
ar
X

iv
:1

50
4.

05
02

2v
2

 [c
s.

M
S

]
13

 S
ep

 2
01

5

A Framework for General Sparse Matrix-Matrix Multiplication on
GPUs and Heterogeneous Processors✩ ,✩✩

Weifeng Liua,∗, Brian Vintera

aNiels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark

Abstract

General sparse matrix-matrix multiplication (SpGEMM) is afundamental building block for nu-
merous applications such as algebraic multigrid method (AMG), breadth first search and shortest
path problem. Compared to other sparse BLAS routines, an efficient parallel SpGEMM imple-
mentation has to handle extra irregularity from three aspects: (1) the number of nonzero entries
in the resulting sparse matrix is unknown in advance, (2) very expensive parallel insert opera-
tions at random positions in the resulting sparse matrix dominate the execution time, and (3) load
balancing must account for sparse data in both input matrices.

In this work we propose a framework for SpGEMM on GPUs and emerging CPU-GPU
heterogeneous processors. This framework particularly focuses on the above three problems.
Memory pre-allocation for the resulting matrix is organized by a hybrid method that saves a
large amount of global memory space and efficiently utilizes the very limited on-chip scratch-
pad memory. Parallel insert operations of the nonzero entries are implemented through the GPU
merge path algorithm that is experimentally found to be the fastest GPU merge approach. Load
balancing builds on the number of necessary arithmetic operations on the nonzero entries and is
guaranteed in all stages.

Compared with the state-of-the-art CPU and GPU SpGEMM methods, our approach delivers
excellent absolute performance and relative speedups on various benchmarks multiplying matri-
ces with diverse sparsity structures. Furthermore, on heterogeneous processors, our SpGEMM
approach achieves higher throughput by using re-allocatable shared virtual memory.

Keywords:
sparse matrix, sparse matrix-matrix multiplication, linear algebra, GPU, heterogeneous
processor, merging, parallel algorithm

1. Introduction

General matrix-matrix multiplication (GEMM) is one of the most crucial operations in com-
putational science and modeling. The operation multipliesa matrixA of sizem× k with a matrix

✩This is an extended version of paper “An Efficient GPU General Sparse Matrix-Matrix Multiplication forIrregular
Data” [1] published at IPDPS ’14.

✩✩The source code of this work is available athttps://github.com/bhSPARSE/Benchmark_SpGEMM_using_CSR .
∗Corresponding author
Email addresses:weifeng.liu@nbi.ku.dk (Weifeng Liu),vinter@nbi.ku.dk (Brian Vinter)

Preprint submitted to Journal of Parallel and Distributed Computing September 15, 2015

http://arxiv.org/abs/1504.05022v2
https://github.com/bhSPARSE/Benchmark_SpGEMM_using_CSR

B of sizek × n and gives a resulting matrixC of sizem× n. In many linear solvers and graph
problems such as algebraic multigrid method (AMG) [2], breadth first search [3], finding short-
est path [4], colored intersection [5] and sub-graphs [6], it is required to exploit sparsity of the
two input matrices and the resulting matrix because their dense forms normally need huge stor-
age space and computation cost for the zero entries. Therefore general sparse matrix-matrix
multiplication (SpGEMM) becomes a common building block inthese applications.

Compared to CPUs, modern graphics processing units (GPUs) promise much higher peak
floating-point performance and memory bandwidth. Thus a lotof research has concentrated
on GPU accelerated sparse matrix-dense vector multiplication [7, 8, 9] and sparse matrix-dense
matrix multiplication [10, 11] and achieved relatively attractive performance. However, despite
the prior achievements on these GPU sparse BLAS routines, massive parallelism in GPUs is
still significantly underused for the SpGEMM algorithm, because it has to handle three more
challenging problems: (1) the number of nonzero entries in the resulting matrix is unknown in
advance, (2) very expensive parallel insert operations at random positions in the resulting matrix
dominate the execution time, and (3) load balancing must account for sparse data in both input
matrices with diverse sparsity structures.

Previous GPU SpGEMM methods [2, 12, 13, 14, 15, 16] have proposed a few solutions
for the above problems and demonstrated relatively good time and space complexity. However,
the experimental results showed that they either only work best for fairly regular sparse matri-
ces [12, 13, 16], or bring extra high memory overhead for matrices with some specific sparsity
structures [2, 14, 15]. Moreover, in the usual sense, none ofthese methods can constantly out-
perform well optimized SpGEMM approach [17] for multicore CPUs.

Our work described in this paper particularly focuses on improving GPU SpGEMM per-
formance for matrices with arbitrary irregular sparsity structures by proposing more efficient
methods to solve the above three problems on GPUs and emerging CPU-GPU heterogeneous
processors.

In this paper, we make the following contributions:

• A framework for fast SpGEMM. We design a 4-stage framework for implementing SpGEMM
on manycore platforms including homogeneous GPUs and heterogeneous processors com-
posed of CPU cores, GPU cores and shared virtual memory. Thisframework effectively
organizes memory allocation, load balancing and GPU kernellaunches.

• A hybrid method for the resulting matrix pre-allocation. We present a hybrid method
that initially allocates memory of upper bound size for short rows and progressively allo-
cates memory for long rows. The experimental results show that our method saves a large
amount of global memory space and efficiently utilizes the very limited on-chip scratchpad
memory.

• Parallel insert operations through fast merging. We propose an efficient parallel insert
method for long rows of the resulting matrix by using the fastest merge algorithm available
on GPUs. We make an experimental evaluation and choose GPU merge path algorithm
from five candidate GPU merge approaches.

• Heuristic-based load balancing. We develop a load balancing oriented heuristic method
that assigns rows of the resulting matrix to multiple bins with different subsequent compu-
tational methods. Our approach guarantees load balancing in all calculation steps.

2

Our framework and corresponding algorithms delivers excellent performance in two exper-
imental scenarios: (1) calculating triple matrix Galerkinproducts (i.e.,PTAP) in AMG for 2D
and 3D Poisson problems, and (2) computing matrix squaring (i.e., A2) on a benchmark suite
composed of 23 sparse matrices with diverse sparsity structures.

In the context of Galerkin products, our method constantly outperforms the state-of-the-
art GPU SpGEMM methods in two vendor supplied libraries cuSPARSE and CUSP. Average
speedups of 1.9x (up to 2.6x) and 1.7x (up to 2.7x) are achieved when compared to cuSPARSE
and CUSP, respectively.

In the context of matrix squaring, more comparison methods are included. First, on two
nVidia GPUs (i.e., a GeForce GTX Titan Black and a GeForce GTX980), compared with cuS-
PARSE and CUSP, our approach delivers on average 3.1x (up to 9.5x) and 4.6x (up to 9.9x)
speedups, respectively.Second, compared to a recently developed CUDA-specific SpGEMM
method RMerge [16], our method offers on average 2.5x (up to 4.9x) speedup on the nVidia
GeForce GTX 980 GPU.Third, compared to the SpGEMM method in the latest Intel Math Ker-
nel Library (MKL) on a six-core Xeon E5-2630 CPU and quad-channel system memory, our
method gives on average 2.4x (up to 5.2x) and 2.1x (up to 4.2x)speedups on the nVidia GeForce
GTX 980 GPU and an AMD Radeon R9 290X GPU, respectively.

Furthermore, our approach can utilize re-allocatable memory controlled by CPU-GPU het-
erogeneous processors. On an AMD A10-7850K heterogeneous processor, compared to merely
using its GPU cores, our framework delivers on average 1.2x (up to 1.8x) speedup while utilizing
re-allocatable shared virtual memory in the system.

2. Preliminaries

2.1. SpGEMM Overview

For the sake of generality, the SpGEMM algorithm description starts from discussion of the
GEMM and gradually takes sparsity of the matricesA, B andC into consideration. For the matrix
A, we writeai j to denote the entry in theith row and thejth column ofA andai∗ to denote the
vector consisting of theith row of A. Similarly, the notationa∗ j denotes thejth column ofA. In
the GEMM, theith row of the resulting matrixC can be defined by

ci∗ = (ai∗ · b∗1, ai∗ · b∗2, . . . , ai∗ · b∗p),

where the operation· is the dot product of the two vectors.
We first give consideration to the sparsity of the matrixA. Without loss of generality, we

assume that theith row of A only consists of two nonzero entries in thekth and thelth column,
respectively. Thusai∗ becomes (aik, ail). Since all other entries are zeros, we do not record them
explicitly and ignore their influence on the dot products in the calculation of theith row of C.
Then we obtain

ci∗ = (aikbk1 + ail bl1, aikbk2 + ail bl2, . . . , aikbkp+ ail blp).

We can see in this case, only entries in thekth and thelth row of B have contribution to the
ith row ofC. Then row vector form instead of column vector form is used for the matrixB. So
we obtain

ci∗ = aikbk∗ + ail bl∗.

