

Deep Learning Enhanced Time-step Control in Pseudo Transient Analysis for Efficient Nonlinear DC Simulation

Xiaru Zha¹, Haojie Pei¹, Dan Niu², Xiao Wu³, Zhou Jin¹ 1.Super Scientific Software Laboratory, China University of Petroleum-Beijing, Beijing 2.School of Automation, Southeast University, Nanjing 3.Huada Empyrean Software Co. Ltd, Beijing Email: 2019011712@student.cup.edu.cn 2023.05.09

00 Presentation Layout

Background Motivation Accelerating Performance Conclusion DC analysis with deep learning

DC analysis(Solving nonlinear system)

Circuit simulation is a crucial step for verifying circuit design and Direct current (DC) analysis, which locates DC operating points, is the first and fundamental step in circuit simulation.

Background

01 Background

PTA(Pseudo Transient Analysis) is the currently most powerful and promising continuation approach because of its ease of implementation and good continuity of solution curves.

01 Background

Ordinary differential equations:

$$F(x) = G(x) + \dot{x} = 0$$

Use BE(Back Euler) to discretize above ODEs:

$$\dot{x} = \frac{dx}{dt}|_{t=t_{n+1}} = \frac{x_{n+1} - x_n}{t_{n+1} - t_n} = \frac{x_{n+1} - x_n}{h_n}$$

How to select *h* for each PTA step as the time-step control method

The time-step control method determines the number of discrete nonlinear equations to be solved, which involves time-consuming and resource-consuming NR iterations.

02 Motivation

Control nethod set

IEICE, 2014, 5(4):

[4] Wu X, Jin Z, Niu Lot al. An adaptive time-step control method in damped pseudo-transient analysis for solving nonlinear DC circuit equations[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, 100(2): 619-628.

02 Motivation

[5] D. A. Forsyth and J. Ponce, Computer vision: a modern approach. prentice hall professional technical reference, 2002.[6] E. Cambria and B. White, "Jumping nlp curves: A review of natural language processing research," IEEE Computational intelligence magazine, vol. 9, no. 2, pp. 48–57, 20.

Challenge1:

There is no the dataset of the optimal time-step as label and also no precise definition for the optimal time-step in PTA

Challenge2:

Different types of circuits have different requirements for optimal time-step

Challenge3:

The sequence over time of PTA time-step

Challenge1: There is no the dataset of the optimal time-step as label and also no precise definition for the optimal time-step in PTA.

Solve Challenge1:Coarse and Fine Grained Hybrid Sampling

Solve Challenge1:Coarse and Fine Grained Hybrid Sampling

Challenge2: Different types of circuits have different requirements for optimal time-step

Solve Challenge2: Features selection

- ♦ While different circuit types require different time-step requirements, we select conventional process variables in circuit solving but not circuit characteristics as features. It can be utilized as to identify the distinct time-step necessities.
- Based on expert experience, we selected the following features from the perspective of solving ordinary differential equations.

For the n PTA step:

Features	Brief Description	Data Type	
NRs _{n-1}	Evaluate the difficulties of NR convergence at previous optimal time-step	Scalar	not all the same, so
$Res_{n-5:n-1}$	Evaluate whether equation is close to final solution at five discrete time points respectively	Vector	processing methods are required.
$Time-step_{n-1}$	The previous optimal time-step	Scalar	
$Vol_{n-1:n-5,1:10}$	The ten voltage solution curves in descending order of fluctuation	Matrix	

Two-stage data preprocessing strategy

 Outside

 preprocessing

 X

• Inside data preprocessing strategy. Describe the fluctuations of the voltage solution curve and residuals .

$$Res_{mean} = R\bar{e}s = \frac{\sum_{i=1}^{k} Res_i}{k}$$

$$Res_{std} = \sqrt{Res^2} = \sqrt{\frac{\sum_{i=1}^{k} \left(R\bar{e}s_i - R\bar{e}s\right)^2}{k-1}}$$

$$Vol_{mean} = V\bar{o}l = \frac{\sum_{i=1}^{k} Vol_i}{k}$$

$$Vol_{var} = \frac{\sum_{i=1}^{k} \left(\dot{Vol}_{i} - V\bar{ol} \right)^{2}}{k-1}$$

