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Abstract—Nonlinear DC analysis is one of the most important
tasks in transistor-level circuit simulation. Homotopy gains great
success to eliminate non-convergence problem occurred in the
Newton-Raphson (NR) based methods. However, nonlinear circuits
with DC-path available high impedance (HiZ) nodes may fail to
converge with homotopy methods due to sufficiently large resis-
tance compared to homotopy insertions, leading to an insufficiently
close enough initial-guess. In this paper, we propose a HiZ-aware
homotopy framework, MSH, enabling multi-stage continuation
for HiZ nodes and others separately to enhance simulation
convergence. In addition, a brand-new homotopy function with
limited current gain variation for MOS transistors is utilized to
ensure smoother solution curve and better efficiency. Moreover, we
trace the solution curve with arclength by considering homotopy
parameters as unknown variables to better ensure convergence.
The effectiveness of our proposed homotopy framework is demon-
strated on large-scale industrial-level circuits.

Index Terms—Circuit simulation, DC analysis, homotopy
method, nonlinear CMOS circuit, high impedance node.

I. INTRODUCTION

The convergence of nonlinear DC analysis has always been
a great challenge in back-end circuit simulation and verifica-
tion [1]. DC analysis, to compute DC operating points, requires
to solve a series of nonlinear algebraic equations established
from the modified nodal analysis, where the Newton-Raphson
(NR) is the most classic approach to be employed [2]–[4].
However, its convergence highly depends on the given initial
guess. Due to the strong nonlinearity of analog circuits, it is
highly difficult to provide a good initial guess that is sufficiently
close to the real solution for the standard NR approach and its
variants (as shown in Fig.1(a)) [5].

To address this issue, far more robust homotopies have been
proposed from different perspectives in recent years [6]–[11].
Homotopy methods leverage a continuous mapping strategy
from the viewpoint of mathematics transforming original hard-
to-solve equations into equations with known solutions or that
are easy to solve. Then, with homotopy parameter λ changes
from 0 to 1, we can gradually iterate back to the original circuit,
whose solution can be considered as a good initial solution for
NR iteration. A positive example of the application of homo-
topy is shown in Fig. 1(b), which is a Schmitt Trigger circuit.
The homotopy approaches are proven invariably convergence
with probability-one theoretically. Reality has also proven that

homotopy methods do offer a feasible avenue for settling the
matter of NR non-convergence [7], [8].

However, a new group of non-convergence situations has
been found in the actual simulation of industrial-level large-
scale complex circuit. Even though homotopy converges suc-
cessfully, the homotopy convergent solution cannot be used
as a good initial solution for NR iteration. For such circuits,
the DC analysis will eventually fail to converge. In fact,
such convergence failure is mainly caused by certain DC-path
available HiZ nodes, whose node voltages will influence the
circuit behaviour. With the homotopy parameter embedded, the
voltages at such nodes are pushed to zero leading to a faraway
initial guess for NR.
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Fig. 1. (a) NR fails to converged due to numerical overflow; (b) homotopy
method converges easily.

In this paper, we propose an effective multi-stage homotopy
framework to resolve this problem, which can first iterate the
HiZ nodes to DC solutions and then solve the DC solutions of
non-HiZ nodes. We highlight the contributions of this work as
follows:

• This paper proposes a multi-parameter homotopy frame-
work enabling multi-stage continuation to resolve conver-
gence failure caused by certain HiZ nodes in nonlinear
DC analysis.

• The framework is equipped with a brand-new homotopy
function to achieve fast continuation and adopts arclength
method for tracing solution curves to ensure convergence.

• The proposed framework has been implemented and
integrated in a SPICE-like simulator and is verified
by industrial-level large-scale complex designs. Non-
convergence issues are well resolved demonstrating its
effectiveness. Moreover, it achieves an average 1.7x speed-
up over SOTA fixed-point homotopy.



II. BACKGROUND

A. Problem Definition

The problem of computing DC operating points is equivalent
to find the solution of a series of nonlinear algebraic equations
established by the modified nodal analysis (MNA) method [11].
The nonlinear system describes the DC behavior of the elec-
tronic circuits and can be represented as follows,

F (x) = 0,x ∈ Rn,F (x) ∈ Rn → Rn, (1)

where x is the unknown vector of node voltages and internal
currents of the independent voltage sources, and n is the
number of unknowns.