Since the matrixB is sparse as well, again without loss of generality, we assume that the
kth row of B has only two nonzero entries in therth and thetth column, and thelth row of B

3

also has only two nonzero entries in thesth and thetth column. So the two rows are given by
bk∗ = (bkr, bkt) andbl∗ = (bls, blt). Then

ci∗ = aik(bkr, bkt) + ail (bls, blt).

Because the matrixC is also sparse and theith row ofC only has three nonzero entries in the
rth, thesth and thetth column, the row can be given by

ci∗ = (cir , cis, cit),

wherecir = aikbkr, cis = ail bls andcit = aikbkt + ail blt .
In general there are more nonzero entries per rows of the matricesA, B andC. But from the

above derivation we can see that the SpGEMM can be represented by operations on row vectors
of the matrices. Therefore, in this work we store all sparse matrices in compressed sparse row
(CSR) format. The CSR format of a matrix consists of three separate arrays: (1) row pointer
array of sizen+ 1, wheren is the number of rows of the matrix, (2) column index array of size
nnz, wherennz is the number of nonzero entries of the matrix, and (3) value array of sizennz.
Hence the overall space complexity of the CSR format isO(n+nnz). Actually compressed sparse
column (CSC) format is also widely used for sparse matrices stored in column-major order [18].
The SpGEMM in the CSC format is almost the same as in the CSR format except rows are
changed to columns and vice versa.

The above CSR-based SpGEMM algorithm can be performed by pseudocode in Algorithm 1.
An early description of this algorithm was given by Gustavson [19].

Algorithm 1 Pseudocode for the SpGEMM.
1: for eachai∗ in the matrixA do
2: set ci∗ to ∅

3: for eachnonzero entryai j in ai∗ do
4: load b j∗

5: for eachnonzero entryb jk in b j∗ do
6: value← ai j b jk

7: if cik < ci∗ then
8: insert cik to ci∗

9: cik ← value
10: else
11: cik ← cik + value
12: end if
13: end for
14: end for
15: end for

2.2. Prior SpGEMM Algorithms

A classic CPU SpGEMM algorithm, also known as Matlab algorithm, was proposed by
Gilbert et al. [18]. This approach uses a dense vector-basedsparse accumulator (or SPA) and
takesO(f lops+nnz(B)+n) time to complete the SpGEMM, wheref lops is defined as the num-
ber of necessary arithmetic operations on the nonzero entries,nnz(B) is defined as the number

4

of nonzero entries in the matrixB, andn is the number of rows/columns of the input square
matrices. Matam et al. [20] developed a similar Matlab algorithm implementation for GPUs.
Sulatycke and Ghose [21] proposed a cache hits-oriented algorithm runs in relatively longer time
O(f lops+n2). A fast serial SpGEMM algorithm with time complexityO(nnz0.7n1.2+n2+o(1)) was
developed by Yuster and Zwick [22]. Buluç and Gilbert [23] presented an SpGEMM algorithm
with time complexity independent to the size of the input matrices under assumptions that the
algorithm is used as a sub-routine of 2D distributed memory SpGEMM and the input matrices
are hypersparse (nnz< n).

Recent GPU-based SpGEMM algorithms showed better time complexity. The SpGEMM
algorithm in the cuSPARSE library [12, 13] utilized GPU hashtable for the insert operations
(lines 7–11 in Algorithm 1). So time complexity of this approach isO(f lops) on average and
O(f lops nnzr(C)) in the worst case, wherennzr(C) is defined as the average number of nonzero
entries in the rows of the matrixC. Because the algorithm allocates one hash table of fixed size
for each row ofC, the space complexity isO(nnz(A) + nnz(B) + n+ nnz(C)).

The CUSP library [2, 14] developed an SpGEMM method called expansion, sorting and com-
pression (ESC) that expands all candidate nonzero entries generated by the necessary arithmetic
operations (line 6 in Algorithm 1) into an intermediate sparse matrixĈ, sorts the matrix by rows
and columns and compresses it into the resulting matrixC by eliminating entries in duplicate
positions. By using GPU radix sort algorithm (with linear time complexity while size of the
index data type of the matrices is fixed) and prefix-sum scan algorithm (with linear time com-
plexity) as building blocks, time complexity of the ESC algorithm isO(f lops+nnz(Ĉ)+nnz(Ĉ)).
Sincennz(Ĉ) equals half off lops, the ESC algorithm takes the optimalO(f lops) time. Dalton
et al. [15] improved the ESC algorithm by executing sorting and compression on the rows of̂C,
but not on the entire matrix. Therefore fast on-chip memory has a chance to be utilized more
efficiently. The improved method sorts the very short rows (of size no more than 32) by using
sorting network algorithm (with time complexityO(nnzr(Ĉ) log2(nnzr(Ĉ)))) instead of the radix
sort algorithm which is mainly efficient for long lists. So the newer method is more efficient
in practice, even though its time complexity is not lower than the original ESC algorithm. Be-
cause both of the ESC algorithms allocate an intermediate matrix Ĉ, they have the same space
complexityO(nnz(A) + nnz(B) + nnz(Ĉ) + nnz(C)).

RMerge algorithm, recently proposed by Gremse et al. [16], iteratively merges rows in the
matrix B into the resulting matrixC. Because this approach underutilizes thread interaction
and generates one intermediate sparse matrix for each iteration step, it works best for input
matrices with evenly distributed short rows. For irregularinput matrices, load imbalance and
large memory allocation make this method inefficient.

2.3. Terminology Definition for GPU Programming
Because CUDA and OpenCL are both widely used in GPU programming and they actually

deliver comparable performance [24], our SpGEMM algorithmsupport both of them. We use
CUDA implementation on nVidia GPUs and OpenCL implementation on AMD GPU in our
SpGEMM evaluation.

For simplicity, we define the following unified terminologies: (1) threaddenotesthread in
CUDA andwork item in OpenCL, (2)thread bunchdenoteswarp in nVidia GPU andwave-
front in AMD GPU, (3) thread groupdenotesthread blockor cooperative thread array (CTA)
in CUDA and work group in OpenCL, (4)core denotesstreaming multiprocessor (SMX)or
Maxwell streaming multiprocessor (SMM)in nVidia GPU andcompute unitin AMD GPU, and
(5) scratchpad memorydenotesshared memoryin CUDA andlocal memoryin OpenCL.

5

3. Performance Considerations

3.1. Memory Pre-allocation For the Resulting Matrix

Compared to SpGEMM, other sparse matrix multiplication operations (e.g., multiplication of
sparse matrix and dense matrix [10, 11, 25] and its special case sparse matrix-vector multiplica-
tion [7, 8, 9, 26, 27]) pre-allocate a dense resulting matrixor vector. Thus the size of the result of
the multiplication is trivially predictable, and the corresponding entries are stored to predictable
memory addresses. However, because the number of nonzero entries in the resulting sparse ma-
trix C is unknown in advance, precise memory allocation of the SpGEMM is impossible before
real computation. Moreover, physical address of each new entry is unknown either (consider line
7 in Algorithm 1, the positionk is only a column index that cannot trivially map to a physical
address on memory space).

To solve this problem, the previous SpGEMM algorithms proposed four different solutions:
(1) precise method, (2) probabilistic method, (3) upper bound method, and (4) progressive
method.

The first method,precise method, pre-computes a simplified SpGEMM in the same com-
putational pattern. We can imagine that multiplication of sparse boolean matrices is more effi-
cient than multiplication of sparse floating-point matrices. RMerge algorithm and the SpGEMM
methods in cuSPARSE and MKL are representatives of this approach. Even though the pre-
computation generates precise size ofnnz(C), this method is relatively expensive since the SpGEMM
operation in the same pattern is executed twice.

The second method,probabilistic method, estimates an imprecisennz(C). This group of
approaches [28, 29, 30] are based on random sampling and probability analysis on the input
matrices. Since they do not guarantee a safe lower bound for the resulting matrixC and extra
memory has to be allocated while the estimation fails, they were mostly used for estimating the
shortest execution time of multiplication of multiple sparse matrices.

The third method,upper bound method, computes an upper bound of the number of nonzero
entries in the resulting matrixC and allocates corresponding memory space. Numerically, the
upper bound size equalsnnz(Ĉ), or half of f lops, the number of necessary arithmetic operations.
The ESC algorithms use this method for memory pre-allocation. Even though this approach
saves cost of the pre-computation in the precise method, it brings another problem that the in-
termediate matrix̂C may be too large to fit in the device global memory. Since the SpGEMM
algorithm does not take into consideration cancellation that eliminates zero entries generated by
arithmetic operations, the resulting matrix is normally larger than the input matrices. Table 2
shows thatnnz(Ĉ) is much larger thannnz(C) while squaring some matrices. For example, the
sparse matrixWind Tunnelgenerates 626.1 million nonzero entries (or 7.5 GB memory space for
32-bit index and 64-bit value) for the intermediate matrixĈ while the real productC (i.e., A2)
only contains 32.8 million nonzero entries. Although the upper bound method can partition the
intermediate matrix̂C into multiple sub-matrices, higher global memory pressuremay reduce
overall performance.

