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Abstract—In the post-layout simulation for large-scale inte-
grated circuits, transient analysis (TA), determining the time-
domain response over a specified time interval, is essential and
important. However, it tends to be computationally intensive
and quite time-consuming without proper settings of NR initial
solution and accurate LTE estimation for determining the next
transient timestep, which will lead to a mass of backward-
steppings. In this paper, an irregular sequential prediction
transformer named ISPT-Net is proposed to predict accurately
transient solution as NR initial solution and further obtain
precise LTE estimation for setting next timestep. The ISPT-Net
is strengthened with timestep positional encoding module (TPE),
frequency- and timestep-sensitive muti-head self-attention mod-
ule (FT-MSA) to enhance irregular sequence feature extraction
and prediction accuracy. We assess ISPT-Net in the real large-
scale industrial circuits on a commercial SPICE simulator, and
achieve a remarkable backward stepping reduction: up to 14.43X
for NR nonconvergence case and 4.46X for LTE overlimit case
while guaranteeing higher solution accuracy.

Index Terms—Circuit simulation, transient analysis, irregular
sequential prediction, deep learning

I. INTRODUCTION

In the post-layout simulation for large-scale integrated cir-
cuits, DC analysis, transient analysis (TA) and AC analysis
are three fundamental analyses [1]. Among these, P-TA (post-
layout transient analysis) is performed to determine the circuit
time-domain response and compute the output voltages and
currents, as functions of time over a specified time interval
(0, T ) [2]. It is essential but nearly the most computationally
intensive and time-consuming [3]. Besides, P-TA is also re-
quired to be repeatedly conducted in some other analyses, e.g.
process corner, especially Monte Carlo analysis (usually ×
32,000 times) [4]. Therefore, enhancing the convergence and
simulation efficiency of P-TA is quite important and urgent.

In P-TA, two key challenges affect its simulation efficiency.
One is how to design an intelligent stepping policy, which
achieves a good tradeoff between large step size for high
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efficiency and small step size for high solution convergence
and accuracy [5]. The another obstacle is how to set a good
initial solution for Newton-Raphson (NR) method to enhance
its convergence and iteration efficiency.

As for the transient stepping policy, apart from the envelope-
following (EF) based methods for special fast transient anal-
ysis [6], two typical stepping strategies including iteration-
count based timestep method (IC-b) and local truncation error
(LTE)-based timestep method (LTE-b) are widely used in the
commercial SPICE simulators [1][3]. The IC-b method solely
relies on the number of NR iterations to decide the step size
and the solution accuracy can not be guaranteed. Unnecessarily
LTE-based backward steppings usually occur. Therefore, LTE-
b method is more widely-used and can generate large enough
step size according to the upper limit of next LTE estimation
EP

T,n+1 to obtain high TA efficiency. However, LTE-based
and NR-based backward steppings still usually occur due to
the inaccuracy estimation of the EP

T,n+1, and the convergence
status lack of history NR iterations [7]. In this case, if the tran-
sient solution at the next timestep can be effectively predicted,
which can be used to supply a close enough initial solution
for NR iterations and also calculate an accurate second order
derivative x′′ (ξn+1) for next LTE estimation EP

T,n+1, then
LTE-based and NR-based backward steppings can be largely
reduced and high transient efficiency can be obtained.

However, predicting the transient solution of the next
timestep is nontrivial and quite challenging, since transient
time step varies largely by several orders of magnitude, so
it’s an irregular time series prediction task. Traditional linear
extrapolation exists large prediction error at the nonlinear
regions of solution change. Classical RNN/LSTM based deep
learning methods [8] do not care for the sample time dif-
ferences of the input sequence. The NODE (Neural ordinary
differential equation) or NCDE methods [9] can solve the
irregular time sequence prediction, but the prediction accuracy
is not satisfactory for solution curves with large change rate.

In this paper, a transformer-based irregular sequential pre-
diction network named ISPT-Net working seamlessly with
timestep positional encoding (TPE) as well as frequency- and



timestep-sensitive multi-head self-attention (FT-MSA) mod-
ules are proposed to achieve accurate irregular solution pre-
diction, which is utilized to supply a good NR initial solution
and accurate LTE estimation for the next timestep. They
can largely reduce the backward steppings due to NR non-
convergence and LTE overlimit, and enhance the simulation
efficiency of P-TA. The novelty of this work is as follows,

1) To the best of our knowledge, our work is the first DL-
enhanced post-layout transient analysis, enabling good initial
solution for NR iterations and accurate LTE estimations for
balancing the accuracy and convergence, and generating a
remarkable backward-stepping reduction in P-TA.

