
A Synchronization-Free Algorithm for Parallel
Sparse Triangular Solves

Weifeng Liu1,2, Ang Li3, Jonathan Hogg2, Iain S. Duff2, and Brian Vinter1

1 Niels Bohr Institute, University of Copenhagen, Denmark
2 Scientific Computing Department, STFC Rutherford Appleton Laboratory, UK

3 Eindhoven University of Technology, Netherlands

Abstract. The sparse triangular solve kernel, SpTRSV, is an important
building block for a number of numerical linear algebra routines. Paral-
lelizing SpTRSV on today’s manycore platforms, such as GPUs, is not
an easy task since computing a component of the solution may depend
on previously computed components, enforcing a degree of sequential
processing. As a consequence, most existing work introduces a prepro-
cessing stage to partition the components into a group of level-sets or
colour-sets so that components within a set are independent and can be
processed simultaneously during the subsequent solution stage. However,
this class of methods requires a long preprocessing time as well as sig-
nificant runtime synchronization overhead between the sets. To address
this, we propose in this paper a novel approach for SpTRSV in which the
ordering between components is naturally enforced within the solution
stage. In this way, the cost for preprocessing can be greatly reduced, and
the synchronizations between sets are completely eliminated. A compar-
ison with the state-of-the-art library supplied by the GPU vendor, using
11 sparse matrices on the latest GPU device, show that our approach ob-
tains an average speedup of 2.3 times in single precision and 2.14 times
in double precision. The maximum speedups are 5.95 and 3.65, respec-
tively. In addition, our method is an order of magnitude faster for the
preprocessing stage than existing methods.

1 Introduction

The sparse triangular solve kernel, SpTRSV, is an important building block
in a number of numerical linear algebra routines, such as direct methods [5,
7], preconditioned iterative methods [22], and least squares problems [3]. This
operation computes a dense solution vector x from a sparse linear system Lx = b,
where L is a square lower triangular sparse matrix and b is a dense vector.

Compared to a dense triangular solve [9] and other sparse basic linear alge-
bra subprograms (BLAS) [8, 14] such as sparse transposition [27], sparse matrix-
vector multiplication [16, 17] and sparse matrix-matrix multiplication [15], the
SpTRSV operation is more difficult to parallelize since it is inherently sequential.
This means that, for a lower triangular sparse matrix, computing any single com-
ponent xk may depend on having first computed a subset of previous components



x0, · · · , xk−1. Therefore, most existing research concentrates on adding a prepro-
cessing stage to divide the entries of x into a number of sets (known as level-sets
or colour-sets). Even though the sets have to be executed in sequence, entries in
any single set can be computed in parallel. As a result, parallel hardware can be
exploited efficiently. This class of methods demonstrates great advantage over
the original sequential implementation both on CPUs [10, 20, 24, 28] and on
GPUs [12, 19, 26].

However, the set-based methods have two performance bottlenecks. Firstly,
finding a good set partitioning often takes too much time, which may offset or
even wipe out the benefits from parallelization. Secondly, the synchronization
between consecutive sets reduces parallelization efficiency at runtime. In fact,
due to these large overheads, finding an efficient thread synchronization scheme
still remains a popular research topic for computer design [11, 13, 21].

In this paper, we propose a synchronization-free algorithm for parallel Sp-
TRSV on GPUs. Our approach requires only a light-weight preprocessing stage
without set partitioning. More importantly, our method completely eliminates
the runtime barrier synchronizations among sets. By doing so, our method re-
solves the bottlenecks and achieves significant performance improvement. Using
11 sparse matrices from the University of Florida Sparse Matrix Collection [6],
our method achieves an average speedup of 2.3 times in single precision and 2.14
times in double precision over the vendor provided library on the latest NVIDIA
GPU. The maximum speedups are 5.95 and 3.65, respectively. More noticeably,
the preprocessing stage of our algorithm is on average 43.7 faster (maximum of
70.5 times) than existing set-based methods in the vendor supplied library.