B. Homotopy Method

The fundamental idea of homotopy is to parameterize the
nonlinear system shown in Eq. (1). Formally, a scalar parameter
λ ∈ [0, 1] is embedded into F (x) and the new equation can be
written as

H(x, λ) = 0, (2)

where H(x, λ) ∈ Rn × R → Rn. For λ = 0, H(x, 0) = 0 is
an equation that is easy to solve. For λ = 1, H(x, 1) = 0 is
the original problem shown in Eq. (1).

Many homotopy methods with various auxiliary operators
have been researched. Newton homotopy (NH) [6] is one of
the most useful approaches for solving nonlinear BJT circuits.
However, the globally convergent property of NH is bound by
the uniform passivity of the initial point. Nonlinear homotopy
(NLH) [10] is proposed for MOS circuits. Though it further
extends the homotopies used for MOS circuits, the high demand
of computing has restricted its efficiency. Furthermore, the
inserted equivalent devices of NH and NLH usually include
diodes that are quite complex to implement. The variable gain
homotopy (VGH) [7], [9] and the variable gain Newton homo-
topy (VGNH) [12] are two efficient approaches for smoothing
solution curve. However, they are mainly designed for BJT
circuits. Few researches have considered MOS circuits. And
unfortunately, for these homotopy methods, the implementation
of equivalent circuit that guarantees the global convergence of
the homotopy function is extremely complicated, prohibiting
their widespread application in real industrial circuit simulators.
The fixed-point homotopy (FPH) is considered as the most
practical alternative [13] owing to the ease of realization and
satisfactory convergence performance and efficiency. It is based
on the equation

H(x, λ) = λF (x) + (1− λ)G(x− a), (3)

where G is a n × n nonsingular matrix and a is the initial
guess vector.

C. Arclength Method

Many practical problems may occur when we trace the
solution curve of the homotopy equation (2), especially in
nonlinear circuits. One of the most common problems during
the curve tracing process is that the curve folds back [14]. At
the sharp turning point, the value of λ would decrease as the
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Fig. 2. (a) Floating HiZ node: a VDD-connected P-MOS gate causing a
floating node [16]. (b) HiZ node with DC path: the node between two MOSFET
transistors in “off” state, which is caused by their gate voltages.

path moves forward. If we continue to increase λ form 0 to 1
at this time point, we will lose the curve.

Arclength method [15] is regarded as an effective way for
overcoming this difficulty. It considers λ as a function of the
arc length s, where s satisfies

m∑
i=1

(
dxi

ds
)2 + (

dλ

ds
)2 = 1. (4)

And then, the final solutions can be obtained by combining
Eq. (2) and Eq. (4).

D. HiZ Nodes

HiZ state is a common output state of the circuit, which
usually indicates that a node in the circuit has a higher
impedance relative to other nodes in the circuit. Actually, the
existence of HiZ nodes in circuit simulation can typically be
divided into two types. The first one is the floating HiZ node
created by connectivity problems in the design, such as a VDD-
connected P-MOS gate displayed in Fig. 2(a). The second one is
the HiZ node with DC-path like Fig. 2(b), which is determined
by the stimuli. In contrast to the floating HiZ node, the latter
controls other components in the circuit and therefore reflects
more influence from DC algorithms.

III. PROPOSED METHOD

In this section, we first elaborate on the convergence failure
of the homotopy method caused by certain HiZ nodes in
DC analysis through an example demonstrated in Section III-
A. Then in Section III-B, a general multi-stage homotopy
framework is proposed for addressing this problem, which
has three main innovation points. Finally, a simple HiZ nodes
locating algorithm is introduced in Section III-C.

A. HiZ-Caused Failure in DC Analysis

As shown in Fig. 3(a), three P-MOS transistors M1, M2,
and M3 are connected to each other through three small linear
resistors less than 102Ω. The source of M1 is connected to
VDD, the drain of M2 is connected to VSS, and the gate of
M3 is connected to R2 and R3. For DC analysis, when the
gate voltages of M1 and M2 change to logic high, M1 and
M2 will be in an off state. Meanwhile, M3 is disconnected
throughout the DC analysis because only its gate is connected



• HiZ nodes

(b) Expected DC solution. (c) DC solution using  homotopy.