2) An irregular sequential prediction transformer (ISPT-
Net) is proposed to predict accurately the transient solution of
the next timestep even the timestep varies largely by several
orders of magnitude. Considering the irregular sampling, a
timestep positional encoding (TPE) module with trigonometric
projection and logarithmic mapping is designed to extract and
merge the multi-frequency and small-scale temporal features
of irregular sequence.

3) A novel frequency- and timestep-sensitive MSA (FT-
MSA) module is put forward to learn the time interval and
periodical dependencies of transient solution sequence from
different representation subspaces, which can enhance the
prediction accuracy by pay attention on the nearby transient
solutions in the same solution period and the solutions with
similar phase in different solution periods.

The ISPT-Net model can be trained by the node solution
dataset of pre-layout simulation. It has been implemented in
a commerial SPICE-like simulator and verified using the real
large-scale industrial circuits. Significant backward-stepping
reduction is achieved, i.e., a maximum 14.43X for the NR
nonconvergence case and 4.46X for LTE overlimt case.

II. PRELIMINARY

A. Transient simulation

In TA, the time interval (0, T ) will be divided into discrete
timepoints (0, t1, t2, · · · , tn, tn+1, · · · , T ) by the timestep
control policy [1]. The time step size is hn = tn+1 − tn.
At each timepoint, a numerical integration algorithm (e.g.
backward Euler, Gear’s methods) is employed to replace all the
derivatives by finite differences and transform the differential
circuit equations into equivalent time-independent nonlinear
algebraic equations. The approximation error is the local
truncation error (LTE), which is proportional to the timestep
hn. Then the transient timepoint solution is solved by NR
iterations. If NR does not converge or the LTE goes beyond the
upper error limit, the backward stepping that largely decreases
simulation efficiency will be conducted.

B. LTE-based stepping method

Take the widely-used backward Euler intergration method
as an example, its LTE is ET,n = −hn

2

2 x′′(ξ) [1]. hn is the
current time step. Setting the next time step hn+1 = αhn,
the LTE at the next timepoint is ET,n+1 = −α2h2

n

2 x′′ (ξn+1).
To meet the requirements |ET,n+1| ≤ emax (error limit) and

assuming x′′ (ξn+1) ≈ x′′ (ξn), then the next step size can be
estimated as:

hn+1 = αhn ≤
√

emax

|ET,n|
hn (1)

Although this stepping method is high-efficiency on some
circuits, large number of LTE-based and NR-based backward
steppings usually occur due to inaccuracy assumption of the
derivatives x′′ (ξn+1) ≈ x′′ (ξn) and lack of considering
history NR convergence status. Therefore, if the derivatives
x′′ (ξn+1) can be accurately estimated and a good initial
solution for NR iterations can be supplied, backward steppings
in TA can be largely reduced.

III. IRREGULAR SEQUENTIAL PREDICTION
TRANSFORMER

In this section, an irregular sequential prediction transformer
(ISPT-Net) is proposed to predict accurately the transient
solution xPn+1 of the next timestep, which is then used as the
initial solution of NR iterations and also to further generate
accurate LTE estimation EP

T,n+1.

A. ISPT-Net Framework

As shown in Fig. 1, the proposed ISPT-Net employs an
encoder-decoder transformer structure with stacked encoder
layers but only one decoder layer for network lightweight.
Our model is to generate the most likely transient solu-
tion of next timestep xPn+1, based on the previous irregu-
lar m transient solutions including the current one: Xn =
(xn−m+1, xn−m+2, ..., xn). The model input is the previous
solution sequences of the selected “convergence difficulty”
nodes, which is easily determined by sorting the backward-
stepping nodes in the pre-layout simulation. Usually small
number of nodes (<20, as “convergence difficulty” nodes to
be predicted) result in the vast majority of backward steppings.

