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Abstract— To enhance the post-simulation efficiency of large-
scale integrated circuits, various model order reduction (MOR)
methods have been proposed. Among these, TICER (Time-
Constant Equilibration Reduction) is a widely-used resistor-
capacitor (RC) network reduction algorithm. However, the time
constant computation for eliminated-node classification in TICER
is quite time-consuming. In this work, a two-stage TICER
acceleration framework (TSA-TICER) is proposed. First, an
improved graph attention network (named BCTu-GAT) equipped
with betweenness centrality metric (BCM) based sample selection
strategy and bi-level aggregation-based topology updating scheme
(BiTu) is proposed to quickly and accurately determine all the
eliminated nodes one time in the TICER. Second, an adaptive
merging strategy for the new fill-in capacitors are designed to
further accelerate the insertion stage. The proposed TSA-TICER
is tested on RC networks with the size from 2k to 2 million
nodes. Experimental results show that the proposed TSA-TICER
achieves up to 796.21X order reduction speedup and 10.46X fill-in
speedup compared to the TICER with 0.574% maximum relative
error.

Index Terms—Model Order Reduction, TICER, Graph Neural
Network, Merging Strategy

I. INTRODUCTION

With the dramatic increase in the complexity and scale

of modern VLSI circuits, post-layout simulation for large-

scale integrated circuits directly can be very computationally

challenging. In order to enhance the computation efficiency

and reduce the memory footprint, model order reduction

(MOR) is widely used to first reduce the scale of parasitic RC

networks, which are generated by parasitic extraction tools

in post-simulation[1]. After reduction, the equivalent RC(L)
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networks must be annotated back to the logic or analog circuit

networks for further verification simulations [2, 3].

Recently, various MOR methods have been proposed and

they can be divided into three categories: Krylov-subspace

based MOR via moment matching [4], multigrid-like or node

aggregation-based methods [5] and node elimination-based

methods such as famous TICER [6, 7]. Among them, the

Krylov-subspace based methods such as famous PRIMA [4]

are not realizable for RC circuits and become inefficient for

circuits with large number of I/O ports [2], since Krylov

subspace dimension and the density of the projection matrices

would grow quickly. Node aggregation reduction methods

are based on the observation that those adjacent nodes with

almost the same voltages can be aggregated together. They

can generate realizable and sparse reduced models, but lack

effective control of error [8]. Compared with them, the

TICER (Time-Constant Equilibration Reduction) proposed by

Sheehan [7] is a topological RC reduction method, which

directly works on the network topology (so called realizable

reduction methods) and is more suitable for multiple-port

passive networks [2]. Amin et al. [9] extends the TICER to

parasitic circuits including inductances. Moreover, only one

internal node is eliminated in each step of TICER’s recursive

reduction process, many node elimination steps must be exe-

cuted for the large-scale RC networks [3]. Thus some matrix

partitioning based multi-dimensional reduction methods are

attempted [10]. In [2], the HD-TICER (High-Dimensional

TICER) algorithm is proposed to extend the TICER to its high-

dimensional version, in which each step eliminates a whole

subcircuit not just one circuit node and then extra elements are

connected to the neighboring nodes to obtain an approximately

equivalent circuit. However, the calculation of time constant

τ to determine the eliminated nodes in TICER are quite time-

consuming. It is also required to be executed repeatedly due

to that the connection topology and RC information of the

adjacent nodes will vary after one node is eliminated [3].

Therefore, whether and how the time-consuming eliminated-
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Fig. 1: The two-stage acceleration framework TSA-TICER for order reduction of parasitic RC networks.

node determination process can be improved or even removed

is critical to enhance the reduction efficiency of large-scale

RC networks using TICER.