Logic “1”

M2

M3

R1 < 10
2Ω

R2 < 10
2Ω R3 < 10

2Ω

n1

n2n3

vss

vdd

Logic “1”off off

M1

(a) Original HiZ state circuit.

R1

R2 R3
n1

n2n3
R1

R2 R3

n1

n2n3
Gmin=10

-12
SGmin=10

-12
S

RM2

v1  v2  v3 RM2 : (RM1+RM2)

v1 , v2 , v3 ≈ 3.73 V

1/Gmin: (1/Gmin+RM1)v1  v2  v3

RM1 >> 1/Gmin

v1 , v2 , v3 ≈ 0 V

Equivalent resistors

RM1>>10
12
Ω

RM2>>10
12
Ω

RM1>>10
12
Ω

Gmin=10
-12

S

Fig. 3. Illustration of the convergence failure caused by HiZ nodes in DC homotopy algorithms. (a) This is a toy circuit including three HiZ nodes with DC
path whose node voltages will control the state of M3. (b) The MOS transistors M1 and M2 in ”off” state can be equivalent two infinite resistances RM1 and
RM2. Then the voltages at these HiZ nodes are supposed to be dominant by Eq. (5) ∼ (7), e.g., in this case, v1 = v2 = v3 ≈ 3.73V . (c) Solving this circuit
with homotopy algorithm, e.g. grounding each node with a Gmin, faces a fatal non-convergence problem. The reason is that though the homotopy continuation
can successfully converge, the solution obtained in fact is far away from real solution. In this case, the solution is mainly determined by the Eq. (9) ∼ (11).
Though Gmin is sufficiently small that satisfies the convergence tolerance, e.g. 1e-12, we still have RM1 >> 1

Gmin
, making v1 = v2 = v3 ≈ 0V . This

result raises convergence failure at final NR verification stage.

to the circuit. Hence the three nodes n1 ∼ n3 are in a HiZ
state. At the moment, we can regard M1 and M2 as two infinite
resistances RM1 and RM2 (>> 1012Ω) as shown in Fig. 3(b).
Since R1, R2 and R3 are small enough compared to RM1 and
RM2, the DC solutions of these three HiZ nodes (i.e. v1, v2, v3)
are supposed to be determined by the following formula (5),
(6), (7):

v1 =
R2

R2 +R3
· (v2 − v3) + v3 ≈ RM2 · V DD

RM1 +RM2
, (5)

v2 =
RM2 +

R1(R2+R3)
R1+R2+R3

RM1 +RM2 +
R1(R2+R3)
R1+R2+R3

· V DD ≈ RM2 · V DD

RM1 +RM2
,

(6)

v3 =
RM2

RM1 +RM2 +
R1(R2+R3)
R1+R2+R3

· V DD ≈ RM2 · V DD

RM1 +RM2
.

(7)
Note that the ratio of RM2 to (RM1 + RM2) is a certain

number even though they both are sufficiently large. In this
case, the result is v1 = v2 = v3 ≈ 3.73V , which is the expected
DC solutions.

However, if we solve the DC solution by homotopy method,
such as grounding each node with a Gmin as shown in
Fig. 3(c), the solution we obtained would be far away from
the real solution leading to a failure DC analysis. Generally,
we consider the solution to be the initial value of final NR
verification when the value of Gmin decreases from 1 to a very
small value (e.g. 10−12S). At this moment, three HiZ node
voltages are evaluated by formula (9), (10), (11), where Rt is
the total resistance of this circuit.

Rt ≈ RM1 +
1

Gmin
. (8)

v1 = v2 −

 R3/Gmin
R3+1/Gmin

R3/Gmin
R3+1/Gmin + R2/Gmin

R2+1/Gmin

 · (v2 − v3)

≈ V DD/Gmin

RM1 + 1/Gmin
.

(9)

v2 =

 R1( R3/Gmin
R3+1/Gmin + R2/Gmin

R2+1/Gmin )

R3/Gmin
R3+1/Gmin + R2/Gmin

R2+1/Gmin +R1
+

RM2

Gmin

RM2 +
1

Gmin


· V DD

Rt
≈ V DD/Gmin

RM1 + 1/Gmin
.