The last method,progressive method, first allocates memory of a proper size, starts sparse
matrix computation and re-allocates the buffer if larger space is required. Some CPU sparse
matrix libraries use this method. For instance, sparse matrix computation in the Matlab [18]
increases the buffer by a ratio of 50% if the current memory space is exhausted.

Since the upper bound method sacrifices space efficiency for the sake of improved perfor-
mance and the progressive method is good at saving space, we use a hybrid method composed of
the both approaches. However, compared to the relatively convenient upper bound method, it is

6

hard to directly implement a progressive method for discrete GPUs. The reason is that although
modern GPU devices have the ability of allocating device global memory while kernels are run-
ning, they still cannot re-allocate device memory on the fly.We will describe our hybrid method
designed for discrete GPUs in the next section.

On the other hand, emerging heterogeneous processors, composed of multiple CPU cores
and GPU cores in one chip, supply both flexibility and efficiency. AMD Accelerated Process-
ing Units (APUs) [31, 32], Intel multi-CPU and GPU system-on-a-chips (SoC) devices [33],
nVidia Echelon heterogeneous GPU architecture [34], and many mobile processors (e.g., nVidia
Tegra [35] and Qualcomm Snapdragon [36]) are representatives of the heterogeneous processor.
Heterogeneous system architecture (HSA) [37] and OpenCL 2.0 [38] deliver programming tools
for some heterogeneous processors. In this architecture, integrated GPU cores can directly use
system memory allocated by the CPU part. Then data transfer through connection interfaces
such as PCIe link can be avoided to obtain higher performance[39]. This gives our SpGEMM
algorithm a chance to let integrated GPUs use re-allocatable system memory for a better overall
performance. Later on, we will show the corresponding performance gain by using an AMD
APU.

3.2. Parallel Insert Operations
As shown in Algorithm 1, for each trivial arithmetic computation (line 6), one much more

expensive insert operation (lines 7–11) is required. To thebest of our knowledge, none of the
previous GPU SpGEMM methods takes into account that the input sequence (line 4) is ordered
because of the CSR format1. One of our algorithm design objectives is to efficiently utilize this
property. Based on experiments by Kim et al. [40], as the SIMDunits are getting wider and wider,
merge sort methods will outperform hash table methods on thejoin-merge problem, which is a
similar problem in the SpGEMM. Then our problem converts to finding a fast GPU method for
merging sorted sequences. Later on we will describe our strategy in detail.

3.3. Load Balancing
Because distribution patterns of nonzero entries in both input sparse matrices can be very

diverse (consider plots of the matrices in Table 2), input space-based data decomposition [12, 21]
normally does not bring efficient load balancing. One exception is that computing SpGEMM for
huge sparse matrices on large scale distributed memory systems, 2D and 3D decomposition
on input space methods demonstrated good load balancing andscalability by utilizing efficient
communication strategies [3, 41, 42]. However, in this paper we mainly consider load balancing
for fine-grained parallelism in GPU and CPU-GPU shared memory architectures.

Therefore we use the other group of load balancing methods based on output space decom-
position. Dalton et al. [15] presented a method that sorts rows of the intermediate matrix̂C,
divides it into 3 sub-matrices that include the rows in different size ranges, and uses differenti-
ated ESC methods for the sub-matrices. We have a similar consideration, but our implementation
is completely different. We do not strictly sort rows of the intermediate matrix Ĉ but just assign
rows to a fixed number of bins through a much faster linear timetraverse on CPU. Moreover,
we decompose the output space in a more detailed way that guarantees much more efficient
load balancing. We will demonstrate that our method is always load balanced in all stages for
maximizing resource utilization of GPUs.

1Actually according to the CSR format standard, the column indices in each row do not necessarily have to be sorted.
But most implementations choose to do so, thus our method reasonably makes this assumption.

7

4. Methodology

4.1. Framework and Algorithm Design

Our SpGEMM framework includes four stages: (1) calculatingupper bound, (2) binning, (3)
computing the resulting matrix, and (4) arranging data. Figure 1 plots this framework.

Figure 1: The SpGEMM framework composed of four stages.

The first stage, calculating upper bound, generates the upper bound numberof nonzero
entries in each row of the resulting matrixC. We create an arrayU of size m, wherem is
the number of rows ofC, for the upper bound sizes of the rows. We use one GPU thread for
computing each entry of the arrayU. Algorithm 2 describes this procedure.

Algorithm 2 Pseudocode for the first stage on GPUs.
1: for eachentryui in U in parallel do
2: ui ← 0
3: for eachnonzero entryai j in ai∗ do
4: ui ← ui + nnz(b j∗)
5: end for
6: end for

The second stage, binning, deals with load balancing and memory pre-allocation. We first
allocate 38 bins and put them into five bin groups. The bins contain the indices of the entries in
the arrayU and present as one array of sizem with 38 segments. Then all rows are assigned to
corresponding bins according to the number of nonzero entries. Finally, based on the sizes of the
bins, we allocate a temporary matrix for nonzero entries in the resulting matrixC.

The first bin group includes one bin that contains the indicesof the rows of size 0. The
second bin group also only has one bin that contains the indices of the rows of size 1. Because
the rows in the first two bins only require trivial operations, they are excluded from subsequent
more complex computation on GPUs. Thus a better load balancing can be expected.

The third bin group is composed of 31 bins that contain the indices of the rows of sizes 2–32,
respectively. Since the sizes of these rows are no more than the size of a single thread bunch
(32 in current nVidia GPUs or 64 in current AMD GPUs) and theserows require non-trivial
computation, using one thread bunch or one thread group for each row cannot bring efficient

8

instruction throughput on GPUs. Therefore, we use one thread for each row. Further, because
each bin only contains the rows of the same upper bound size, the bins can be executed separately
on GPUs with different kernel programs for efficient load balancing. In other words, 31 GPU
kernel programs will be executed for the 31 bins, if not empty.

The fourth bin group consists of 4 bins that contain the indices of the rows located in size
ranges 33–64, 65–128, 129–256 and 257–512, respectively. The rows of these sizes are grouped
because of three reasons: (1) each of them is large enough to be efficiently executed by a thread
group, (2) each of them is small enough for scratchpad memory(48 kB per core in current nVidia
Kepler GPUs, 96 kB per core in current nVidia Maxwell GPUs and64 kB per core in current
AMD Graphics Core Next, or GCN, GPUs), and (3) the final sizes of these rows in the resulting
matrix C are predictable in a reasonable small range (no less than thelower bound of size 1
and no more than the corresponding upper bound sizes). Even though the rows in each bin do
not have exactly the same upper bound size, a good load balancing still can be expected because
each row is executed by using one thread group and inter-thread group load balancing is naturally
guaranteed by the GPU low-level scheduling sub-systems.

The fifth bin group includes the last bin that contains the indices of the rest of the rows of
size larger than 512. These rows have two common features: (1) their sizes can be too large
(recallnnzr(Ĉ) in Table 2) to fit in the scratchpad memory, and (2) predicting the final sizes of
these rows to a small range (scratchpad memory level) is not possible in advance. Therefore, we
execute them in a unified progressive method described later. Again because we use one thread
group for each row, load balancing is naturally guaranteed.

Since we do not use precise method for memory pre-allocation, a temporary memory space
for the resulting matrixC is required. We design a hybrid method that allocates a CSR format
sparse matrix̃C of the same size of the resulting matrixC as temporary matrix. We setnnz(̃ci∗)
to ui while the row indexi is located in the bin groups 1–4 because compared with modernGPU
global memory capacity, the total space requirement of these rows is relatively small. For the
rows in the bin group 5, we setnnz(̃ci∗) to a fixed size 256 since normally this is an efficient
working size for the scratchpad memory. Therefore, we can see that if all of the indices of the
rows are in the bin groups 1–4, our hybrid method converts to the upper bound method, on the
other extreme end, our method converts to the progressive method. But generally, we obtain
benefits from the both individual methods. The stage 2 is executed on CPU since it only requires
a few simple linear time traverses, which are more efficient for the CPU cache sub-systems. The
pseudocode is shown in Algorithm 3.

The third stage, computing the resulting matrix, generatesnnz(ci∗) and the final nonzero
entries stored in the temporary matrix̃C.

For the rows in the bin groups 1–2, we simply update the numbers of corresponding nonzero
entries. For the rows in the bin groups 3–5, we use three totally different methods: (1) heap
method, (2) bitonic ESC method, and (3) merge method, respectively. Note that each bin has a
counter (at the host side) that records the number of rows included. So the host can easily decide
if a GPU kernel will be issued for a certain bin. In other words, our approach only issue kernels
for non-empty bins.

