whereas it runs 4.1× slower

on the Intel Xeon Phi. For the large datasets (Movielens,

Netflix and YahooMusic R1), the performance gap

between the GPU and the CPU is not so large. When

working on YahooMusic R1, our ALS solver on the K20c

GPU outperforms that on the 16-core CPU. Note that our

optimized ALS on the K20c GPU can run 3× as fast as the

OpenMP version on the 16-core CPU. In the future, we will

further investigate the performance gap between platforms

and push the factorizing performance to the hardware limit.

E. Sensitivity to Thread Blocks

Figure 10 shows the performance changes when using var-

ious thread block configurations. On the GPU, the execution

time reaches its minimum when the block size equals 16 or

32, whereas the execution time increases when the block

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

MVLE
NTFX

YMR1
YMR4

S
lo

w
do

w
n

(x
)

GPU MIC CPU

Figure 9. A performance comparison of our ALS code on various
architectures. We use the thread configuration of 8192×32 and 5 iterations,
while k = 10.

size is 8 or 64. We set k to be 10 in the experiment and

thus two iterations are required to calculate smat or svec.

On the other hand, warp is the smallest unit of execution on

the device and each warp contains 32 threads on the K20c

GPU. Thus, the threads within each warp are under-utilized

when the block size is 8. When the block size is 16 or 32,

only one iteration is required to calculate smat or svec and

the warp utilization is better than the case when the block

size is 8. At the same time, the block size (16 or 32) is

still smaller than the warp size and thus the execution time

remains. Further increasing the block size (e.g., 64 threads

per block) results in idle warps, leading to a performance

drop. Therefore, it is recommended that the block size be

the minimum integer number larger than the latent factor.

Different from GPU, the execution time on the CPU

stabilizes over the size of thread block for Movielens,

Netflix, and YahooMusic R4. To be more specific,

the smaller the block size is, the better the factorization

performance. We believe this is due to a better utilization of

local memory. On MIC, we see that the thread block size

has a significant impact on the execution time. The optimal

block size varies for different datasets. For YahooMusic

R4, using a block sized of 8 gives the best performance,

whereas, for YahooMusic R1, 16 is better.

VI. RELATED WORK

In this section, we discuss the main matrix factorization

algorithms for recommender systems and the parallelization

approaches on both multi-cores, many-cores and distributed

platforms. As stated in [1], matrix factorization is regarded

as the most successful realization of latent factor models

in recommender systems. When factorizing a rating matrix,

ALS (altering least squares), SGD (stochastic gradient de-

scent) and CCD (cyclic coordinate decent) are the three most

commonly used techniques.

Parallelizing ALS. GraphLab implements ALS by dis-

tributing matrix on multiple machines while the matrix is

415415

Authorized licensed use limited to: China University of Petroleum. Downloaded on October 18,2021 at 13:07:23 UTC from IEEE Xplore. Restrictions apply.

 0

 1

 2

 3

 4

 5

 6

 7

8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

)

#threads per group

GPU
CPU
MIC

(a) Movielens

 0

 5

 10

 15

 20

 25

 30

 35

8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

)

#threads per group

GPU
CPU
MIC

(b) Netflix

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

)

#threads per group

GPU
CPU
MIC

(c) YahooMusic R1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

)

#threads per group

GPU
CPU
MIC

(d) YahooMusic R4

Figure 10. The performance changes over the thread block configuration.
We use the thread configuration of 8192× 32 and 5 iterations, while k =

10. We use thread batching + local memory + registers on the GPU while
we only use thread batching + local memory on the CPU/MIC.

large, which results in heavy cross-node traffic and pretty

high network bandwidth [19]. In [20], Spark MLlib lever-

ages partial matrix replication to parallelize ALS. CuMF,

a CUDA-based matrix factorization library, implements

memory-optimized ALS to solve very large-scale MF by

using a variety set of techniques to maximize the perfor-

mance on either single or multiple GPUs. These techniques

include smart access of sparse data leveraging GPU mem-

ory hierarchy, using data parallelism in conjunction with

model parallelism, minimizing the communication overhead

between computing units, and utilizing a novel topology-

aware parallel reduction scheme [13]. Gates et al. formulate

ALS as a mix of cache-optimized algorithm-specific kernels

and batched Cholesky factorization [21], and accelerate it on

GPUs and multi-threaded CPUs [22]. Zhou et al. introduce

a new parallel algorithm ALS-WR (weighted Regulation)

for large-scale problems by using parallel Matlab on linux

cluster [3].