It is known that the natural representation of circuits, netlists

and layouts are graphs [11, 12]. GNN (Graph Neural Network)

can directly operate on graphs and deal with graph-structured

data [13]. Some models like GCN (Graph Convolutional

Networks) have been widely used as feature extractors in EDA

[11] and achieves observation point candidates prediction,

component labeling in flattened netlists and so on [13]. In this

work, an improved graph attention network based eliminated-

node classification method working with adaptive merging

strategy for small fill-in capacitors are proposed to achieve

two-stage order reduction acceleration, which can significantly

improve the reduction efficiency. The followings are the main

contributions of this paper:

1) A two-stage acceleration framework for TICER (TSA-

TICER) is proposed, which achieves quick eliminated-

node determination and decreases the amount of fill-in

capacitors. It can significantly enhance the order reduc-

tion efficiency of the TICER method for parasitic RC

networks.

2) In eliminated-nodes classification stage, an improved

graph attention network (named BCTu-GAT) equipped

with betweenness centrality metric (BC)-based sample

selection strategy and bi-level aggregation scheme based

topology updating (BiTu) method is proposed to deter-

mine all eliminated nodes one time for TICER accu-

rately, which completely removes the time-consuming

time constant calculations and largely speeds up the node

classification.

3) In the insertion stage, an adaptive merging strategy

(AMS) is designed to deal with the new small capacitors

by adaptive threshold to decrease the amount of fill-ins,

which achieves remarkable insertion speedup but with

just slight accuracy loss.

II. PRELIMINARY

A. TICER Algorithm

The TICER is a topological RC network reduction method.

It achieves the reduction of RC networks by selectively

preserving nodes within a specific frequency range while

eliminating the nodes with few neighbors and small nodal time

constants [7]. Consider an N -terminal star network. The center

of the star is node N , and the N terminals are labled 0 to N -

1 (0 being ground). Then the nodal time constants τ can be

calculate as follows [2]:

τ =

∑N−1
k=0 ckN∑N−1
k=0 gkN

(1)

where the quantity gkN is the conductance, and ckN is the

capacitance joining N to k. In practice, many of these values

will be zero.

For a large-scale parasitic RC network, usually the compu-

tation of τ (division operation of floating-point number) for

all nodes is quite time-consuming. Besides, TICER is one-

dimensional in that only one internal node is eliminated in each

step of its recursive reduction process, then the τ needs to be

calculated repeatedly, since the connection and RC information

of the adjacent nodes will vary in each elimination process

[2]. Therefore, if the τ -based eliminated-node classification

can be accelerated or even directly removed, the computation

efficiency of order reduction can be enhanced largely.

In addition, in order to maintain the simulation accuracy of

the RC networks after the node reduction, new resistors and ca-

pacitors will be inserted between the former neighbors of node

N in TICER [7]. The insertion process also takes much time

especially when a large number of new capacitors/resisters are

generated and added.

B. Graph Attention Network (GAT)

Graph Neural Network (GNN) is a subfield of deep learning

that focuses on analyzing and modeling graph-structured data



[11]. Graph Attention Network (GAT) is a reprensentive

class of GNNs that introduce attention mechanism in feature

aggregation. Recently, GAT has been effectively used as

feature extractor in EDA since it can capture the structural

dependencies of circuit topology [11]. Unlike other GNNs,

GAT distinguishes the neighbors of each node with dynamic

attention coefficients and adopts a weighted sum for feature

aggregation [13], which has better representation ability.

In GAT, each node embedding is computed with all the

neighbors by the self-attention mechanism. The node em-

bedding process can be mathematically represented by the

following equation:

h(l+1)
m = φ

⎛
⎝ ∑

n∈N(m)

α
(l)

(m,n)W
(l)hl

n

⎞
⎠ (2)

where h
(l+1)
m represents (l + 1)-th layer embedding of node

m, φ is the non-linear activation function, α
(l)
(m,n) denotes the

normalized attention score of the node n to m that is obtained

using the l-th attention mechanism, and W(l) represents the

trainable matrice that learns features of the neighbors [13].

III. PROPOSED TWO-STAGE TICER ACCELERATION

FRAMEWORK TSA-TICER

In this section, a two-stage acceleration framework (TSA-

TICER) is proposed to enhance the order reduction efficiency

of the TICER for parasitic RC networks, which is shown in

Fig. 1.