2 Background

2.1 Serial Algorithm

Without loss of generality, in the paper we assume that the input matrix L is
a nonsingular lower triangular matrix and is stored in the compressed sparse
column (CSC) format composed of three arrays col ptr, row idx and val. A
typical serial implementation of SpTRSV for solving Lx = b is given in Algo-
rithm 1. This method traverses all columns in ascending order (line 3) and solves
a single component of x in each step (line 4). After that, the code updates all
the positions corresponding to the nonzero entries of the current column in an
intermediate array left sum (lines 5–7).

As can be seen, the columns in the main for loop (lines 3–8) cannot be paral-
lelized as the ith column requires the ith value in left sum (line 4), which may
be affected by previous columns that update left sum[i] (line 6). To be clear,
we give an example. Figure 1 (a) shows a matrix L, for which the underlying
dependencies are illustrated in graph form in Figure 1 (b). Obviously, vertex 5
(i.e., x5) cannot be solved before vertex 3 is solved, and vertex 3 has to wait for
vertex 0.



Algorithm 1 A serial SpTRSV method for Lx = b, where L in CSC format.
1: malloc(*left sum, n)
2: memset(*left sum, 0)
3: for i = 0 to n− 1 do
4: x[i] ← (b[i]-left sum[i])/val[col ptr[i]]
5: for j = col ptr[i]+1 to col ptr[i + 1]−1 do
6: left sum[row idx[j]] ← left sum[row idx[j]] + val[j] × x[i]
7: end for
8: end for
9: free(*left sum)

(a) L’s matrix form. (b) L’s graph form. (c) Level-sets generated.

Fig. 1. A lower triangular matrix L and parallel SpTRSV using the level-set method.

2.2 Level-Set Method for Parallel SpTRSV

The motivation of parallel-SpTRSV comes from the observation that some com-
ponents/vertices are independent and can be processed simultaneously (e.g.,
vertices 0 and 1 in Figure 1 (b)). Therefore, the components can be partitioned
into a number of sets so that components inside a set can be solved in parallel,
while the sets are processed sequentially (i.e., level by level). With this obser-
vation, Anderson and Saad [1] and Saltz [23] introduced a preprocessing stage
to perform such a partition before the solving stage. Figure 1 (c) shows that
five level-sets are generated for the matrix L. Consequently, levels 0, 1 and 2
can use parallel hardware (e.g., a dual-core machine) for accelerating SpTRSV.
However, between sets, dependencies still exist so synchronization is required at
runtime.

2.3 Motivation for Avoiding Synchronization

Synchronization remains a performance bottleneck for many applications and
has long been a classic problem in computer systems research [11, 13, 21]. To
evaluate the synchronization cost in SpTRSV, we run a parallel SpTRSV im-
plemented by Park et al. [20] based on the aforementioned level-set approach.
We show the cost of the preprocessing stage and a breakdown of the solving
stage execution time (i.e., synchronization cost and floating-point calculations)



using four representative matrices4 from the University of Florida Sparse Matrix
Collection [6].

Matrix name
Preprocessing cost SpTRSV cost SpTRSV cost breakdown (ms)

#Level-sets
(ms) (ms) Synchronization Compute

FEM/ship 003 92.46 12.95 10.96 1.99 4367
FEM/Cantilever 47.89 9.60 5.62 3.98 2397
chipcool0 8.74 1.99 1.15 0.84 534
nlpkkt160 484.67 38.30 0.01 38.29 2

Table 1. Breakdown of näıve level-set method [20] on Intel dual-socket E5-2695 v3.

We have two observations from Table 1. Firstly, the preprocessing stage takes
much longer than a single call to SpTRSV. Specifically, the preprocessing stage
is 4.39 times (matrix chipcool0 ) to 12.65 times (matrix nlpkkt160 ) slower than
the main kernel of SpTRSV. This implies that if SpTRSV is only executed a
few times, level-set based parallelization is not attractive. Secondly, when the
number of level-sets increases, the overhead for synchronization dominates the
SpTRSV solving stage execution time. For example, matrix FEM/ship 003 has
4367 level-sets that implies 4366 explicit barrier synchronizations in the solving
stage and accounts for 85% of the total SpTRSV execution time (10.96 ms out
of 12.95 ms). In contrast, the synchronization overhead for matrix nlpkkt160 is
much less as only two level-sets are generated.