The heap method first creates an empty implicit index-value pair heap (or priority queue) of
the upper bound size for each row in the bin group 3. The heaps are located in the scratchpad
memory and collect all candidate nonzero entries for corresponding rows. Then each heap ex-
ecutes a heapsort-like operation to generate an ordered sequence located in the tail part of the
heap. The difference between this operation and the classic heapsort operation is that the entries
in the resulting sequence are duplicate-free while the initial heap includes duplicate entries. In

9

Algorithm 3 Pseudocode for the second stage on a CPU core.
1: for eachentryui in U do
2: if ui = 0 then ⊲ The 1st bin group
3: insert i to bin0

4: nnz(̃ci∗)← 0
5: else ifui = 1 then ⊲ The 2nd bin group
6: insert i to bin1

7: nnz(̃ci∗)← 1
8: else ifui ≥ 2 && ui ≤ 32 then ⊲ The 3rd bin group
9: insert i to binui

10: nnz(̃ci∗)← ui

11: else ifui ≥ 33 && ui ≤ 64 then ⊲ The 4th bin group
12: insert i to bin33

13: nnz(̃ci∗)← ui

14: else ifui ≥ 65 && ui ≤ 128then ⊲ The 4th bin group
15: insert i to bin34

16: nnz(̃ci∗)← ui

17: else ifui ≥ 129 && ui ≤ 256then ⊲ The 4th bin group
18: insert i to bin35

19: nnz(̃ci∗)← ui

20: else ifui ≥ 257 && ui ≤ 512then ⊲ The 4th bin group
21: insert i to bin36

22: nnz(̃ci∗)← ui

23: else ifui > 512then ⊲ The 5th bin group
24: insert i to bin37

25: nnz(̃ci∗)← 256
26: end if
27: end for
28: nnz(C̃)←

∑
nnz(̃ci∗)

each delete-max step in our variant heapsort, the root node and the first entry of the resulting
sequence are fused if they share the same index; otherwise the root node is inserted to the head
part of the sequence. Our method is also distinguished from aheap-based sparse accumulator
given by Gilbert et al. [43] by the mechanism of eliminating duplicate entries. Figure 2 gives two
steps of an example of our heap method. Finally, the sorted sequence without duplicate indices is
generated in the scratchpad memory and saved to the matrixC̃ in the global memory. In addition,
the numbers of nonzero entries in the rows of the resulting matrix C are updated to the sizes of
the corresponding resulting sequences.

For the rows in each bin of the bin group 4, a typical ESC algorithm is used. The method first
collects all candidate nonzero entries to an array in the scratchpad memory, then sorts the array
by using basic bitonic sort and compresses duplicate indices in the sequence by using prefix-sum
scan. Figure 3 shows an example of this procedure. Finally, asorted sequence without duplicate
indices is generated in the scratchpad memory and saved to the matrixC̃, and the numbers of
nonzero entries in the rows are updated.

For the rows in the bin group 5, our method inserts each input nonzero entry to the corre-

10

(a) (b) (c)

Figure 2: Two steps of an example of the heap method. From (a) to (b), the root entry is fused to the first entry in
resulting sequence since they share the same index. From (b)to (c), the root entry is inserted to the sequence since they
have different indices. After each step, the heap property is reconstructed.

Figure 3: An example of the bitonic ESC method.

sponding row of the resulting matrixC (lines 7–11 in Algorithm 1) in parallel. We can see that the
input sequence (the candidate nonzero entries) and the resulting sequence (the selected nonzero
entries in the current row ofC) should always be kept ordered and duplicate-free because of the
CSR format. Therefore, we can convert the parallel insert operations to parallel merge operations
that merge ordered sequences and the final resulting sequence is ordered and duplicate-free.

Each parallel merge operation can be split into multiple sub-steps: (1) a binary search op-
eration on the resulting sequence for fusing entries with the same indices and tagging them, (2)
a prefix-sum scan operation on the input sequence for gettingcontinuous positions in the incre-
mental part of the resulting sequence, (3) copying non-duplicate entries from the input sequence
to the resulting sequence, and (4) merging the two sequencesin one continuous memory space.
Figure 4 shows an example of this procedure. After all input sequences are merged into one
resulting sequence, it is saved to the matrixC̃. Then the numbers of nonzero entries in the rows
are updated.

As we allocate a limited scratchpad memory space for the resulting sequence, a potential
overflow may happen. In this case, we first compare total size of the two sequences (note that
the input sequence is in the thread registers, but not in the scratchpad memory yet) with the
allocated size of the resulting sequence in the scratchpad memory. If a merge operation is not
allowed, our method records current computation position as a checkpoint and dumps the result-
ing sequence from the scratchpad memory to the global memory. Then the host allocates more

11

Figure 4: An example of the merge method. The input sequence is in the register file. Its mask sequence and the resulting
sequence are in the scratchpad memory.

global memory (we use 2x each time) and re-launches kernel with a 2x large scratchpad memory
setting. The relaunched kernels obtain checkpoint information, and load existing results to the
scratchpad memory and continue the computation. The globalmemory dumping and reloading
bring an extra overhead, but actually it does not affect the total execution time too much because
of three reasons: (1) the global memory access is almost completely coalesced, (2) the latency
could be hidden by subsequent computation, and (3) this overhead is only a small factor of large
computation (short rows normally do not face this problem).For very long rows that exceed
the scratchpad memory capacity, our method still allocatesa space in the scratchpad memory
as a level-1 merge sequence, executes the same merge operations on it and merges the level-1
sequence in the scratchpad memory and the resulting sequence in the global memory only once
before the kernel is ready to return.

It is worth noting that the parameters of the binning dependson specifications (e.g., thread
bunch size and scratchpad memory capacity) of GPU architectures. In this paper, we use the
abovementioned fixed-size parameters for assigning the rows into the bins since the current
nVidia GPUs and AMD GPUs have comparable hardware specifications. However, the strategies
in stages 2 and 3 can be easily extended for future GPUs with changed architecture designs.

The fourth stage, arranging data, first sums the numbers of nonzero entries inall rows of
the resulting matrixC and allocates its final memory space. Then our method copies existing
nonzero entries from the temporary matrix̃C to the resulting matrixC. For the rows in the bin
group 1, the copy operation is not required. For the rows in the bin group 2, we use one thread
for each row. For the rest of the rows in the bin groups 3–5, we use one thread group for each
row. After all copy operations, the SpGEMM computation is done.

4.2. Evaluating GPU Merge algorithms

Because both the binary search and the prefix-sum scan take fast logarithmic time for each
entry in the input sequence, these operations have relatively good efficiency and performance

12

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Performance comparison of merging 32-bit keys, 32-bit key-32-bit value pairs and 32-bit key-64-bit value pairs
through 5 GPU merge algorithms: ranking merge, merge path, basic oddeven merge, basic bitonic merge and advanced
bitonic merge on three different GPUs: nVidia GeForce GTX Titan Black, nVidia GeForce GTX 980 and AMD Radeon
R9 290X.

stability on modern GPUs. Therefore, a fast merge algorithmis very crucial for the performance
of the merge method in our SpGEMM framework.

Recently some new merge algorithms [44, 45, 46, 47, 48, 49, 50] have been proposed for
GPUs. But which one is the fastest in practice is still an openquestion. Because the main objec-
tive of the research [48, 49, 50] is efficiently merging large data in the global memory, they still
use basic methods, such as bitonic sort and ranking-based merge, as building blocks for small
data in the scratchpad memory. Peters et al. [47] proposed a locality-oriented advanced bitonic

13

sort method that can reduce synchronization overhead by merging data in fast private memory
instead of relatively slow shared memory. Therefore we evaluate 5 GPU merge algorithms:
(1) ranking merge [44], (2) merge path [45], (3) basic oddeven merge [46], (4) basic bitonic
merge [46], and (5) advanced bitonic merge [47]. The implementation of the algorithm (2) is
extracted from the Modern GPU library [51]. The implementations of the algorithm (3) and (4)
are extracted from the nVidia CUDA SDK. We implement the algorithm (1) and (5). Addition-
ally, another reason why we conduct the evaluation is that none of the above literature presented
performance of merging short sequences of size less than 212, which is the most important length
(consider thennzr(C) in Table 2) for our SpGEMM.

Our evaluation results of merging 32-bit keys, 32-bit key-32-bit value pairs and 32-bit key-
64-bit value pairs are shown in Figure 5. The experimental platforms are described in Table 1.
Each of the five algorithms merges two short ordered sequences of sizel into one ordered output
sequence of size 2l. The sorting network methods in our evaluation only executethe last stage,
since both inputs are sorted. To saturate throughput of GPUs, the whole problem size is set to size
225. For example, 214 thread groups are launched while each of them merges two sub-sequences
of size l = 210. We execute each problem set through multiple thread groupsof different sizes
and record the best performance for the evaluation.