First, in node classification stage, an improved graph at-

tention network named BCTu-GAT is proposed to extract

the node embedding features, which include node topology,

degree, surrounding capacitances and conductances, to quickly

classify all the eliminated nodes one time. It removes the time-

consuming calculation for time constants and largely enhances

the node classification efficiency. Second, for the insertion (fill-

in) stage, an adaptive merging strategy is introduced to deal

with the new small capacitors to decrease the amount of fill-in

and further improve the insertion efficiency of TICER.

A. BCTu-GAT based Node Classification

In this part, an improved graph attention network (named

BCTu-GAT) equipped with betweenness centrality metric

(BCM) based sample selection strategy and bi-level aggrega-

tion based topology updating scheme (BiTu) is proposed to

quickly and accurately determine all the eliminated nodes one

time in TICER. It completely removes the time-consuming

computation process for nodal time constants τ and signifi-

cantly enhances the node classification efficiency for TICER.

The BCM-based sample selection strategy and bi-level aggre-

gation based topology updating scheme are designed to further

enhance the node classification accuracy.

• BCM-based Training Sample Selection

In this eliminated-nodes classification task for model order

reduction of parasitic RC networks, the different number of

eliminated-labeled nodes and uneliminated-labeled nodes will

lead to unbalanced training samples, which usually influences

the training speed and convergence of graph neural network.

Betweenness Centrality Metric (BCM) is widely used to

identify the important nodes of the network based on their

structural positions [14]. In this work, BC metric instead of

the random sampling selection is designed to select important

training nodes for GNN, which can achieve high-efficiency

information propagation and property transfer from node to

node.

The betweenness centrality metric BCM(x) of a node x is

defined as

BCM(x) =
∑

p,q �=x,σpq �=0

σpq(x)

σpq
(3)

where σpq is the number of shortest paths from p to q while

σpq(x) stands for the number of these paths passing through x
[14]. Because the BCM only executes only once in pre-training

stage, it isn’t expensive to compute in the whole progess.

The buliding process of the proposed BCM is also shown

in Fig. 1. First, the nodes and the feature matrix in the

training parasitic RC networks are input. Then the nodes

with high BCM value are selected as the training dataset.

Next, the selected training nodes along with the feature and

adjacency matrices are supplied to GAT to train. Finally, the

node classification results (eliminated nodes or uneliminated

nodes) can be obtained as the output. It can be verified that the

training efficiency and classification accuracy of GAT model

can be further improved when nodes with high BCM are

selected as training nodes for the model.

• Bi-level Aggregation-based Topology Updating

BCM-
GAT

Input
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Classification
Loss

Local Neighborhood

Non-Local Neighborhood
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Non-Local 
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Local Aggregation

Weighted
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Fig. 2: The framework of bi-level aggregation-based

topology updating.

In the eliminated-node and uneliminated-node classification

of parasitic RC networks, the different types of nodes are

usually mixed up. We define the local neighborhood as an

area composed of nodes that are closely connected to the target

node and are related to each other in the feature space. In this

area, there are always a small number of nodes of another type.

For GAT, it is difficult to distinguish between eliminated-nodes



and uneliminated-nodes in their local neighborhood, especially

when the number of nodes of one type is small. It will lead

worse classification accuracy. Moreover, another problem in

the node classification task is that the same type nodes might

widely distribute in the topology of RC parasitic networks. In

this case, the GAT fails to incorporate information from distant

but same type nodes. Apart from the local neighborhood, we

also define the non-local neighborhood as the area containing

nodes of the same type, and these nodes are not confined to

local areas.

In order to improve the connectivity of nodes of the same

type, we propose the bi-level aggregation-based topology up-

dating scheme (BiTu), as shown in Fig. 2. The proposed BiTu

combines the local aggregation and non-local aggregation, and

considers the graph topology and feature-based correlations

between nodes to update the RC network topology.