Therefore, to improve the performance of parallel SpTRSV, it is crucial to
reduce the overhead for preprocessing (i.e., generating level-sets) and to avoid
the runtime barrier synchronizations.

3 Synchronization-Free Algorithm

The objective of this work is to eliminate the cost for generating level-sets and
the barrier synchronizations between the sets. Due to the inherent dependencies
among components, the major task for parallelizing SpTRSV is to clarify such
dependencies and to be sure to respect them when solving at runtime.

In this work, we use GPUs as the platform to exploit inherent parallelism
when there are many components for a very large matrix. We assign a warp of
threads to solve a single component of x (a warp is a unit of 32 SIMD threads
executed in lock-step for NVIDIA GPUs. For AMD GPUs the warp is 64 threads
and is denoted by the term wavefront). To respect the partial order of SpTRSV,
we need to be sure that the warps associated with dependent entries (if any)
must be finished first. Thus thread-blocks of multiple warps are required to be
dispatched in ascending order, even though they can be switched and finished
in arbitrary order. Since the partial order is essentially unidirectional (i.e.,
any component only depends on previous components but not on later ones, see
Figure 1 (b)), we can map entries to warps and strictly respect the partial order
of the entries so that no warp execution deadlock will occur.

4 Similar to [20], the nonsingular matrix L is the lower triangular part of the input
matrix, plus a dense main diagonal.



Therefore, before actually solving for a particular component, we let the
processing warp learn how many entries have to be computed in advance (i.e.,
the number of dependent entries). This number equals the in-degree of a vertex
in the graph representation of a matrix (Figure 1 (b)), which is also identical to
the number of nonzero entries of the current matrix row minus one (to exclude
the entry on diagonal). Thus, we use an intermediate array in degree of size n to
hold the number of nonzero entries for each row of the matrix. This is all we do in
the preprocessing stage. Algorithmically, this step is part of transposing a sparse
matrix in parallel [27]. Compared with the complex dependency extraction in
the set-based methods that have to analyse the sparsity structure, our method
requires much less work. Lines 3–7 in Algorithm 2 show the pseudocode of our
preprocessing stage.

Algorithm 2 The proposed synchronization-free SpTRSV algorithm.
1: malloc(*d left sum, *s left sum, *d in degree, *s in degree, n)
2: memset(*d left sum, *s left sum, *d in degree, *s in degree, 0)
3: function preprocessing-stage()
4: for i = 0 to nnz − 1 in parallel do
5: atomic-add(&d in degree[row idx[i]], 1)
6: end for
7: end function
8: function solving-stage()
9: th← set() . size of diagonal block
10: for i = 0 to n− 1 in parallel do . One concurrent warp for one component.
11: while s in degree[i]+1 6= d in degree[i] do
12: //busy wait
13: end while
14: x[i] ← (b[i]-d left sum[i]-s left sum[i])/val[col ptr[i]]
15: for j = col ptr[i]+1 to col ptr[i + 1]−1 in parallel do . One thread for one nonzero.
16: rid← row idx[j]
17: if rid < i + th− i%th then . Use on-chip scratchpad for red areas in Figure 3.
18: atomic-add(&s left sum[rid], val[j] × x[i])
19: atomic-add(&s in degree[rid], 1)
20: else . Use off-chip memory for green area in Figure 3.
21: atomic-add(&d left sum[rid], val[j] × x[i])
22: atomic-sub(&d in degree[rid], 1)
23: end if
24: end for
25: end for
26: end function
27: free(*d left sum, *s left sum, *d in degree, *s in degree)

Knowing the in-degree information indicating how many warps have to be
finished in advance, we can initiate sufficient numbers of warps to fully exploit
the irregular parallelism. For an arbitrary warp, after finishing the necessary
floating-point computation (line 14 in Algorithm 2) for a component, it notifies
all the later entries that depend on the current one, by atomic updating (lines 19
and 22). Note that atomic operations are needed here as multiple updates from
different warps may happen simultaneously. Therefore, a warp only has to wait
(lines 11–13) until its corresponding in-degrees are all eliminated, implying that
all the dependent components are successfully solved and the warp can start
processing safely. Due to the warp multi-issuing property of GPUs, a warp can
start processing immediately after its dependencies have been satisfied, without



any false waiting incurred by the hardware. Also, the first component of x can
be solved without any dependencies.