(10)

v3 = (
RM2/Gmin

RM2 + 1/Gmin
) · V DD

Rt
≈ V DD/Gmin

RM1 + 1/Gmin
. (11)

The fact that RM1(>> 1012Ω) usually far outweigh
1

Gmin (≈ 1012Ω) makes v1 = v2 = v3 ≈ 0, which would
raise convergence failure at final NR verification stage.

B. A General Multi-Stage Homotopy Framework

This part will introduce our proposed multi-stage homotopy
framework from three aspects: algorithm framework, construc-
tion of homotopy function and tracing solution curve. As
a supplement, we will also briefly introduce the final NR
verification.

1) Multi-stage and multi-parameter homotopy framework:
Unlike a conventional homotopy that all node voltages are
solved simultaneously, our framework employs a hybrid of both
multi-stage and multi-parameter to enable HiZ nodes and non-
HiZ nodes to be solved separately, prohibiting the occurrence
of non-convergence at final NR verification. The brand-new
homotopy function is defined as follows:

H(x, λ1, λ2) =

{
h(x, λ1)

h(x, λ2)
, (12)



h(x, λ1) = F (x)− (1−λ1)g(x̃p)+

[
(1− λ1)Ep 0

0 Em

]
x, (13)

h(x, λ2) = F (x)− (1− λ2)g(x̃m) +

[
0 0
0 (1− λ2)Em

]
x, (14)

where Eq. (13) is the first stage homotopy function and Eq. (14)
is the second stage homotopy function. p and m represent
the amount of HiZ nodes and the amount of non-HiZ nodes
respectively (p + m = n). Em and Ep are unit matrices.
Nonlinear function g(·) defines the current gains of MOS
nodes, and its two argument vectors x̃p and x̃m both are a
subset of the unknown vector x.

Algorithm 1 Multi-stage and multi-parameter continuation
1: Initialize: HiZ nodes homotopy parameter λ1 ← 0, non-HiZ nodes

homotopy parameter λ2 ← 0, iteration number j ← 0
2: for ni in all HiZ nodes do
3: Add 1− λ1 to its diagonal elements // ❶
4: if ni is connected to the drain or source of MOS then // ❷
5: Its current gain is multiplied by λ1

6: end if
7: end for
8: Add 1 to the diagonal elements of all non-HiZ nodes
9: while λ1! = 1 and j < maxIter do

10: j = j + 1 // ❸
11: Iteration hj : Predictor(xj−1, λ1), Corrector(xj

p, λ1 p) // ❹
12: if hj converges then // ❺
13: Update the final solution x∗

14: Increase λ1 and keep λ2 = 0 unchanged
15: end if
16: end while
17: Let x∗ be the initial value of Stage-II: x0 ← x∗

18: Repeat ❶❷ using λ2 for all non-HiZ nodes
19: while fabs(λ2 − 1) >= tol and j < maxIter do
20: Keep λ1 = 1 unchanged and repeat ❸❹❺ for h(x, λ2)
21: end while
22: return The DC solution x∗

Avoiding the solution of HiZ nodes tending to zero is the key
to obtaining a close enough solution. The best way is to settle
them down with a first priority, therefore we leverage multiple
continuation stages. We show the continuation mechanism of
our proposed framework in Algorithm 1. Our approach mainly
contains two stages. In the first stage, the current gains of the
MOS nodes among the HiZ nodes is modified by multiplying
λ1, and we ground each HiZ node with a variable Gmin of
(1 − λ1)S and each normal node with a fixed Gmin of 1S.
Then we vary λ1 gradually from 0 to 1 while setting the non-
HiZ parameter λ2 ≡ 0. When λ1 is strictly equal to 1, the
Gmin connected to the HiZ nodes is completely eliminated.
Thereafter, the second stage is activated and starts homotopy
with the solution obtained in stage-I. In the second stage, we
control the MOS current gains and the grounded Gmin by λ2

for all non-HiZ nodes. Similarly, we keep λ1 = 1 unchanged
and change λ2 from 0 to 1. When λ2 is sufficiently close to
1, we can consider the current solution as a correct homotopy
solution, which is close enough to the real DC solution.