The local neighborhood in the topology of RC parasitic

network is determined as follows:

1) The weights Wu,v on edges are defined as:

Wu,v =
max(‖τi‖2)− ‖τu − τv‖2

max(‖τi‖2) (i = 1, 2, ..., n) (4)

where τi is the time constant of node i.

In the local neighborhood, the connection of nodes should

also be considered. Thus, the connecting parameter δu,v is

defined. The δu,v = 1 when node u and node v are connected,

otherwise 0. Then, the weighted score of a local neighborhood

can be formulated as:

Q (Pj) =
1

2|W |
∑
u,v

[
Wuv − τ(u)τ(v)

2|W |
]
δuv (5)

where |W | is the sum of weights of all edges. The value of Q
indicates the better partitioning sub-topology Pj of the whole

topology into local neighborhoods.

2) We use the Louvain algorithm [15] to search the set

of local neighborhoods in the topology with starting each

nodes as a single neighborhood. Then, we merge the different

neighborhoods when weighted score is maximized. After the

optimal partitioning P ∗ = argmaxPj∈PQ(Pj) is obtained,

the local neighborhood NL can be defined as NL(u) =
{∀v ∈ V : γv == γu}, and the γu denotes the local neighbors

of node u.

Moreover, the preliminary results of classification by BCM-

GAT are used to determine non-local neighborhood as a group

of nodes that are strongly correlated in their latent space but

not local according to graph topology. It is defined as N
˜L(u) ={∀v ∈ V : tv == tu}, and the tu denotes the type of node u

.

After obtaining the local neighborhoods and non-local

neighborhoods, the attentive aggregation (AA) [16] can be

utilized to aggregate features from relevant-densely connected

nodes in NL(u) and aggregate features from distant but

informative nodes in N
˜L(u):

HL(u) = ReLU (WL ·AA ({Xv, ∀v ∈ NL(u)})) (6)

H
˜L(u) = ReLU

(
W

˜L ·AA
({

Xv, ∀v ∈ N
˜L(u)

}))
(7)

Next, we combine the local and non-local aggregation, and

multiply with weights to compute the final classification loss:

HF (u) = ReLU
(
WF · (HL(u)⊕H

˜L(u)
))

(8)

where the WL, W
˜L and WF are the learnable weights for

corresponding equations, ⊕ means concatenation.

At last, the input topology is updated based on the combined

results of the bi-level aggregation, where the inter-class edges

between different types of nodes are removed and the intra-

class edges between same type of nodes are added. It can

efficiently improve the accuracy of node classification.

B. Adaptive Merging Strategy for Fill-in Capacitors

After the eliminated nodes are determined by the above-

mentioned BCTu-GAT based node classification algorithm,

node elimination and insertion of new resistors and capacitors

between former neighbors of N will be conducted according

to the TICER rules to maintain an approximate circuit-level

equivalence. The value of new inserted conductance gij and

capacitor cij can be calculated as [11]:

gij =
g
iN
g
jN

∑N−1
k=0 g

kN

(9)

cij =
c
iN
g
jN

+ g
iN
c
jN

∑N−1
k=0 g

kN

(10)

where g
iN

and g
jN

represent the conductance of node i and

node j connected to the node N , respectively. The c
iN

and

c
jN

represent the capacitor of node i and node j connected to

the node N , respectively.

From Eq. (10), when the number of neighboring nodes

connected to the eliminated node N is large or the values

of conductance g
iN

are relatively decentralized, large number

of fill-in small capacitors will be generated and inserted to

the surrounding nodes during the insertion stage of TICER.

They usually have a relatively slight impact on the simula-

tion accuracy, but have a serious impact on the amount of

successive fill-ins (the creation of new resistors and capacitors

when a node is eliminated) and further influence the reduction

efficiency.

In this case, merging some new small capacitors will

effectively reduce the fill-ins and enhance the insertion ef-

ficiency. The minimum threshold Cmin for retaining new

fill-in capacitor is critical, which is required to balance the

fill-in efficiency and reduction accuracy. In this work, the

capacitor threshold Cmin is adaptively determined as follows.