Parallelizing CCD. Yu et al. propose a scalable and

efficient method CCD++ which have the different update

sequence from basic CCD and update rank-one factors one

by one. The algorithm has two versions of parallelization

on different machines: one version for multi-core shared

memory systems and the other for distributed systems. If

the matrices (A, W , H) fit in a single machine, they

choose multi-core shared memory systems to parallelize

CCD++ by diving the updating task into several subtasks

that can be handled by different cores in parallel. When the

matrices exceed the memory capacity of a single machine, a

distributed system is used, and the parallelization method is

same as the multi-core version [2]. Recently Nisa et al. [23]

improved CCD++ method for GPU platform.

Parallelizing SGD. In [24], Paine et al. present an asyn-

chronous SGD to speed up the neural network training on

GPUs. In [25], [26], the authors propose the delayed update

scheme and bootstrap aggregation scheme to parallelize

SGD, respectively. HogWild uses a lock-free approach to

parallelize SGD, which is shown to be more efficient than

the delayed update scheme [27]. Distribute SGD (DSGD)

partitions the ratings matrix into several blocks and up-

dates a set of independent blocks in parallel at the same

time [5]. Rashid Kaleem et al. show that parallel SGD can

execute efficiently on GPU and the dynamically scheduled

implementation on GPU is comparable to a 14-thread CPU

implementation [28]. Jinoh et al. propose MLGF-MF, which

is robust to skewed matrices and runs efficiently on block-

storage devices (e.g., SSD disks) as well as shared-memory

platforms. The implementation leverages Multi-Level Grid

File (MLGF) to partition the rating matrix and minimizes the

cost for scheduling parallel SGD updates on the partitioned

regions by exploiting partial match queries processing [29].

CuMF SGD, a CUDA-enabled SGD solution for large-

scale matrix factorization problems, uses two workload

scheduling schemes (batch-Hogwild! and wavefront-update)

and a partitioning scheme to utilize multiple GPUs. At the

same time, the authors address the well-known convergence

issue when parallelizing SGD [30]. Factorbird uses a

parameter server in order to scale models that exceed the

memory of an individual machine, and employs lock-free

Hogwild!-style learning with a special partitioning scheme to

drastically reduce conflicting updates [31]. In [32], Sallinen

et al. explore serveral modern parallelization methods of

SGD on a shared memory system. In particular, they present

a scalable, communication-avoiding implementation of SGD

and demonstrate near linear scalability on a system with 14

cores.

To summarize, our work relates closely with [13], [12].

Different from these two works, our focus is the speed and

portability of recommender systems on various architectures.

The experimental results demonstrate that our implementa-

tion overtakes the cuMF code and the baseline code and is

performance portable on various architectures.

VII. CONCLUSION

In this paper, we present an efficient and portable ALS

solver. On the one hand, we diagnose the baseline implemen-

tation and observe that it is lack of awareness of the hierar-

chical thread organization on modern hardware. This leads

to inefficient use of hardware resources: unbalanced thread

use and scattered memory access. Thus, we apply the thread

batching technique and three architecture-specific optimiza-

tions. On the other hand, we implement the ALS solver

in OpenCL so that it can run on various platforms (CPUs,

GPUs, and MICs). Based on the architectural specifics, we

select a suitable code variant for each platform to efficiently

416416

Authorized licensed use limited to: China University of Petroleum. Downloaded on October 18,2021 at 13:07:23 UTC from IEEE Xplore. Restrictions apply.

map it to the underlying hardware. The experimental results

show that our implementation performs 5.5× faster on E5-

2670 and 21.2× faster on K20c than the baseline imple-

mentation. Our implementation also outperforms cuMF for

various datasets (Netflix, Movielens, YahooMusic

R1, and YahooMusic R4).

For future work, we will introduce the machine learning

technique to select an appropriate code variant according

to the target architecture and input dataset. Also, we will

use more datasets to evaluate our ALS solver and extend

our technique to other matrix factorization solvers such as

SGD.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their constructive comments. This work was partially

funded by the National Natural Science Foundation of China

under Grant No.61402488, No.61502514 and No.61602501,

the National Key Research and Development Program of

China under Grant No. 2016YFB0200400.

REFERENCES

[1] Y. Koren, R. M. Bell, and C. Volinsky, “Matrix factoriza-
tion techniques for recommender systems,” IEEE Computer,
vol. 42, no. 8, pp. 30–37, 2009.