It is known that the typical transformer structure just deals
with the time sequence with same time interval since its
positional encoding care for the position information of the
input sequence [10]. However, the step sizes in transient
analysis are not fixed and usually vary by several orders of
magnitude [11], [12]. The irregular timestep information must
be also encoded and embedded. Therefore, the model input
also includes the corresponding m irregular timestep sequence
Hn = (hn−m+1, hn−m+2, ..., h

′

n), where h
′

n is obtained by
the above-mentioned conventional LTE stepping method (Eq.
(1)). Moreover, the timestep sequence Hn is not directly input
to the model, but is first encoded by the proposed timestep po-
sitional encoding module (TPE), where richer multi-frequence
features and enhanced timestep difference features will be
extracted. Besides, considering the self-attention mechanism in
transformer, the transient time interval matrix Tm×m = [Tij ]
is also constructed and input to the model, where Tij is the
time interval between the transient timepoint Ti and Tj . The
model output is the predicted transient solution xPn+1 at the
next timestep h

′

n. As shown in Fig. 1, the extracted irregular



Fig. 1. Proposed irregular sequential prediction transformer for backward-stepping reduction.

timestep features TPE(Hn) will be first concatenated with
the solution sequence Xn and then input to the Encoder.

Encoder: The Encoder is composed of a stack of N = 3
identical layers. Each layer is composed of two sub-layers
including the proposed frequency- and timestep-sensitive MSA
(FT-MSA) and a simple, position-wise multilayer perceptron
(MLP). A residual connection is employed around each of
the two sub-layers, followed by layer normalization. Different
from the typical transformer, FT-MSA has two inputs. The
first always is the time interval matrix Tm×m, but the second is
the concatenated input ConCat(Xn, TPE(Hn)) or the output
of previous Encoder layer. Considering the characteristics of
time sequence prediction task, a mask mechanism is also
incorporated in each Encoder layer.

Decoder: Different from the typical transformer with
stacked identical layers [10], a lightweight decoder layer is
designed to speedup the inference time of prediction network,
which consists of a convolution layer and a simple, position-
wise fully connected linear feed-forward layer.

B. Timestep Positional Encoding

In the typical transformer, its self-attention module is per-
mutation invariant. Its positional encoding is proposed to
combine input embeddings and position information to enable
the network to learn the order of the input sequence [10].
However, just order information is not enough in P-TA, since
its step sizes are not fixed and vary by several orders of
magnitude (usually 10−5s ∼ 10−14s). Not only the order but
also the irregular stepsize information must be learned and
embedded. As shown in Fig. 2, a timestep positional encoding
(TPE) module is proposed to make better use of the order
and the temporal information of irregular transient solution
sequence. It is expressed by the following equation

TPE (ti, ωq) =


sin (ωq · ti) ,
cos (ωq · ti) ,
α · Log (ti − ti−1) ,

β · ti

(2)

where ti is the ith transient timepoint, ωq(q = 0, 1, 2) are
three different frequences. α and β are constants. In Eq. (2),
trigonometric projection (sine and cosine kernels with different
frequencies) is employed alternately to extract richer multi-
frequency periodic features of irregular timestep sequence.
Besides, the step size hi = ti − ti−1 in TA is very minute
(usually 10−5s ∼ 10−14s) but varies by several orders of
magnitude. Thus, the logarithm mapping is utilized to encode
and highlight such order-level magnitude differences under the
minute time scales. At last, the extracted irregular timestep
features will be concatenated with the transient solution se-
quences Xn as the input of Encoder.

Fig. 2. Proposed timestep positional encoding.

C. Frequency- and Timestep-sensitive MSA

Self-attention (SA) in Transformer has strong ability to cap-
ture the long-range dependencies in various series prediction
tasks [10]. However, the conventional self-attention models are
just sensitive to the relative position relationship of sampled
data but not sensitive to the time interval relationship of data.
Considering the irregular timesteps in TA, a novel frequency-
and timestep-sensitive self-attention (FT-SA) is proposed to
enable the prediction model to capture and make better use of
the timestep distance and frequency periodic dependencies of



irregular solution sequence. Furthermore, FT-SA is extended
to frequency- and timestep-sensitive multi-head self-attention
(FT-MSA) for enhancing the model to extract the features from
different representation subspaces.