Figure 2 illustrates the procedure of our synchronization-free algorithm5 us-
ing an example. Suppose there are three warps enrolled, tagged as warp0, warp1
and warp2. They follow the same procedure and are context-switched by the
hardware scheduler. For an arbitrary warp, the central region contained in the
red dotted box (labelled as the critical section protecting the left sum array)
separates the whole procedure into three phases: lock-wait, critical section and
lock-update.

Fig. 2. The basic procedure of our synchronization-free algorithm.

In the lock-wait phase, the warp iteratively evaluates the status of the lock
protecting the critical section of the current warp. If locked, it waits in the loop
(known as spinning); otherwise, it stops waiting and enters the next phase. Al-
though the lock here is a spin-lock, it does not have the busy-waiting problem.
Based on our observation, if the clock() function is invoked inside the waiting
loop, the hardware warp scheduler will be signalled to switch to the next warp
context. This avoids the execution deadlock. In the critical section phase, the
warp updates the components in left sum that have dependencies on the com-
ponents the warp is currently working on. This is done in an order that depends
on the partial dependency defined by the sparsity structure. After that, it aborts
the critical section and enters the lock-update phase. In the last lock-update
phase, the warp updates the dependent in degree array, in the same order as
for the left sum (so that all the order dependencies are strictly respected). The
warp updates the related in-degrees. Depending on the number of components
in that column (line 15 in Algorithm 2), it may require one or several updates.
When an in-degree is updated to reach the target value (so that all the depen-
dencies of the component are resolved), the lock corresponding to that in-degree
is unlocked. Consequently, the warp waiting for that lock can abort the waiting
phase and enter its critical section.

Lines 8–26 in Algorithm 2 give the pseudocode for the solving stage of our
synchronization-free SpTRSV method. An optimization here is to exploit the

5 Note that hardware-level synchronizations in atomic operations should not be con-
fused with barrier synchronizations in the set-based methods, when we claim that
the proposed method is synchronization-free.



GPU on-chip scratchpad memory. The idea is to allocate two sets of intermediate
arrays, one on local scratchpad memory (s left sum and s in degree) and the
other on off-chip global memory (d left sum and d in degree), see line 1 of
Algorithm 2. When a warp finds a dependent entry (the later entry that depends
on the current one) is in the same GPU thread-block composed of multiple
warps, it updates the local arrays (lines 18–19) in the scratchpad memory for
faster accessing. Otherwise, it updates the remote off-chip arrays (lines 21-22),
to notify warps from other thread-blocks. The sum of the two arrays (line 11) is
used to verify if all the dependencies are fulfilled ultimately.

Figure 3 (a) shows an example using 12 warps organized in 3 thread-blocks
for solving a system of order 12× 12. Operations in on-chip scratchpad memory
are marked red (lines 18–19 in Algorithm 2), other operations in off-chip memory
are marked green (lines 21–22), and the diagonal entries are coloured blue (line
14). Figure 3 (b) plots read/write behaviours for solving the 12 components
(presented as 12 columns) of x. We can see that entries 0, 1 and 5 can be
solved immediately once the corresponding warps are issued since they have
no in-degree (see the top half of the subfigure), and they update values using
their out-degrees (see the bottom half). In contrast, the other entries have to
busy-wait until their in-degrees are eliminated.

(a) Matrix. (b) Read/write behaviours.

Fig. 3. An example of the proposed synchronization-free SpTRSV method. The red
area performs atomic-adds (lines 18–19 in Algorithm 2) in scratchpad memory, and the
green area performs both atomic-adds (line 21) and atomic-subs (line 22) in off-chip
memory.



4 Experimental Results

4.1 Experimental Setup

We have implemented the proposed synchronization-free SpTRSV method both
in CUDA and in OpenCL, and have evaluated it on three GPUs: (1) an NVIDIA
Tesla K40c GPU of Kepler architecture, (2) an NVIDIA GeForce GTX Titan
X GPU of newer Maxwell architecture, and (3) an AMD Radeon R9 Fury X
GPU of GCN architecture. As references, we also benchmark the most recent
SpTRSV implementations from two libraries cuSPARSE v7.5 and MKL v11.3
Update 1 provided by NVIDIA and Intel, respectively.