2) MCGH for MOS model: Existing transistor-level designs
are predominantly MOS circuits, so there is another challenge.
The current gains of MOS transistors make their solution curves
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Fig. 4. Equivalent circuit of MOSFET transistor in DC analysis.

much more tortuous, sometimes even non-convergent. Hence,
motivated by VGH in BJT circuits [7], we apply the idea of
variable gain to MOS circuits to smooth their solution curves
and ensure convergence. Our method is based on the widely
used BSIM3v3 MOS model and its equivalent circuit in DC
analysis is shown in Fig. 4. To facilitate the discussions, we
first assume that all MOS transistors are N-MOS and the drain-
source voltage vds ≥ 0.

In BSIM3v3 model, the relationship between the branch
voltages and branch currents is represented by Eq. (15),[

is(vds)
id(vds)

]
=

[
−ibs − ids

isub − ibd + ids

]
, (15)

and the drain-source current

ids =
Idso(vds,eff )

1 +
RdsIdso(vds,eff )

vds,eff

(1 +
vds − vds,eff

vA
)(1 +

vds − vds,eff

vASCBE
),

(16)
where vds,eff is the effective drain-source voltage, Rds is the
drain-source resistance, Idso(vds,eff ) is the saturation current,
vA is the Early voltage and vASCBE can also be called as the
Early voltage due to the substrate current induced body effect.

From Eq. (16), square relation is found between the drain-
source current ids and the drain-source voltage vds. During the
DC analysis, if the drain voltage vd or the source voltage vs

changes greatly between two iterations, the ids will change
abruptly, resulting in a discontinuous solution process and
ultimately failure to converge. Therefore, we let ids multiplied
by a parameter λ as shown in Eq. (17):[

is(vds)
id(vds)

]
=

[
−ibs − λ · ids

isub − ibd + λ · ids

]
, (17)

where λ gradually changes from 0 to 1. Through this limitation,
we can approximately realize the idea of varying the current
gains continuously.

3) Tracing solution curve with arclength method: Disconti-
nuity, such as folding or bifurcation, is a frequent phenomenon
during homotopy continuation if an ill-conditioned matrix oc-
curs. Consequently, we follow [11] and utilize arclength method
to trace the solution curve to ensure successful continuation
instead of progressively increasing homotopy parameter λ.

Take Eq. (13) as an example, in the predictor step, the tangent
vector v can be computed by solving the following linear



equations, where A and A′ are two diagonal matrices, and
J(x) is the Jacobi matrix of F (x).[

J(x)− (1− λ1)g
′(x̃p) +A g(x̃p) +A′ · x

(vp
x)

T vpλ1

] [
vx

vλ1

]
=

[
0
1

]
,

(18)
In the corrector step, the NR iteration can be written as:[

J(x)− (1− λ1)g
′(x̃p) +A g(x̃p) +A′ · x

vT
x vλ1

] [
dx
dλ1

]
=

[
−F (x) + (1− λ1)g(x̃p)−A · x
−vT

x (x− x̃k+1)− vλ1(λ1 − λ̃k+1
1 )

]
.

(19)
Note that, in order to avoid enlarging the matrix size when

solving Eq. (18) and Eq. (19), we adopt the strategy used in
the work of arclength method [11].

4) NR evaluation at final stage: After the homotopy solution
is obtained through previous continuation, it is given as the
initial guess for final stage NR evaluation. Generally, when
homotopy parameter is sufficiently close to 1, that is, when
fabs(λ − 1) < tol (tol is a given convergence accuracy)
is satisfied, we hold the solution at this point as the DC
solution. But strictly speaking, a circuit that satisfies the above
convergence criterion may not equivalent to the original circuit,
thus the above convergent solution cannot be directly used
as the final DC solution. A more correct way is supposed
to completely eliminate the homotopy operator embedded in
the MNA equations and take the final convergent solution of
homotopy as the initial value, then use NR to evaluate the true
DC solution.

C. HiZ Nodes Location

To locate such HiZ nodes is also crucial. However, ap-
proaches that to locate accurately before simulation usually
require high computational resources and do not bring a lot
of benefits. Locate HiZ nodes after simple simulation could
be much more easy and the non-convergence results could also
indicate the problem. Instead of introducing additional overhead
from detection approaches, here we introduce a simple yet
effective technique for these DC path available HiZ nodes
location. The detailed algorithm is shown in Algorithm 2.
Considering simulation with normal DC algorithms for the
circuit, if the non-convergence problem occurs while the right-
hand-side is sufficiently close to 0, we firstly check the current
of each non-convergent node. If the node current is less than
the given threshold, a HiZ node is located.