[2] H. Yu, C. Hsieh, S. Si, and I. S. Dhillon, “Scalable coordinate
descent approaches to parallel matrix factorization for recom-
mender systems,” in 12th IEEE International Conference on
Data Mining, ICDM 2012, Brussels, Belgium, December 10-
13, 2012, pp. 765–774, 2012.

[3] Y. Zhou, D. M. Wilkinson, R. Schreiber, and R. Pan, “Large-
scale parallel collaborative filtering for the netflix prize,” in
Algorithmic Aspects in Information and Management, 4th
International Conference, AAIM 2008, Shanghai, China, June
23-25, 2008. Proceedings, pp. 337–348, 2008.

[4] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Scalable
collaborative filtering approaches for large recommender
systems,” Journal of Machine Learning Research, vol. 10,
pp. 623–656, 2009.

[5] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-
scale matrix factorization with distributed stochastic gradient
descent,” in Proceedings of the 17th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
San Diego, CA, USA, August 21-24, 2011, pp. 69–77, 2011.

[6] C. Teflioudi, F. Makari, and R. Gemulla, “Distributed matrix
completion,” in 12th IEEE International Conference on Data
Mining, ICDM 2012, Brussels, Belgium, December 10-13,
2012, pp. 655–664, 2012.

[7] W. Liu, Parallel and Scalable Sparse Basic Linear Algebra
Subprograms. PhD thesis, University of Copenhagen, 2015.

[8] W. Liu and B. Vinter, “A framework for general sparse
matrixmatrix multiplication on {GPUs} and heterogeneous
processors,” Journal of Parallel and Distributed Computing,
vol. 85, pp. 47–61, 2015. {IPDPS} 2014 Selected Papers on
Numerical and Combinatorial Algorithms.

[9] W. Liu and B. Vinter, “Csr5: An efficient storage format
for cross-platform sparse matrix-vector multiplication,” in
Proceedings of the 29th ACM International Conference on
Supercomputing, ICS ’15, (New York, NY, USA), pp. 339–
350, ACM, 2015.

[10] W. Hao, L. Weifeng, H. Kaixi, and F. Wu-chun, “Parallel
transposition of sparse data structures,” in Proceedings of the
2016 International Conference on Supercomputing, ICS ’16,
(New York, NY, USA), pp. 33:1–33:13, ACM, 2016.

[11] W. Liu, A. Li, J. Hogg, I. S. Duff, and B. Vinter, “A
Synchronization-Free Algorithm for Parallel Sparse Trian-
gular Solves,” in Euro-Par 2016: Parallel Processing: 22nd
International Conference on Parallel and Distributed Com-
puting, Grenoble, France, August 24-26, 2016, Proceedings,
pp. 617–630, 2016.

[12] A. V. Rodrigues, A. Jorge, and I. Dutra, “Accelerating rec-
ommender systems using gpus,” in Proceedings of the 30th
Annual ACM Symposium on Applied Computing, Salamanca,
Spain, April 13-17, 2015, pp. 879–884, 2015.

[13] W. Tan, L. Cao, and L. L. Fong, “Faster and cheaper:
Parallelizing large-scale matrix factorization on gpus,” in Pro-
ceedings of the 25th ACM International Symposium on High-
Performance Parallel and Distributed Computing, HPDC
2016, Kyoto, Japan, May 31 - June 04, 2016, pp. 219–230,
2016.

[14] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Ac-
celerating CUDA graph algorithms at maximum warp,” in
Proceedings of the 16th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPOPP 2011,
San Antonio, TX, USA, February 12-16, 2011, pp. 267–276,
2011.

[15] J. Fang, H. J. Sips, and A. L. Varbanescu, “Aristotle: A per-
formance impact indicator for the opencl kernels using local
memory,” Scientific Programming, vol. 22, no. 3, pp. 239–
257, 2014.

[16] J. Fang, A. L. Varbanescu, X. Liao, and H. J. Sips, “Evalu-
ating vector data type usage in opencl kernels,” Concurrency
and Computation: Practice and Experience, vol. 27, no. 17,
pp. 4586–4602, 2015.

[17] S. Muralidharan, A. Roy, M. W. Hall, M. Garland, and P. Rai,
“Architecture-adaptive code variant tuning,” in Proceedings
of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS ’16, Atlanta, GA, USA, April 2-6, 2016, pp. 325–
338, 2016.