Because mixed-precision numerical methods have recently attracted much at-
tention, we evaluate all methods in both single and double precision. Information
about the platforms and test schemes are listed in Table 2.

The testbeds The participating SpTRSV algorithms

A dual-socket Intel Xeon
E5-2695 v3 (Haswell, 2×14 cores
@ 2.3 GHz, 128 GB ECC DDR4 @
2×68.3 GB/s).

(1) The mkl ?csrtrsv in MKL v11.3 Update 1. Note that this
is a highly tuned serial implementation.
(2) The parallel executor mkl sparse ? trsv using the
functions mkl sparse set sv hint and mkl sparse optimize as
an inspector in MKL v11.3 Update 1.

An NVIDIA Tesla K40c
(Kepler GK110B, 2880 CUDA
cores @ 0.75 GHz, 12 GB GDDR5
@ 288 GB/s, driver v352.39).

(1) The latest SpTRSV method cusparse?csrsv2 solve using
functions cusparse?csrsv2 bufferSize and
cusparse?csrsv2 analysis in its preprocessing stage in the
NVIDIA cuSPARSE v7.5.
(2) The synchronization-free method proposed in this paper.

An NVIDIA GeForce GTX
Titan X (Maxwell GM200, 3072
CUDA cores @ 1 GHz, 12 GB
GDDR5 @ 336.5 GB/s, driver
v352.39).

(1) The latest SpTRSV method cusparse?csrsv2 solve using
functions cusparse?csrsv2 bufferSize and
cusparse?csrsv2 analysis in its preprocessing stage in the
NVIDIA cuSPARSE v7.5.
(2) The synchronization-free method proposed in this paper.

An AMD Radeon R9 Fury X
(GCN Fiji, 4096 Radeon cores @
1.05 GHz, 4 GB HBM @ 512
GB/s, driver v15.12).

(1) The synchronization-free method proposed in this paper.

Table 2. The testbeds and participating SpTRSV algorithms.

Table 3 lists 11 sparse matrices used for our experiments on all platforms.
These matrices have also been used in other research on sparse matrix compu-
tations [10, 14, 15, 16, 17, 20] and are publicly available from the University of
Florida Sparse Matrix Collection [6] (except matrix Dense). The selected ma-
trices cover a wide range for the number of level-sets as well as the average
parallelism inside a level-set. For example, matrix nlpkkt160 has only two level-
sets so that the computation of most its components can run in parallel, whereas
for the matrix Dense every component has to wait for earlier components.

4.2 SpTRSV Performance

Figure 4 shows the single and double precision SpTRSV performance on the
11 matrices measured on the four platforms. Overall, the MKL and cuSPARSE
libraries show comparable performance, while our synchronization-free method is



Matrix name #Rows/Columns #Nonzeros #Level-sets Parallelism
nlpkkt160 8,345,600 229,518,112 2 4,172,800
road central 14,081,816 33,866,826 59 238,675
road usa 23,947,347 57,708,624 77 311,004
webbase-1M 1,000,005 3,105,536 514 1,946
wiki-Talk 2,394,385 5,021,410 522 4,587
chipcool0 20,082 281,150 534 37
Dense 2,000 4,000,000 2000 1
FEM/Cantilever 62,451 4,007,383 2397 26
crankseg 1 52,804 10,614,210 4056 13
FEM/ship 003 121,728 8,086,034 4367 28
hollywood-2009 1,139,905 113,891,327 82,735 14

Table 3. The benchmark suite.

nlpkkt160 road central road usa

webbase-1M wiki-Talk chipcool0

Dense FEM/Cantilever crankseg 1

FEM/ship 003 hollywood-2009 Harmonic mean

Fig. 4. The SpTRSV performance of the 11 matrices on the four platforms.

much faster (in particular on the Maxwell-based Titan X GPU) than the vendor
supplied libraries.