As shown in Fig. 3, the proposed FT-SA is represented by
the following

Fig. 3. Proposed frequency- and timestep-sensitive MSA

Z(Q,K,D,F,V) = softmax

(
QKT ◦ (D+ F)√

dm

)
V

Q = f̂WQ,K = f̂WK ,V = f̂WV

(3)

where f̂ ∈ Rn×dm is the result of the input embedding. The
queries Q ∈ Rn×dq , keys K ∈ Rn×dk and values V ∈
Rn×dv are obtained by multiplying f̂ with learnable weight
matrics WQ, WK and WV , respectively. The dimensions of
Q, K and V are dq , dk and dv . ◦ is the Hadamard product.
D and F are the timestep-sensitive and frequency-sensitive
weight matrix, respectively.

As we know, given the vector multiplication I = QKT ∈
Rn×n, where KT is the transpose of K, Ii,j can express
the influence of input xj on the input xi, which is usually
sufficient in some prediction tasks, such as machine trans-
lation. However, for the transient solution prediction task
with irregular timesteps, the self-attention must be modified
and the timestep difference and periodic features should be
captured and embedded. It has been a prior knowledge that
the transient solutions which locate at longer time interval in
the same change period or bigger phase difference in different
change period from current timepoint, will have weaker impact
on the current transient solution. Therefore, the additional
timestep-sensitive matrix D and frequency-sensitive matrix
F are embedded on I through Hadamard product to enable
the self-attention to deal with the irregular transient solution
sequence. Then the prediction model can pay more attention
on the recent transient solutions in the same period and the
transient solutions with the similar phases of different solution
periods.

As shown in Fig. 3, D and F are obtained from the time
interval matrix T by the proposed timestep-sensitive module
and frequency-sensitive module, respectively. The timestep-
sensitive module consists of linear layer, ReLU activation

function, time-interval decay layer and pooling layer. It is
expressed by the following equations

Z = ReLU(WD ·T+ bD) (4)

D = Pooling(
2

1 + ez
) (5)

In Eq. (4), WD and bD are learnable parameters of the linear
layer, where WD is expected to be a positive number when
the model is converge. ReLU activation function is employed
to ensure that the output element Zij is always non-negative.
Moreover, exponential decay function (Eq. (5)) is used in the
time-interval decay layer. On the one hand, the element value
Dij in attention weight matrix will monotonically decrease if
the time interval element Tij and consequent Zij increases,
which conforms to our prior knowledge. On the other hand, the
weight element value Dij can be guaranteed ranging between
0 and 1. The pooling layer is used for dimension reduction.

In the frequency-sensitive module, linear layer, frequency
matching layer and pooling layer are designed. They are
expressed by the following equation

F = Pooling(Sigmoid(sin (WF ·T+ bF ))) (6)

where F is the frequency-sensitive matrix. Note that, WF

as the weight coefficient of the linear layer is equivalent to
the angular frequency of the sin function in the frequency
matching layer. Different from the fixed frequency feature
extraction in TPE (Eq. (2)), the frequency matching layer
will learn different angular frequencies to focus on the better
matching timepoints. The pooling function aggregates the
output weight matrices at different frequencies and maps them
to a two-dimensional matrix.

After obtaining the D and F, the QKT ◦(D+F) is divided
by
√
dm before softmax normalization to enhance the stability

of the gradient descent during training.
At last, the multi-head self-attention (MSA) mechanism is

employed to increase the representation subspaces, which is
expressed by the following equation

M(Q,K,D,F,V) = Concat(M1, ...Ms)WO (7)

where Mi = Z(Qi,Ki,Di,Fi,Vi). WO is a linear projec-
tion matrix.

D. LTE estimation and NR initial solution by ISPT-Net

Based the previous irregular solution sequence Xn and
timestep sequence Hn, the ISPT-Net can predict accurately
the next transient solution xPn+1, which can be used as the
initial solution for NR iterations directly and also to generate
more accurate LTE estimation EP

T,n+1 for optimizing the
next timestep hn. The detailed algorithm flow is shown in
Algorithm 1.

IV. EXPERIMENTS AND RESULTS

A. Network Implementation

We have implemented the ISPT-Net for P-TA in a first-class
commercial SPICE simulator (named Com-SPICE), which can



supply large-scale real industrial test circuits and cooperative
test interface.