[18] L. Chang, H. Kim, and W. W. Hwu, “Dysel: Lightweight
dynamic selection for kernel-based data-parallel programming
model,” in Proceedings of the Twenty-First International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’16, Atlanta, GA, USA, April
2-6, 2016, pp. 667–680, 2016.

[19] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein, “Distributed graphlab: A framework
for machine learning in the cloud,” PVLDB, vol. 5, no. 8,
pp. 716–727, 2012.

417417

Authorized licensed use limited to: China University of Petroleum. Downloaded on October 18,2021 at 13:07:23 UTC from IEEE Xplore. Restrictions apply.

[20] X. Meng, J. K. Bradley, B. Yavuz, E. R. Sparks, S. Venkatara-
man, D. Liu, J. Freeman, D. B. Tsai, M. Amde, S. Owen,
D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and
A. Talwalkar, “Mllib: Machine learning in apache spark,”
CoRR, vol. abs/1505.06807, 2015.

[21] J. Kurzak, H. Anzt, M. Gates, and J. Dongarra, “Implementa-
tion and tuning of batched cholesky factorization and solve for
nvidia gpus,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, pp. 2036–2048, July 2016.

[22] M. Gates, H. Anzt, J. Kurzak, and J. Dongarra, “Accelerating
collaborative filtering using concepts from high performance
computing,” in 2015 IEEE International Conference on Big
Data, Big Data 2015, Santa Clara, CA, USA, October 29 -
November 1, 2015, pp. 667–676, 2015.

[23] I. Nisa, A. Sukumaran-Rajam, R. Kunchum, and P. Sa-
dayappan, “Parallel ccd++ on gpu for matrix factorization,”
in Proceedings of the General Purpose GPUs, GPGPU-10,
(New York, NY, USA), pp. 73–83, ACM, 2017.

[24] T. Paine, H. Jin, J. Yang, Z. Lin, and T. S. Huang, “GPU
asynchronous stochastic gradient descent to speed up neural
network training,” CoRR, vol. abs/1312.6186, 2013.

[25] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic
optimization,” in Advances in Neural Information Processing
Systems 24: 25th Annual Conference on Neural Information
Processing Systems 2011. Proceedings of a meeting held 12-
14 December 2011, Granada, Spain., pp. 873–881, 2011.

[26] M. Zinkevich, M. Weimer, A. J. Smola, and L. Li, “Paral-
lelized stochastic gradient descent,” in Advances in Neural
Information Processing Systems 23: 24th Annual Conference

on Neural Information Processing Systems 2010. Proceedings
of a meeting held 6-9 December 2010, Vancouver, British
Columbia, Canada., pp. 2595–2603, 2010.

[27] B. Recht, C. Ré, S. J. Wright, and F. Niu, “Hogwild: A lock-
free approach to parallelizing stochastic gradient descent,”
in Advances in Neural Information Processing Systems 24:
25th Annual Conference on Neural Information Processing
Systems 2011. Proceedings of a meeting held 12-14 December
2011, Granada, Spain., pp. 693–701, 2011.

[28] R. Kaleem, S. Pai, and K. Pingali, “Stochastic gradient
descent on gpus,” in Proceedings of the 8th Workshop on
General Purpose Processing using GPUs, GPGPU@PPoPP
2015, San Francisco, CA, USA, February 7, 2015, pp. 81–89,
2015.

[29] J. Oh, W. Han, H. Yu, and X. Jiang, “Fast and robust parallel
SGD matrix factorization,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, Sydney, NSW, Australia, August 10-13,
2015, pp. 865–874, 2015.

[30] X. Xie, W. Tan, L. L. Fong, and Y. Liang, “Cumf sgd:
Fast and scalable matrix factorization,” CoRR,
vol. abs/1610.05838, 2016.

[31] S. Schelter, V. Satuluri, and R. Zadeh, “Factorbird - a pa-
rameter server approach to distributed matrix factorization,”
CoRR, vol. abs/1411.0602, 2014.

[32] S. Sallinen, N. Satish, M. Smelyanskiy, S. S. Sury, and C. Ré,
“High performance parallel stochastic gradient descent in
shared memory,” in 2016 IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2016, Chicago,

IL, USA, May 23-27, 2016, pp. 873–882, 2016.

418418

Authorized licensed use limited to: China University of Petroleum. Downloaded on October 18,2021 at 13:07:23 UTC from IEEE Xplore. Restrictions apply.