Specifically, on the Titan X GPU, our synchronization-free algorithm demon-
strates an average speedup over the cuSPARSE library of 2.3 times in single
precision and 2.14 times in double precision. The maximum speedups are 5.95
and 3.65, respectively. The best speedups are from a relatively regular matrix
FEM/Cantilever that has most of its nonzero entries in its diagonal blocks. For
this matrix, the optimizing strategy of using both scratchpad and off-chip mem-



ory improves the overall performance. Also, our method achieves speedups of 2.69
and 2.52 for single and double precision, respectively, for matrix hollywood-2009.
This matrix requires 82,735 runtime synchronizations (see Table 3) limiting its
performance from the level-set methods. In contrast, our method avoids synchro-
nizations and thus obtains much superior performance. For the same reason, our
method shows comparable performance compared to existing methods on matrix
nlpkkt160, which requires only two runtime synchronizations.

Compared to the Kepler based K40c GPU, the Titan X GPU offers higher
performance. The major reason is that the Maxwell architecture dramatically
improves its micro-architectures for faster atomic operations, which are exten-
sively utilized in our approach. Actually, Scogland and Feng [25] also confirmed
that atomic operations have been continuously improved in the last generations
of modern GPUs. Moreover, although the AMD Fury X GPU has higher band-
width than the NVIDIA Titan X, it is in general slower for our synchronization-
free SpTRSV algorithm. The main reason may be the difference between the
warp/wavefront scheduling strategies on the NVIDIA and AMD GPUs.

4.3 Overhead for Preprocessing

Table 4 shows the preprocessing overhead of the parallel SpTRSV implementa-
tions from MKL, cuSPARSE and our approach on the four platforms. As can be
seen, our method achieves an average speedup of 43.7 (maximum of 70.5) over
the method in cuSPARSE library on the Titan X card. On the K40c device, the
speedups are on average 58.2 with a maximum of 89.2. The major reason is that
the vendor supplied implementation attempts to find level-sets in the preprocess-
ing phase. Moreover, the AMD Fury X GPU offers lower cost for preprocessing,
due to more cores and higher off-chip memory bandwidth.

Matrix name
Intel 2xE5-2695 v3 NVIDIA K40c NVIDIA Titan X AMD Fury X

MKL cuSPARSE Sync-Free cuSPARSE Sync-Free Sync-Free
nlpkkt160 64.43 40.58 7.27 19.99 8.91 5.58
road usa 155.48 160.41 5.06 84.01 3.37 2.31
road central 92.16 82.01 9.28 42.62 6.98 5.53
wiki-Talk 17.38 16.27 0.33 10.49 0.20 0.16
webbase-1M 7.08 8.53 0.19 5.48 0.13 0.11
chipcool0 1.05 1.48 0.02 1.41 0.02 0.02
FEM/ship 003 9.14 6.41 0.19 4.34 0.26 0.13
FEM/Cantilever 9.52 8.92 0.10 8.28 0.16 0.07
hollywood-2009 223.54 139.98 5.20 204.10 4.82 2.78
crankseg 1 9.30 8.93 0.24 6.14 0.43 0.14
Dense 9.29 3.46 0.08 2.99 0.12 0.05
Harmonic mean 6.80 6.99 0.12 5.71 0.13 0.10

Table 4. Preprocessing cost (in millisecond) of the tested methods on the four plat-
forms.

5 Related Work

Existing parallel SpTRSV methods can be classified into two groups: those con-
structing level-sets and those generating colour-sets.



Anderson and Saad [1] and Saltz [23] proposed that level-sets can expose
parallelism in SpTRSV. A few recently developed parallel SpTRSV implemen-
tations have improved the level-set method for better data locality and faster
synchronization [10, 20, 28]. Maumov [19] implemented the level-set method on
NVIDIA GPUs with a tradeoff for decreasing the number of synchronizations.
Li and Saad [12] demonstrated that reordering the input matrix can further
improve parallelism but requires longer preprocessing time. Unlike the above
level-set methods, our synchronization-free SpTRSV algorithm does not analyse
the sparsity structure of the input matrix and thus completely removes costs for
generating sets and executing barrier synchronization. As a result, our method
shows much better performance than level-set methods.

Schreiber and Tang [24] first used graph colouring for constructing colour-
sets for SpTRSV on multiprocessors. When the input sparse matrix is coloured,
it is reorganized as multiple triangular submatrices located on its diagonal. Be-
cause all the submatrices can be solved in parallel, this method can be very
efficient in practice. Suchoski et al. [26] recently extended the graph colouring
method for SpTRSV to GPUs. However, as graph colouring is known to be an
NP-complete problem, finding good colour-sets for SpTRSV is in general more
time consuming. Thus it may be impractical for real-world applications.