For a given circuit, we will accelerate the post-layout
transient analysis (P-TA) by the rich information of pre-layout
transient analysis (Pre-TA). First, the nodes that cause NR
nonconvergence, LTE overlimit and minimum step size in Pre-
TA can be obtained. By comparing and sorting the number
of backward steppings in Pre-TA, “convergence difficulty”
nodes which will be predicted by ISPT-Net in P-TA can be
easily selected based on the fact that small number of strong
nonlinear nodes (<20) usually result in the vast majority
(>70%) of backward steppings. Then the solution and timestep
sequences of the “convergence difficulty” nodes in Pre-TA are
used to train the ISPT-Net. The training can be finished before
the P-TA begins and thus the training time is not important. At
last, the trained ISPT-Net can supply accurately next transient
solution prediction for NR iterations and LTE estimation since
the solution curves of the same node in the P-TA and Pre-TA
are almost same but with small time delay. Note that, generally
the number of ”convergence difficulty” nodes is not large and
the prediction time of ISPT-Net (shown in Table IV) is short
enough comparing with the time of one NR iteration in large-
scale circuits.

B. Backward Stepping Comparison

In this work, the ISPT-Net is proposed to reduce the back-
ward steppings and enhance the simulation efficiency of P-TA.
Table I presents the number of total NR iterations and back-
ward steppings of the Com-SPICE with and without the ISPT-
Net for 10 industrial circuits with device scale ranging from
3,779 to 1,623,196. The test results of commercial HSPICE are
also shown and large number of backward steppings (total-b)
also occur (“–” means no results due to simulation error). The

Algorithm 1 LTE estimation and NR initial solution by ISPT-
Net
Require: Build algorithm structure:

1: Input sequence length m, LTE-b stepping method L(x);
2: Determine “convergence difficulty” nodes by Pre-TA;
3: TPE E , Trained ISPT-Net ψ by Pre-TA;

Ensure:
4: Initial input:
5: Solution and stepsize sequence Xn, Hn;
6: Get the current timepoint tn;
7: while tn ̸= tend do
8: Get the next time step h′n = L(Xn);
9: Get the time position encoding E = E(Xn, Hn);

10: Generate T matrix by Hn;
11: Predict next transient solution xPn+1 = ψ(Xn, E, T );
12: Optimize the time step hn = L(Xn, x

P
n+1);

13: Make xPn+1 as initial solution of NR and compute
transient solution xn+1 at time step hn;

14: tn ← tn + hn, n← n+ 1;
15: Update Xn, Hn;
16: end while

number of NR iterations and backward steppings (NR-b and
LTE-b) are related with the set end time of P-TA, thus their
relative reduction ratios by the ISPT-Net are more attractive
and also shown. Besides, apart from simulation efficiency,
transient solution accuracy should also be guaranteed and is
verified by comparing the total LTE (T-LTE).

From this table, it is clear that the ISPT-Net can dramati-
cally reduce the backward steppings of P-TA while keeping
higher transient solution accuracy (average 8.11% higher).
In detail, the reduction ratios for LTE-based backward step-
pings (LTE-b) and NR-based backward steppings (NR-b)
are 4.46X/14.43X in maximum and 3.07X/1.62X in average,
respectively.
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Fig. 4. Transient solution prediction in circuit MP65 post

In order to visualize the prediction performance of the
ISPT-Net, Fig. 4 compares the actual transient solution curve
and the predicted solution curve of a ”convergence difficulty”
node in the test case MP65 post. The red dots and blue
dots represent NR-based backward-steppings and LTE-based
backward-steppings, respectively. From Fig. 4(c), it can be
seen that the Com-SPICE generates large prediction error,
even up to several volts, where the solution waveform changes
dramatically. Compared with it, the predicted solution curve by
the ISPT-Net nearly coincides with the actual solution curve.
The prediction accuracy can always be maintained within the
order of magnitude of 1e-2. Moreover, as shown in Fig. 4(a)
and (b), the backward steppings by NR nonconvergence or
LTE overlimit are significantly decreased.

In addition, the backward-stepping reduction performance
for other ”convergence difficulty” nodes in circuit MP65 post
is shown in Table II. It can be seen that the backward steppings
at nearly all difficult nodes are reduced largely (inf means
no backward-stepping). The remaining backward steppings are
mainly caused by other unpredicted nodes and they can be
reduced further by predicting more nodes.