In Figure 5, we can see that the GPU merge path algorithm almost always outperforms other
methods while sub-sequence size is no less than 28. Since our merge method starts from size
256, the merge path method is chosen for our SpGEMM implementation. The extra advantages
of the merge path method are that it can evenly assign work load to threads and can easily deal
with the input sequences of arbitrary sizes. Detailed description and complexity analysis of the
GPU merge path algorithm can be found in [45].

Other algorithms are not chosen because of various reasons.We can see that the ranking
merge is faster than the merge path method in Figure 5(f). Butit is not chosen in our implemen-
tation, since this algorithm is an out-of-place method thatrequires more scratchpad memory and
thus cannot scale to longer sequences. Because the basic bitonic merge and the basic oddeven
merge in general do not show better performance and cannot simply deal with data of arbitrary
sizes, none of them is chosen. The advanced bitonic sort method is always the slowest because
it loads data from the scratchpad memory to thread private memory (register file or an off-chip
memory space) for data locality. However, due to the small ornegatively large latency gap be-
tween the scratchpad memory and the thread private memory, the load operations actually reduce
the overall performance. Thus this method should only be used for migrating global memory ac-
cess to scratchpad memory access.

We can also see that the AMD Radeon R9 290X GPU is almost alwaysmuch faster than the
two nVidia GPUs in all tests. The reason is that the capacity of the scratchpad memory (2816
kB, 64 kB/core× 44 cores, in the AMD GPU, 1536 kB, 96 kB/core× 16 cores, in the nVidia
Maxwell-based GTX 980 GPU and 720 kB, 48 kB/core× 15 cores, in the nVidia Kepler-based
GTX Titan Black GPU) heavily influence the performance of merging small sequences. For the
same reason, the GTX 980 GPU delivers better overall performance than the GTX Titan Black
GPU. On the other hand, even though the AMD GPU has 64 kB scratchpad memory per core,
each instance of the kernel program can only use up to 32 kB. Thus the AMD GPU cannot scale
to longer sub-sequences (e.g., 212 with 32-bit key-32-bit value pairs) that can be executed by
using the nVidia GPUs.

14

5. Experimental Results

5.1. Testbeds

We use four platforms (one CPU and three GPUs) shown in Table 1for evaluating the
SpGEMM algorithms. The host side of all GPUs is a quad-core 3.7GHz CPU in an AMD A10-
7850K APU with 8 GB DDR3-1600 dual-channel system memory and64-bit Ubuntu Linux
14.04.

Table 1: One CPU and three GPUs used for benchmarking
Vendor Intel nVidia nVidia AMD

Family Xeon CPU GeForce GPU GeForce GPU Radeon GPU

Device E5-2630 GTX Titan Black GTX 980 R9 290X

Codename Sandy Bridge Kepler GK110 Maxwell GM204 GCN Hawaii

#Cores 6 15 16 44

#SIMD units 6×256-bit wide 2880 CUDA cores 2048 CUDA cores 2816 Radeon cores

Clock 2.3 GHz 889 MHz 1126 MHz 1050 MHz

SP flop/cycle 96 5760 4096 5632

SP Peak 220.8 GFlop/s 5120.6 GFlop/s 4612.1 GFlop/s 5913.6 GFlop/s

DP flop/cycle 48 1920 128 704

DP Peak 110.4 GFlop/s 1706.9 GFlop/s 144.1 GFlop/s 739.2 GFlop/s

On-chip scratchpad N/A 720 kB 1536 kB 2816 kB

Memory 32 GB DDR3-1333 (4
channels)

6 GB GDDR5 4 GB GDDR5 4 GB GDDR5

Bandwidth 42.6 GB/s 336 GB/s 224 GB/s 345.6 GB/s

OS (64-bit) Ubuntu 12.04 Ubuntu 14.04 Ubuntu 14.04 Ubuntu 14.04

Device driver N/A v344.16 v344.16 v14.41

Compiler Intel C++ v14.0 g++ v4.9,
nvcc v6.5.19

g++ v4.9,
nvcc v6.5.19

g++ v4.9,
OpenCL v1.2

Library Intel MKL v11.0 CUSP v0.4.0,
cuSPARSE v6.5,
RMerge,
bhSPARSE

CUSP v0.4.0,
cuSPARSE v6.5,
RMerge,
bhSPARSE

bhSPARSE

5.2. Performance Comparison for Galerkin Products

Calculating Galerkin products plays an important role in AMG. We use smoothed aggre-
gation preconditioner with Jacobi smoother (described in [2] and implemented in the CUSP
library [14]) as a test scenario for evaluating SpGEMM algorithms. In each level of an AMG hi-
erarchy in this context, we multiply three sparse matricesPT , A andP, where rectangular matrix
PT is a restriction operator, square matrixA is initially the system matrix, and rectangular matrix
P is a prolongation operator.

Figures 6 and 7 show execution time of Galerkin productsPTAP in constructing an AMG
hierarchy (typically including 3-5 levels) for a smoothed aggregation preconditioner in sin-
gle precision and double precision, respectively. The input system matrixA is from 2D 5-
point, 2D 9-point, 3D 7-point or 3D 27-point Poisson problem, respectively. The two 2D prob-
lems have dimensions 1024× 1024 and generate system matrices of size 1048576× 1048576.
The two 3D problems have dimensions 101× 101× 101 and generate system matrices of size
1030301× 1030301. The SpGEMM approaches in three libraries, CUSP v0.4.0, cuSPARSE

15

v6.5 and bhSPARSE2, are tested on nVidia GeForce GTX Titan Black and GeForce GTX980
GPUs. To obtain the best SpGEMM performance, CUSP uses the coordinate (COO) format for
its input matrices. The other two libraries use the CSR format. Because the operation multiplies
three sparse matricesPT , A andP, the order of multiplication may influence overall performance.
Here we test the two possible orders (PTA)P andPT(AP). In our experiments, matrix data trans-
fer time between the host and the device is not included sincethe SpGEMM is normally one of
the building blocks for more complex problem completely running on GPUs.

(a) 2D 5-point (b) 2D 9-point (c) 3D 7-point (d) 3D 27-point

Figure 6: Execution time (in milliseconds) comparison of single precision SpGEMM (SpSGEMM) from three libraries
CUSP, cuSPARSE and bhSPARSE in the context of smoothed aggregation preconditioner with Jacobi smoother. The
system matrices are from four Poisson problems. Both (PT A)P andPT(AP) are tested on two nVidia GPUs.

(a) 2D 5-point (b) 2D 9-point (c) 3D 7-point (d) 3D 27-point

Figure 7: Execution time (in milliseconds) comparison of double precision SpGEMM (SpDGEMM) from three libraries
CUSP, cuSPARSE and bhSPARSE in the context of smoothed aggregation preconditioner with Jacobi smoother. The
system matrices are from four Poisson problems. Both (PT A)P andPT(AP) are tested on two nVidia GPUs.

In Figures 6 and 7, we can see that our method is constantly faster than SpGEMM algo-
rithms in the other two libraries. When using system matrix from 3D 27-point Poisson problem,
bhSPARSE delivers up to 2.6x and up to 2.7x speedups over cuSPARSE and CUSP, respectively.
On average, speedups of 1.9x and 1.7x are achieved when compared with the above two libraries,
respectively.

As for the order of multiplication, we can see that our methodin general gives better per-
formance while doingPT(AP), compared to running (PTA)P. In contrast, the order of multi-
plication does not bring obvious performance difference for CUSP. When cuSPARSE is used,

2We call our library bhSPARSE since this work is under the Project Bohrium [52].

16

(PTA)P delivers better throughput for the two 2D problems, but degrades throughput for the two
3D problems.

5.3. Benchmark Suite for Evaluating Matrix Squaring
We also evaluate multiplication of sparse square matrix anditself (i.e., C = A2) to avoid

introducing another sparse matrix as a multiplier with different sparsity structure. We choose
23 sparse matrices as our benchmark suite. 16 of them were widely used for performance eval-
uations in previous sparse matrix computation research [8,9, 12, 15, 16, 17, 25, 26, 53]. The
other 7 new matrices are chosen since they bring more diverseirregular sparsity structures that
challenge the SpGEMM algorithm design. The variety of sparsity structures are from many
application fields, such as finite element methods, macroeconomic model, protein data, circuit
simulation, web connectivity and combinational problem. All of the 23 matrices are download-
able from the University of Florida Sparse Matrix Collection [54]. Note that symmetry in the
sparse matrices is not used in our SpGEMM algorithm, although some matrices in the bench-
mark suite are symmetric. Also note that we use the standard CSR format that does not consider
symmetric storage pattern.

Besides the input matrixA, the work complexities of the different SpGEMM algorithms also
depend on the intermediate matrix̂C and the resulting matrixC. So we list characteristics of the
three matrices in Table 2. The set of characteristics includes matrix dimension (n), the number
of nonzero entries (nnz) and the average number of nonzero entries in rows (nnzr). The upper
9 matrices in the table have relatively regular nonzero entry distribution mostly on the diagonal.
The other 14 matrices include various irregular sparsity structures.