There are also several classes of methods that do not create sets in advance.
Mayer [18] pointed out that 2D decomposition can accelerate SpTRSV but
needs to reorganize the data structure of the input matrix. Chow and Patel [4]
and Anzt et al. [2] recently developed several iterative methods for SpTRSV
for use with incomplete factorization. Because iterative methods only give ap-
proximate solutions, they should not be used more generally for other scenarios
such as using SpTRSV in sparse direct solvers. In contrast, the method we pro-
pose in this paper uses the unchanged CSC sparse matrix format and works for
general problems.

Some researchers have also utilized atomic operations for improving fun-
damental algorithms such as bitonic sort [29], prefix-sum scan [30], wave-
front [11], sparse transposition [27], and sparse matrix-vector multiplication [14,
16, 17]. Unlike those problems, the SpTRSV operation is inherently serial and
thus more irregular and complex. We also use atomic operations both in on-chip
and off-chip memory, and set atomic operations as the central part of the whole
algorithm.

6 Conclusions

In this paper, we have proposed a synchronization-free algorithm for parallel
SpTRSV. The method completely eliminates the overhead for generating level-
sets or colour-sets (in the preprocessing stage) and for explicit runtime barrier
synchronization (in the solving stage). Experimental results show that our ap-
proach makes preprocessing an order of magnitude faster than level-set methods,
and gives average speedups of 2.3 (with a maximum of 5.95) and 2.14 (with a



maximum of 3.65) over vendor supplied parallel routines for single and double
precision SpTRSV, respectively.

Acknowledgments

The authors would like to thank our anonymous reviewers for their invaluable
feedback. We also thank Shuai Che for helpful discussion about OpenCL pro-
gramming, and thank Huamin Ren for supplying access to the machine with the
NVIDIA GeForce Titan X GPU. The research leading to these results has re-
ceived funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement number 671633.

References

[1] Anderson, E., Saad, Y.: Solving Sparse Triangular Linear Systems on Parallel
Computers. International Journal of High Speed Computing 1(1), 73–95 (1989)

[2] Anzt, H., Chow, E., Dongarra, J.: Iterative Sparse Triangular Solves for Pre-
conditioning. In: Euro-Par 2015: Parallel Processing. Lecture Notes in Computer
Science, Springer Berlin Heidelberg (2015)

[3] Björck, Å.: Numerical Methods for Least Squares Problems. Society for Industrial
and Applied Mathematics (1996)

[4] Chow, E., Patel, A.: Fine-Grained Parallel Incomplete LU Factorization. SIAM
Journal on Scientific Computing 37(2), C169–C193 (2015)

[5] Davis, T.: Direct Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics (2006)

[6] Davis, T.A., Hu, Y.: The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Softw. 38(1), 1:1–1:25 (dec 2011)

[7] Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford
University Press, Inc. (1986)

[8] Duff, I.S., Heroux, M.A., Pozo, R.: An Overview of the Sparse Basic Linear Al-
gebra Subprograms: The New Standard from the BLAS Technical Forum. ACM
Trans. Math. Softw. 28(2), 239–267 (2002)

[9] Hogg, J.D.: A Fast Dense Triangular Solve in CUDA. SIAM Journal on Scientific
Computing 35(3) (2013)

[10] Kabir, H., Booth, J.D., Aupy, G., Benoit, A., Robert, Y., Raghavan, P.: STS-
k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores. In:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. pp. 55:1–55:11. SC ’15 (2015)

[11] Li, A., van den Braak, G.J., Corporaal, H., Kumar, A.: Fine-Grained Synchro-
nizations and Dataflow Programming on GPUs. In: Proceedings of the 29th ACM
on International Conference on Supercomputing. pp. 109–118. ICS ’15 (2015)

[12] Li, R., Saad, Y.: GPU-Accelerated Preconditioned Iterative Linear Solvers. The
Journal of Supercomputing 63(2), 443–466 (2013)