Furthermore, ablation experiments for TPE and FT-MSA
are conducted to verify their effectiveness. Table III gives
the results of a example case hed osc 2. It is clear that both



TABLE I
BACKWARD STEPPING REDUCTION COMPARISONS

Circuits
Device HSPICE Com-SPICE ISPT-Net Speedup

total mos r c total-b NR NR-b LTE-b T-LTE NR NR-b LTE-b T-LTE NR-b LTE-b T-LTE

MP65 post 116963 3687 45104 68145 2767 101963 1299 1101 46.51 85336 702 398 44.23 1.85x 2.77x 4.91%
r3d post 4483 480 2148 1851 583 29601 372 233 7.17 24253 158 128 6.46 2.35x 1.82x 9.82%
hed osc 1 3779 296 1981 1486 225 11215 67 183 1.96 9245 18 65 1.69 3.72x 2.82x 13.92%
hed osc 2 11727 296 6819 4596 223 11771 56 196 2.19 9583 11 64 1.83 5.09x 3.06x 16.40%
hed trantt 111686 4176 49362 58124 2247 152048 758 1535 131.18 140958 561 605 122.76 1.35x 2.54x 6.42%
dcdc post 69335 715 50956 17653 3197 83166 1569 1437 39.42 68815 1168 365 36.22 1.34x 3.94x 8.13%
pll post rc 409189 8908 139469 260731 - 287253 101 1748 184.65 274111 7 392 163.91 14.43X 4.46X 12.65%
tops post 1623196 0 308016 1315095 112 173076 0 124 604.37 170326 0 66 551.24 1.00X 1.88X 9.64%
Video RC 135387 27587 11 106931 - 58950 3 361 84.66 57871 3 156 71.42 1.00X 2.31X 18.54%
pmu post 308141 4413 298575 4247 - 275707 5796 1382 395.13 240224 3564 468 385.17 1.63X 2.95X 2.59%

Avg - - - - - - - - - - - - - 1.62x 3.07x 8.11%
#NR-b: number of NR unconvergence #LTE-b: number of LTE overlimit #T-LTE: total sum of the LTE

TABLE II
BACKWARD-STEPPINGS AT OTHER PREDICTED NODES

node
Com-SPICE ISPT-Net Speedup

NR-b LTE-b NR-b LTE-b NB-b LTE-b

520 - 172 - 69 - 2.49x
816 89 101 52 7 1.71x 14.43x
515 88 198 38 9 2.32x 22.00x
522 109 85 - 11 inf 7.73x
514 49 49 13 3 3.77x 16.33x
517 43 52 10 4 4.30x 13.00x
815 164 84 94 10 1.74x 8.40x
802 27 16 11 - 2.45X inf
513 18 35 - 7 inf 5.00x

TPE and FT-MSA are essential to deal with irregular sequence
prediction and reduce the backward steppings.

TABLE III
ABLATION EXPERIMENTS FOR TPE AND FT-MSA

Method NR NR-b LTE-b T-LTE

Com-SPICE 11771 56 196 2.19
ISPT-Net 9583 11 64 1.83

ISPT-Net w/o TPE 10883 28 102 2.01
ISPT-Net w/o FT-MSA 10170 15 83 1.93

Lastly, considering the computational burden of ISPT-Net,
its inference time with different number of predicted nodes in
circuit MP65 post is shown in Table IV. It can be seen that
the inference time is much less than that of one NR iteration,
and it increases slowly even the predicted nodes increase by
several times.

TABLE IV
THE INFERENCE TIME UNDER DIFFERENT PREDICTED NODES

Node
number

Percentage of
unconvergence

Inference
time (ms)

Time per
NR (ms)

5 45.42% 1.04

2.84
10 63.96% 1.15
15 68.17% 1.41
20 71.33% 1.63
25 73.46% 1.86

V. CONCLUSIONS

In this paper, we propose a irregular sequential predic-
tion transformer named ISPT-Net to predict accurately next

transient solution for NR initial solution and accurate LTE
estimations for next timestep, in order to achieve backward-
stepping reduction dramatically. The timestep positional en-
coding (TPE) as well as frequency- and timestep-sensitive
muti-head self-attention (FT-MSA) are also designed to deal
with irregular sequence and enhance the prediction accuracy.
Tests on a commercial SPICE simulator demonstrate a sig-
nificant backward-stepping reduction while keeping higher
solution accuracy.
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