5.4. Performance Comparison for Matrix Squaring
The single precision and double precision absolute performance of the SpGEMM algorithms

that computeC = A2 are shown in Figures 8 and 9, respectively. Four GPU methods from CUSP
v0.4.0, cuSPARSE v6.5, RMerge [16] and bhSPARSE are evaluated on three GPUs: nVidia
GeForce GTX Titan Black, nVidia GeForce GTX 980 and AMD Radeon R9 290X. One CPU
method in Intel MKL v11.0 is evaluated on Intel Xeon E5-2630 CPU. The performance of an-
other recent ESC-based GPU SpGEMM work [15] is not included in the comparison because
its source code is not available to us yet. The Intel MKL SpGEMM program is multithreaded
and utilizes all six cores in the Intel Xeon CPU. For GPU algorithms, again, the host-device data
transfer time is not included.

We first compare the performance of the four different GPU SpGEMM algorithms on the
nVidia GPUs. We can see that bhSPARSE always outperforms CUSP, cuSPARSE and RMerge
on most sparse matrices in the benchmark suite. Compared to the two vendor supplied libraries,
our method obtains better SpSGEMM and SpDGEMM performance on 21 and 21 matrices out
of the whole 23 matrices over CUSP, and on 19 and 21 matrices over cuSPARSE, respectively.
Compared to RMerge, another CUDA-specific method, bhSPARSEachieves better SpSGEMM
and SpDGEMM performance on 19 and 10 matrices on the GTX TitanBlack GPU, and on 19
and 20 matrices on the GTX 980 GPU.

From the perspective of speedup, our method delivers on average 4.6x (up to 9.6x) and 3.1x
(up to 8.8x) speedup on SpSGEMM performance over CUSP and cuSPARSE, and on average
4.6x (up to 9.9x) and 3.1x (up to 9.5x) speedup on SpDGEMM performance over them, respec-
tively. Compared to RMerge, our method offers on average 1.4x (up to 2.5x) speedup and 2.8x
(up to 4.9x) speedup for SpSGEMM and on average 1.0x (up to 1.5x) and 2.1x (up to 3.4x)
speedup for SpDGEMM on the GTX Titan Black GPU and GTX 980 GPU,respectively.

17

Table 2: Overview of sparse matrices for benchmarking matrix squaring. Herennz(Ĉ) is the upper bound size ofA2.
Numerically, nnz(Ĉ) equals to half off lops, the number of necessary arithmetic operations while doingSpGEMM.
nnz(C) is the number of nonzero entries in the resulting matrixC = A2.

Name Plot n nnz(A), nnzr(A) nnz(Ĉ), nnzr(Ĉ) nnz(C), nnzr(C)

FEM/Cantilever 63 K 4 M, 64 269.5 M, 4315 17.4 M, 279

Economics 207 K 1.3 M, 6 7.6 M, 37 6.7 M, 32

Epidemiology 526 K 2.1 M, 4 8.4 M, 16 5.2 M, 10

Filter3D 106 K 2.7 M, 25 86 M, 808 20.2 M, 189

Wind Tunnel 218 K 11.6 M, 53 626.1 M, 2873 32.8 M, 150

FEM/Ship 141 K 7.8 M, 55 450.6 M, 3199 24.1 M, 171

FEM/Harbor 47 K 2.4 M, 51 156.5 M, 3341 7.9 M, 169

Protein 36 K 4.3 M, 119 555.3 M, 15249 19.6 M, 538

FEM/Spheres 83 K 6 M, 72 463.8 M, 5566 26.5 M, 318

2cubessphere 102 K 1.6 M, 16 27.5 M, 270 9 M, 88

FEM/Accelerator 121 K 2.6 M, 22 79.9 M, 659 18.7 M, 154

Cage12 130 K 2 M, 16 34.6 M, 266 15.2 M, 117

Hood 221 K 10.8 M, 49 562 M, 2548 34.2 M, 155

M133-b3 200 K 0.8 M, 4 3.2 M, 16 3.2 M, 16

Majorbasis 160 K 1.8 M, 11 19.2 M, 120 8.2 M, 52

Mario002 390 K 2.1 M, 5 12.8 M, 33 6.4 M, 17

Mono 500Hz 169 K 5 M, 30 204 M, 1204 41.4 M, 244

Offshore 260 K 4.2 M, 16 71.3 M, 275 23.4 M, 90

Patentsmain 241 K 0.6 M, 2 2.6 M, 11 2.3 M, 9

Poisson3Da 14 K 0.4 M, 26 11.8 M, 871 3 M, 219

QCD 49 K 1.9 M, 39 74.8 M, 1521 10.9 M, 222

Circuit 171 K 1 M, 6 8.7 M, 51 5.2 M, 31

Webbase 1 M 3.1 M, 3 69.5 M, 70 51.1 M, 51

We can see that the cuSPARSE method outperforms our approachwhen and only when the
input matrices are fairly regular (belong to the first 9 matrices in Table 2). For all irregular ma-
trices and some regular ones, our bhSPARSE is always more efficient. On the other hand, the
absolute performance of the CUSP method is very stable sinceits execution time almost only de-
pends on the number of necessary arithmetic operations. Therefore this approach is insensitive
to sparsity structures. Actually this insensitivity may bring better performance on matrices with
some specific sparsity structures. However in most cases, the CUSP method suffers with higher

18

(a) FEM/Cantilever (b) Economics (c) Epidemiology

(d) Filter3D (e) Wind Tunnel (f) FEM/Ship (g) FEM/Harbor

(h) Protein (i) FEM/Spheres (j) 2cubes sphere (k) FEM/Accelerator

(l) Cage12 (m) Hood (n) M133-b3 (o) Majorbasis

(p) Mario002 (q) Mono 500Hz (r) Offshore (s) Patentsmain

(t) Poisson3Da (u) QCD (v) Circuit (w) Webbase

Figure 8: Single precision SpGEMM (SpSGEMM) GFlop/s comparison of 5 methods/libraries (MKL, CUSP, cuS-
PARSE, RMerge and bhSPARSE) on 4 platforms (Intel Xeon E5-2630, nVidia GeForce GTX Titan Black, nVidia
GeForce GTX 980 and AMD Radeon R9 290X). The performance of bhSPARSE is shown by the points on the lines.
The bars plot the throughout of the other tested approaches.

global memory pressure. The RMerge method offers significant speedups over the other meth-
ods on three matrices (i.e.,Epidemiology, M133-b3andMario002), which are characterized by
short rows. However, for the other matrices, RMerge supplies relatively lower performance due
to imbalanced workload and high-overhead global memory operations between iterative steps.
Further, we can see that since RMerge mainly relies on computational power of the SIMD units,
its performance decreases from GTX Titan Black (2880 CUDA cores running at 889 MHz) to
GTX 980 (2048 CUDA cores running at 1126 MHz). In contrast, our method also depends on
capacity of scratchpad memory. Thus we can see that bhSPARSEobtains better performance
while using GTX 980 (1536 kB scratchpad) over GTX Titan Black(720 kB scratchpad).

Compared to Intel MKL on the Intel CPU, our CUDA-based implementation on the nVidia

19

(a) FEM/Cantilever (b) Economics (c) Epidemiology

(d) Filter3D (e) Wind Tunnel (f) FEM/Ship (g) FEM/Harbor

(h) Protein (i) FEM/Spheres (j) 2cubes sphere (k) FEM/Accelerator

(l) Cage12 (m) Hood (n) M133-b3 (o) Majorbasis

(p) Mario002 (q) Mono 500Hz (r) Offshore (s) Patentsmain

(t) Poisson3Da (u) QCD (v) Circuit (w) Webbase

Figure 9: Double precision SpGEMM (SpDGEMM) GFlop/s comparison of 5 methods/libraries (MKL, CUSP, cuS-
PARSE, RMerge and bhSPARSE) on 4 platforms (Intel Xeon E5-2630, nVidia GeForce GTX Titan Black, nVidia
GeForce GTX 980 and AMD Radeon R9 290X). The performance of bhSPARSE is shown by the points on the lines.
The bars plot the throughout of the other tested approaches.

GPUs obtains better SpSGEMM and SpDGEMM performance on all 23 matrices, and delivers
on average 2.5x (up to 5.2x) and 2.2x (up to 4.9x) SpSGEMM and SpDGEMM speedup, respec-
tively. Our OpenCL-based implementation on the AMD GPU in the machine 2 obtains better
SpSGEMM and SpDGEMM performance on 23 and 18 matrices, and delivers on average 2.3x
(up to 4.2x) and 1.9x (up to 3.8x) SpSGEMM and SpDGEMM speedup, respectively.