[13] Liang, C.K., Prvulovic, M.: MiSAR: Minimalistic Synchronization Accelerator
with Resource Overflow Management. In: Proceedings of the 42Nd Annual Inter-
national Symposium on Computer Architecture. pp. 414–426. ISCA ’15 (2015)

[14] Liu, W.: Parallel and Scalable Sparse Basic Linear Algebra Subprograms. Ph.D.
thesis, University of Copenhagen (2015)



[15] Liu, W., Vinter, B.: A Framework for General Sparse Matrix-Matrix Multiplica-
tion on GPUs and Heterogeneous Processors. Journal of Parallel and Distributed
Computing 85, 47–61 (2015)

[16] Liu, W., Vinter, B.: CSR5: An Efficient Storage Format for Cross-Platform Sparse
Matrix-Vector Multiplication. In: Proceedings of the 29th ACM International
Conference on Supercomputing. pp. 339–350. ICS ’15 (2015)

[17] Liu, W., Vinter, B.: Speculative Segmented Sum for Sparse Matrix-Vector Multi-
plication on Heterogeneous Processors. Parallel Computing 49, 179–193 (2015)

[18] Mayer, J.: Parallel Algorithms for Solving Linear Systems with Sparse Triangular
Matrices. Computing 86(4), 291–312 (2009)

[19] Naumov, M.: Parallel Solution of Sparse Triangular Linear Systems in the Pre-
conditioned Iterative Methods on the GPU. Tech. rep., NVIDIA (2011)

[20] Park, J., Smelyanskiy, M., Sundaram, N., Dubey, P.: Sparsifying Synchroniza-
tion for High-Performance Shared-Memory Sparse Triangular Solver. In: Super-
computing, Lecture Notes in Computer Science, vol. 8488, pp. 124–140. Springer
International Publishing (2014)

[21] Ros, A., Kaxiras, S.: Callback: Efficient Synchronization Without Invalidation
with a Directory Just for Spin-waiting. In: Proceedings of the 42Nd Annual In-
ternational Symposium on Computer Architecture. pp. 427–438. ISCA ’15 (2015)

[22] Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2nd edn. (2003)

[23] Saltz, J.H.: Aggregation Methods for Solving Sparse Triangular Systems on Multi-
processors. SIAM Journal on Scientific and Statistical Computing 11(1), 123–144
(1990)

[24] Schreiber, R., Tang, W.P.: Vectorizing the Conjugate Gradient Method. In: Pro-
ceedings of the Symposium on CYBER 205 Applications (1982)

[25] Scogland, T.R., Feng, W.c.: Design and Evaluation of Scalable Concurrent Queues
for Many-Core Architectures. In: Proceedings of the 6th ACM/SPEC Interna-
tional Conference on Performance Engineering. pp. 63–74. ICPE ’15 (2015)

[26] Suchoski, B., Severn, C., Shantharam, M., Raghavan, P.: Adapting Sparse Trian-
gular Solution to GPUs. In: Proceedings of the 2012 41st International Conference
on Parallel Processing Workshops. pp. 140–148. ICPPW ’12 (2012)

[27] Wang, H., Liu, W., Hou, K., Feng, W.c.: Parallel Transposition of Sparse Data
Structures. In: Proceedings of the 30th ACM International Conference on Super-
computing. ICS ’16 (2016)

[28] Wolf, M.M., Heroux, M.A., Boman, E.G.: Factors Impacting Performance of Mul-
tithreaded Sparse Triangular Solve. In: High Performance Computing for Compu-
tational Science – VECPAR 2010, Lecture Notes in Computer Science, vol. 6449,
pp. 32–44. Springer Berlin Heidelberg (2011)

[29] Xiao, S., Feng, W.c.: Inter-Block GPU Communication via Fast Barrier Synchro-
nization. In: Parallel Distributed Processing, 2010 IEEE International Symposium
on. pp. 1–12. IPDPS ’10 (2010)

[30] Yan, S., Long, G., Zhang, Y.: StreamScan: Fast Scan Algorithms for GPUs With-
out Global Barrier Synchronization. In: Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. pp. 229–238.
PPoPP ’13 (2013)


	A Synchronization-Free Algorithm for Parallel Sparse Triangular Solves