• Outside data preprocessing strategy. Normalized each column of the training set.

$$x' = \frac{x - X_{min}}{X_{max} - X_{min}}$$

Challenge3: The sequence over time of PTA time-step

Solve Challenge3: Long Short Term Memory

The forget gate:

 $f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$

The input gate:

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$C'_t = tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = i_t \cdot C'_t$$

The output gate:

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t \cdot tanh(C_t)$$

Due to the timing nature of PTA time-step control, LSTM is employed to deal with timing information because it can deal with the problem of gradient disappearance in time-sequence information from back propagation.

04 Performance

Environment Setup:

Software Environment:
(1) Model of Deep Learning: Python and PyTorch
(2) Simulator: WSPICE
(3) Operation System: Windows11

Hardware Environment:
(1) CPU: Intel (R) Core (TM) i7-8565U
(2) Memory: 512G
(3) Frequency: 1.80GHz

Training Set: 745 samples from 5 circuits

04 Performance

Simulation Efficiency:

Better generalization

						number of NR iters		speedup					
circuit	nodes	eqn	bjt	mos2	mos3	с	r	v	conventional	adaptive	ours	vs. conventional	vs. adaptive
nagle	26	54	23	0	0	1	11	5	2093	1948	672	3.11	2.90
ab_ac	25	28	0	31	0	22	1	3	3961	3947	265	14.95	14.89
ab_integ	28	32	0	31	0	24	3	4	4540	4406	402	11.29	10.96
ab_opamp	28	31	0	31	0	24	4	3	2417	2536	430	5.62	5.90
e1480	145	204	0	28	0	17	130	3	5553	5514	369	15.05	14.94
mosrect	6	10	0	4	0	0	2	2	838	826	84	9.98	9.83
schmitfast	5	19	0	6	0	0	0	2	5681	5691	176	32.28	32.34
slowlatch	12	37	0	0	14	0	1	5	9382	9353	264	35.54	35.43
fadd32	161	178	0	288	0	25	0	17	1968	1859	284	6.93	6.55
TADEGLOW6TR	18	18	0	3	0	0	18	1	145	102	70	2.07	1.46
THM5	26	26	9	0	0	0	0	1	5331	5324	127	41.98	41.92

Circuit characteristics and simulation efficiency for DPTA

The proposed method outperforms conventional method [7] up to 41.98X and adaptive method [8] up to 41.92X in terms of NR iterations in damped pseudo-transient analysis(DPTA).

[7] Wu X, Jin Z, Niu D, et al. A PTA method using numerical integration algorithms with artificial damping for solving nonlinear DC circuits[J]. Nonlinear Theory and Its Applications, IEICE, 2014, 5(4): 512-522.

[8] Wu X, Jin Z, Niu D, et al. An adaptive time-step control method in damped pseudo-transient analysis for solving nonlinear DC circuit equations[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, 100(2): 619-628.

04 Performance

Simulation Convergence:

Improvement convergence for DPTA on some circuits

This is a particularly important improvement for PTA.
 Nonconvergence issues is extremely difficult for simulator to deal with and the cause is often unable to be accurately located.

	convergence						
circuits	conventional	adaptive	ours				
bjtff	N/A	N/A	479				
schmitslow	N/A	N/A	468				
toronto	N/A	N/A	364				
add20	N/A	N/A	673				
mem_plus	N/A	N/A	858				
ram2k	N/A	N/A	526				
voter	N/A	N/A	1261				
jge	N/A	N/A	1342				

Number of NR iters

05 Conclusion

The optimal time-step is approximated by coarse and fine grained hybrid sampling strategy.

The time-step control method enhanced by LSTM model and based on feature selection and two-stage data preprocessing strategy has better generalization and simulation efficiency.

 \succ Experimental results demonstrate a fine speedup: up to **41.98X**.

Thanks!