IV. NUMERICAL EXAMPLES

In this section, our proposed multi-stage homotopy is applied
to several large-scale MOS circuits from the real-world. Our
approach is implemented in a C++ based SPICE-like circuit
simulator. We would demonstrate the feasibility of our method
from diverse perspectives. First, we illustrate the ability of our
multi-stage framework to solve the HiZ state problem. After
that, the convergence performance of MOS-relevant homotopy
function is confirmed. Finally, the acceleration efficiency of
our framework with MCGH is verified and compared with the
framework using SOTA fixed-point homotopy approach [11].
The arclength method is used to trace the solution curves in all
experiments.

Algorithm 2 Simple HiZ nodes detection strategy
1: Simulation with normal DC algorithm
2: if RHS → 0 and Terminate() does not converge then
3: /*Check high-Z nodes*/
4: for all non-convergent nodes do
5: Calculate the current ij(j = 1, . . . ,m)
6: // m is the number of non-convergent nodes
7: if ij < ithreshold then
8: Add node nj into array highZ[]
9: end if

10: end for
11: end if

A. Ability to Eliminate the HiZ Non-Convergence Problem

An industrial CMOS circuit is tested to verify our MSH
framework, which consists of 69334 devices (including 715
MOS transistors). According to the experiment, totally 16 HiZ
nodes are detected and the solution curve of one of them is
shown in Fig. 5(a). For this circuit, we can discover that the
SOTA homotopy approach can successfully converge, but fails
to converge at the final NR stage. As expected, the circuit
converges to its DC solution successfully at the final NR stage
with our MSH framework. Detailed solution curve at the final
stage (λ → 1) is shown in Fig. 5(b). It can be observed that
the final convergence voltage of SOTA homotopy is sufficiently
close to zero as we demonstrated in Fig. 3, which is far away
from the real DC solution. Also note that though our proposed
framework needs two stage continuation, it will not introduce
too much additional overhead since stage-I can usually reach
their steady state easily with a small number of iterations.

B. Convergence Performance of MCGH

To make a better and fair performance demonstration of
our proposed new continuation strategy for the MOS circuits
from the standpoint of the model, here a large-scale circuit
with 15884 devices (including 12765 MOS transistors) is also
tested to verify its own convergence performance directly.
Figure 6 displays the solution curves for the drain node of a
MOSFET. For SOTA homotopy, the solution curve suffers from
discontinuity when λ reaches around 0.96 due to the strong
nonlinearity in current gains. Our MCGH can converge and
the λ finally reaches 1. It can also be easily found that the
nodal solution curve of our method is very smooth when λ is
between 0 and 0.999. The large movement around λ = 1 is
mainly due to the linear auxiliary item we introduced.

C. Acceleration Efficiency

Last, based on the convergence guaranteed by our MSH
framework, we assess the acceleration efficiency of the MOS-
relevant homotopy function. We test the MSH framework using
MCGH function and SOTA fixed-point homotopy function
respectively through several large industry MOS circuits, and
record the number of NR iterations. Our proposed framework
with MCGH demonstrates slightly superior acceleration, as ev-
idenced by the results presented in Table I. Specifically, MCGH
is able to reduce the number of NR iterations required to obtain
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the DC solution, resulting in a relatively modest speedup of
approximately 1.7x. This improvement can be attributed to the
smoother solution curves that our method produces, which are
able to converge to a solution more quickly and efficiently.

TABLE I
ACCELERATION OF OUR PROPOSED MCGH.

Circuits r c didode bjt mos #FPH1 #MCGH2 Speedup

run300 1443601 1803000 0 0 360903 289 165 1.75
ss800u 1377 1746 3947 126 4954 141 89 1.58
steady 105056 3009 0 0 260450 270 161 1.68
mpq457 408 474 2530 50 2284 148 79 1.87
1The number of NR iterations of fixed-point homotopy.
2The number of NR iterations of our proposed method.

V. CONCLUSION

In this paper, we propose a new multi-stage homotopy
framework to resolve or avoid the non-convergence problem
of existing DC algorithms caused by certain HiZ nodes. Re-
markably, our framework is also equipped with an efficient

MOS homotopy function for fast continuation and robust ar-
clength approach for tracing solution curves. The effectiveness
and efficiency are demonstrated by real-world industrial-level
designs.
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