The relative performance (harmonic mean) of the SpGEMM algorithms that computeC = A2

is shown in Figure 10. We can see that our method in general delivers the best performance on
the used testbeds while running the 23 matrices as a benchmark suite. If we set the Intel MKL
SpGEMM performance in this scenario as a baseline, our approach is the only GPU SpGEMM
that constantly outperforms well optimized CPU method.

20

(a) Single precision SpGEMM (b) Double precision SpGEMM

Figure 10: Average (harmonic mean) relative performance comparison of the 23 matrices, using SpGEMM method in
MKL on Intel Xeon E5-2630 as a baseline.

5.5. Memory Pre-allocation Comparison

Figure 11 shows the comparison of the three memory pre-allocation methods, while bench-
markingC = A2. We can see that, for small matrices (e.g.,2cubessphere), our hybrid method
shows exactly the same space requirements as the upper boundmethod does. However, for large
matrices, allocated memory sizes through our hybrid methodare much closer to the memory sizes
allocated by the precise method. Taking the matrixProteinas an example, our hybrid method
requires 2.7x memory space over the precise method, while the upper bound method needs 20.6x
space requirement. One exception is the matrixWebbase, our hybrid method actually allocates
more memory space than the upper bound method. The reasons are that the reduced rate of the
intermediate matrix̂C to the resulting matrixC is very low (see Table 2) and our 2x progression
mechanism just allocates memory across the upper bound size. But overall, our hybrid method
saves space allocation of the upper bound method and execution time of the precise method
without introducing any significant extra space requirements.

5.6. Using Re-allocatable Memory

For some matrices with relatively long rows in the bin group 5, our method dumps scratchpad
data to global memory, allocates a larger memory block, copies the old data to the newly allocated
portion, reloads values and continues processing. We have to do the allocation/copy operation
pair and pay the overhead since current GPUs are not able to re-allocate memory (i.e., change the
size of the memory block pointed to a certain pointer). However, the emerging heterogeneous
processors with shared virtual memory (or unified memory) address space deliver a possibility
that lets integrated GPUs use system memory, which is re-allocatable from the CPU side.

We evaluated two memory allocation strategies (i.e., a typical allocation/copy approach and
an improved re-allocation approach) of our OpenCL-based SpGEMM algorithm on the GPU part
(8 GCN core, 512 Radeon cores running at 1028 MHz, 1052.7 GFlop/s SP peak, 65.8 GFlop/s DP
peak) in the AMD A10-7850K APU. Figure 12 shows the results. We can see that re-allocatable
memory brings on average 1.2x (up to 1.6x) speedup and on average 1.2x (up to 1.8x) speedup for
SpSGEMM and SpDGEMM, respectively. Therefore, our GPU SpGEMM method may deliver
further performance improvement on future GPUs with re-allocatable memory, or on emerging
heterogeneous processors composed of CPU cores and GPU cores. Moreover, both CPU cores

21

(a) Absolute memory requirement

(b) Relative memory requirement

Figure 11: Global memory requirement comparison of the precise method, our hybrid method and the upper bound
method, when benchmarkingC = A2 on the 23 matrices. The memory requirement of the precise method includes the
two input matrices and the resulting matrix. The memory requirements of the other two methods also contain additional
intermediate matrices. “Hmean” refers to harmonic mean.

and GPU cores can be utilized for Stage 3 in our framework. We leave this heterogenous work-
load partitioning (similar to the methods described in [55,56]) to future work.

6. Conclusion

In this paper we demonstrated an efficient SpGEMM framework and corresponding algo-
rithms on GPUs and emerging CPU-GPU heterogeneous processors for solving the three chal-
lenging problems in the SpGEMM. In the two experimental scenarios using matrices with diverse
sparsity structures as input, our SpGEMM algorithm delivered excellent absolute and relative
performance as well as space efficiency over the previous GPU SpGEMM methods. Moreover,
on average, our approach obtained around twice the performance of the start-of-the-art CPU
SpGEMM method. Further, we showed that our method obtained higher performance on emerg-
ing heterogeneous processors with re-allocatable memory.

Acknowledgments

The authors would like to thank Jianbin Fang at the Delft University of Technology for sup-
plying access to the machine with the Intel Xeon CPU. The authors further thank Felix Gremse

22

(a) Single precision SpGEMM (b) Double precision SpGEMM

Figure 12: C = A2 performance of bhSPARSE running with and without re-allocatable memory on an AMD A10-
7850K APU. Note that only executable matrices that require memory re-allocation are included here. “Hmean” refers to
harmonic mean.

at the RWTH Aachen University for sharing source code of the RMerge algorithm and a preprint
copy of the corresponding paper [16]. The authors also thankthe anonymous reviewers of JPDC
and IPDPS ’14 for their insightful feedback on this version and a shorter version [1] of this paper.

References

[1] W. Liu, B. Vinter, An Efficient GPU General Sparse Matrix-Matrix Multiplication forIrregular Data, in: Proceed-
ings of the 2014 IEEE 28th International Parallel and Distributed Processing Symposium, IPDPS ’14, 2014, pp.
370–381.

[2] N. Bell, S. Dalton, L. Olson, Exposing Fine-Grained Parallelism in Algebraic Multigrid Methods, SIAM Journal
on Scientific Computing 34 (4) (2012) C123–C152.

[3] J. Gilbert, S. Reinhardt, V. Shah, High-Performance Graph Algorithms from Parallel Sparse Matrices, in:
B. Kågström, E. Elmroth, J. Dongarra, J. Waśniewski (Eds.), Applied Parallel Computing. State of the Art in
Scientific Computing, Vol. 4699 of Lecture Notes in ComputerScience, Springer Berlin Heidelberg, 2007, pp.
260–269.

[4] T. M. Chan, More Algorithms for All-pairs Shortest Pathsin Weighted Graphs, in: Proceedings of the Thirty-ninth
Annual ACM Symposium on Theory of Computing, STOC ’07, 2007,pp. 590–598.

[5] H. Kaplan, M. Sharir, E. Verbin, Colored Intersection Searching via Sparse Rectangular Matrix Multiplication, in:
Proceedings of the Twenty-second Annual Symposium on Computational Geometry, SCG ’06, 2006, pp. 52–60.

[6] V. Vassilevska, R. Williams, R. Yuster, Finding Heaviest H-subgraphs in Real Weighted Graphs, with Applications,
ACM Trans. Algorithms 6 (3) (2010) 44:1–44:23.

[7] N. Bell, M. Garland, Implementing Sparse Matrix-VectorMultiplication on Throughput-Oriented Processors, in:
Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC ’09, 2009,
pp. 18:1–18:11.

[8] W. Liu, B. Vinter, CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector Multiplication, in:
Proceedings of the 29th ACM on International Conference on Supercomputing, ICS ’15, 2015, pp. 339–350.

[9] W. Liu, B. Vinter, Speculative Segmented Sum for Sparse Matrix-Vector Multiplication on Heterogeneous Proces-
sors, Parallel Computing (2015) –.

[10] G. Ortega, F. Vázquez, I. Garcı́a, E. M. Garzón, FastSpMM: An Efficient Library for Sparse Matrix Matrix Product
on GPUs, The Computer Journal 57 (7) (2014) 968–979.

[11] F. Vazquez, G. Ortega, J. Fernandez, I. Garcia, E. Garzon, Fast Sparse Matrix Matrix Product Based on ELLR-T and
GPU Computing, in: Parallel and Distributed Processing with Applications (ISPA), 2012 IEEE 10th International
Symposium on, 2012, pp. 669–674.

[12] J. Demouth, Sparse Matrix-Matrix Multiplication on the GPU, Tech. rep., NVIDIA (2012).

23

[13] NVIDIA, NVIDIA cuSPARSE library.
URL https://developer.nvidia.com/cuSPARSE

[14] S. Dalton, N. Bell, CUSP : A C++ Templated Sparse Matrix Library.
URL http://cusplibrary.github.com

[15] S. Dalton, L. Olsen, N. Bell, Optimizing Sparse Matrix-Matrix Multiplication for the GPU, ACM Transactions on
Mathematical Software 41 (4).

[16] F. Gremse, A. Höfter, L. O. Schwen, F. Kiessling, U. Naumann, GPU-Accelerated Sparse Matrix-Matrix Multipli-
cation by Iterative Row Merging, SIAM Journal on Scientific Computing 37 (1) (2015) C54–C71.

[17] Intel, Intel Math Kernel Library.
URL http://software.intel.com/en-us/intel-mkl

[18] J. Gilbert, C. Moler, R. Schreiber, Sparse Matrices in MATLAB: Design and Implementation, SIAM Journal on
Matrix Analysis and Applications 13 (1) (1992) 333–356.

[19] F. G. Gustavson, Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Transposition, ACM
Trans. Math. Softw. 4 (3) (1978) 250–269.

[20] K. Matam, S. Indarapu, K. Kothapalli, Sparse Matrix-Matrix Multiplication on Modern Architectures, in: High
Performance Computing (HiPC), 2012 19th International Conference on, 2012, pp. 1–10.

[21] P. Sulatycke, K. Ghose, Caching-Efficient Multithreaded Fast Multiplication of Sparse Matrices, in: Parallel Pro-
cessing Symposium, 1998. IPPS/SPDP 1998. Proceedings of the First Merged International Parallel Processing
Symposium and Symposium on Parallel and Distributed Processing 1998, 1998, pp. 117–123.

[22] R. Yuster, U. Zwick, Fast Sparse Matrix Multiplication, ACM Trans. Algorithms 1 (1) (2005) 2–13.
[23] A. Buluç, J. Gilbert, On the Representation and Multiplication of Hypersparse Matrices, in: Parallel and Distributed

Processing, 2008. IPDPS 2008. IEEE International Symposium on, 2008, pp. 1–11.
[24] J. Fang, A. Varbanescu, H. Sips, A Comprehensive Performance Comparison of CUDA and OpenCL, in: Parallel

Processing (ICPP), 2011 International Conference on, 2011, pp. 216–225.
[25] E. Saule, K. Kaya,Ü. V. Çatalyürek, Performance Evaluation of Sparse Matrix Multiplication Kernels on Intel

Xeon Phi, in: Proc of the 10th Int’l Conf. on Parallel Processing and Applied Mathematics (PPAM), 2013.
[26] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, J.Demmel, Optimization of Sparse Matrix-Vector Multipli-

cation on Emerging Multicore Platforms, in: Supercomputing, 2007. SC ’07. Proceedings of the 2007 ACM/IEEE
Conference on, 2007, pp. 1–12.

[27] A. Buluç, S. Williams, L. Oliker, J. Demmel, Reduced-Bandwidth Multithreaded Algorithms for Sparse Matrix-
Vector Multiplication, in: Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE International, 2011, pp.
721–733.

[28] R. R. Amossen, A. Campagna, R. Pagh, Better Size Estimation for Sparse Matrix Products, Algorithmica (2014)
741–757.

[29] E. Cohen, On Optimizing Multiplications of Sparse Matrices, in: W. Cunningham, S. McCormick, M. Queyranne
(Eds.), Integer Programming and Combinatorial Optimization, Vol. 1084 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 1996, pp. 219–233.

[30] R. Pagh, M. Stöckel, The Input/Output Complexity of Sparse Matrix Multiplication, in: A. Schulz, D. Wagner
(Eds.), Algorithms - ESA 2014, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2014, pp. 750–
761.

[31] A. Branover, D. Foley, M. Steinman, AMD Fusion APU: Llano, IEEE Micro 32 (2) (2012) 28–37.
[32] AMD, White Paper: Compute Cores (jan 2014).
[33] S. Damaraju, V. George, S. Jahagirdar, T. Khondker, R. Milstrey, S. Sarkar, S. Siers, I. Stolero, A. Subbiah, A 22nm

IA multi-CPU and GPU System-on-Chip, in: Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2012 IEEE International, 2012, pp. 56–57.

[34] S. Keckler, W. Dally, B. Khailany, M. Garland, D. Glasco, GPUs and the Future of Parallel Computing, Micro,
IEEE 31 (5) (2011) 7–17.

[35] nVidia, NVIDIA Tegra K1 A New Era in Mobile Computing, 1st Edition (jan 2014).
[36] Qualcomm, Qualcomm Snapdragon 800 Product Brief (aug 2013).
[37] HSA Foundation, HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming Model, Compiler

Writer’s Guide, and Object Format (BRIG), 0th Edition (may 2013).
[38] A. Munshi, The OpenCL Specification, Khronos OpenCL Working Group, 2nd Edition (mar 2014).
[39] C. Gregg, K. Hazelwood, Where is the Data? Why You CannotDebate CPU vs. GPU Performance Without the

Answer, in: Performance Analysis of Systems and Software (ISPASS), 2011 IEEE International Symposium on,
2011, pp. 134–144.

[40] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N.Satish, J. Chhugani, A. Di Blas, P. Dubey, Sort
vs. Hash Revisited: Fast Join Implementation on Modern Multi-core CPUs, Proc. VLDB Endow. 2 (2) (2009)
1378–1389.

[41] G. Ballard, A. Buluç, J. Demmel, L. Grigori, B. Lipshitz, O. Schwartz, S. Toledo, Communication Optimal Par-

24

https://developer.nvidia.com/cuSPARSE
https://developer.nvidia.com/cuSPARSE
http://cusplibrary.github.com
http://cusplibrary.github.com
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-mkl

allel Multiplication of Sparse Random Matrices, in: Proceedings of the 25th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’13, 2013, pp. 222–231.

[42] A. Buluç, J. Gilbert, Parallel Sparse Matrix-Matrix Multiplication and Indexing: Implementation and Experiments,
SIAM Journal on Scientific Computing 34 (4) (2012) C170–C191.

[43] J. R. Gilbert, W. W. Pugh, T. Shpeisman, Ordered Sparse Accumulator and its Use in Efficient Sparse Matrix
Computation, United States Patent US 5983230 A (nov 1999).

[44] N. Satish, M. Harris, M. Garland, Designing Efficient Sorting Algorithms for Manycore GPUs, in: Parallel Dis-
tributed Processing, 2009. IPDPS 2009. IEEE InternationalSymposium on, 2009, pp. 1–10.

[45] O. Green, R. McColl, D. A. Bader, GPU Merge Path: A GPU Merging Algorithm, in: Proceedings of the 26th
ACM International Conference on Supercomputing, ICS ’12, 2012, pp. 331–340.

[46] P. Kipfer, R. Westermann, Improved GPU Sorting, in: M. Pharr (Ed.), GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation, Addison-Wesley, 2005, Ch. 46, pp. 733–746.

[47] H. Peters, O. Schulz-Hildebrandt, Comparison-Based In-Place Sorting with CUDA, in: W.-M. Hwu (Ed.), GPU
Computing Gems Jade Edition, Morgan Kaufmann, 2011, Ch. 8, pp. 89–96.

[48] H. Peters, O. Schulz-Hildebrandt, N. Luttenberger, A Novel Sorting Algorithm for Many-Core Architectures Based
on Adaptive Bitonic Sort, in: Parallel Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International,
2012, pp. 227–237.

[49] H. Inoue, T. Moriyama, H. Komatsu, T. Nakatani, AA-Sort: A New Parallel Sorting Algorithm for Multi-Core
SIMD Processors, in: Parallel Architecture and Compilation Techniques, 2007. PACT 2007. 16th International
Conference on, 2007, pp. 189–198.

[50] A. Davidson, D. Tarjan, M. Garland, J. Owens, Efficient Parallel Merge Sort for Fixed and Variable Length Keys,
in: Innovative Parallel Computing (InPar), 2012, 2012, pp.1–9.

[51] S. Baxter, Modern GPU Library.
URL http://www.moderngpu.com/

[52] M. R. B. Kristensen, S. A. F. Lund, T. Blum, K. Skovhede, B. Vinter, Bohrium: A Virtual Machine Approach to
Portable Parallelism, in: Proceedings of the 2014 IEEE International Parallel & Distributed Processing Symposium
Workshops, 2014, pp. 312–321.

[53] A. Buluç, J. R. Gilbert, Challenges and Advances in Parallel Sparse Matrix-Matrix Multiplication, in: Proceedings
of the 2008 37th International Conference on Parallel Processing, ICPP ’08, 2008, pp. 503–510.

[54] T. A. Davis, Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans. Math. Softw. 38 (1) (2011)
1:1–1:25.

[55] J. Shen, J. Fang, A. L. Varbanescu, H. Sips, An Application-Centric Evaluation of OpenCL on Multi-Core CPUs,
Parallel Computing 39 (12) (2013) 834–850.

[56] J. Shen, A. L. Varbanescu, P. Zou, Y. Lu, H. Sips, Improving Performance by Matching Imbalanced Workloads
with Heterogeneous Platforms, in: Proceedings of the 28th ACM International Conference on Supercomputing,
ICS ’14, 2014, pp. 241–250.

25

http://www.moderngpu.com/
http://www.moderngpu.com/

	1 Introduction
	2 Preliminaries
	2.1 SpGEMM Overview
	2.2 Prior SpGEMM Algorithms
	2.3 Terminology Definition for GPU Programming

	3 Performance Considerations
	3.1 Memory Pre-allocation For the Resulting Matrix
	3.2 Parallel Insert Operations
	3.3 Load Balancing

	4 Methodology
	4.1 Framework and Algorithm Design
	4.2 Evaluating GPU Merge algorithms

	5 Experimental Results
	5.1 Testbeds
	5.2 Performance Comparison for Galerkin Products
	5.3 Benchmark Suite for Evaluating Matrix Squaring
	5.4 Performance Comparison for Matrix Squaring
	5.5 Memory Pre-allocation Comparison
	5.6 Using Re-allocatable Memory

	6 Conclusion