We compute the new fill-in capacitors for all eliminated nodes

obtained from the above BCTu-GAT classification method and

randomly select the k new capacitors in each remaining Net,

and then arrange the k∗m new capacitors in descending order.

The m is the number of remaining Net. The threshold Cmin

can be adaptively determined by selecting at a set position of

this descending order. Next, the new fill-in capacitors which



are smaller than the threshold Cmin will be merged. The

detailed merging strategy is shown in Algorithm 1. Note that,

the threshold Cmin can not be adaptively obtained in the

TICER, since the eliminated nodes in the TICER can not be

determined one time, but obtained one by one. Therefore, it is

impossible to compute all the new fill-in capacitors in advance

and establish an order.

Algorithm 1 Merging of small new capacitors

Require:
1: The RC network TRC ;

2: The adaptive threshold Cmin;

Ensure:
3: Set the new fill-in capacitor set FN of Node N ;

4: Set the adjacency capacitor set Aj of Node j;

5: Name the capacitor between Node i and Node j as Cij .

6: for Node N in the TRC do
7: Put the new fill-in capacitors of Node N into FN ;

8: for Cij ∈ FN & Cij < Cmin do
9: Name the node i’s Net as Neti;

10: for Ckj ∈ Aj do
11: if Node k ∈ Neti then
12: Ckj + = Cij ;

13: Delete Cij ;

14: end if
15: end for
16: Update the TRC ;

17: end for
18: The compensation capacitors of node i ← Ckj ;

19: end for

In all, by employing the proposed BCTu-GAT to quickly

determine all the eliminated nodes one time in the node

classification stage and the adaptive merging strategy (AMS)

for new small capacitors in the insertion (fill-in) stage, the pro-

posed two-stage acceleration framework (TSA-TICER) will

significantly improve the reduction efficiency of the TICER for

parasitic RC networks while keeping high reduction accuracy.

IV. EXPERIMENTS AND RESULTS

A. Experimental Environment

In this work, to fully evaluate the computation efficiency

and accuracy of MOR, the proposed TSA-TICER and the

TICER method are tested on the parasitic RC networks with

different orders of magnitude. The Ngspice is used to conduct

the transient analysis for original RC networks and the reduced

RC networks by MOR to obtain maximum solution errors and

gives the visible solution curves. The BCTu-GAT based node

classification network is trained on the AMAX X12SPA-TF

server with NVIDIA RTX 3090 24GB GPU.

B. Order Reduction Efficiency

First, the running time for MOR is computed to verify the

reduction efficiency. Moreover, the TICER with GCN-based

classification and adaptive merging strategy (named GCN-

based TICER) is also achieved. For comparison, the TICER,

GCN-based TICER as well as the proposed TSA-TICER

(proposed BCTu-GAT + adaptive merging strategy (AMS))

are tested on the different sizes of parasitic RC networks from

2k to 2 million nodes. In addition, multiple ports are set up

in each benchmark to verify the output signal. In order to

ensure the fairness, we use the priority queue implementation

to update the τ in the TICER. The test results are shown in

Table I.

From this table, it is clear that both the GCN-based TICER

and proposed TSA-TICER can significantly decrease the run

time for MOR compared with the TICER, due to the removal

of the time-consuming calculation for time constant τ and

adaptive merging strategy for small fill-in capacitors. Note

that, the speed-up ratio will sharply increase as the scale of RC

networks increases and can reach nearly 800X in maximum.

In addition, ablation experiment is conducted to verify

the fill-in acceleration performance of the adaptive merging

strategy (AMS), which is shown in Table II. By comparing the

insertion time of TICER and TICER with AMS, it is obvious

that the proposed AMS can effectively reduce the number of

fill-in capacitors and shorten the insertion time, and as the

scale of RC network increases, the proposed AMS can achieve

higher insertion acceleration.

TABLE II: Insertion efficiency comparisons with different

methods

Circuits Number of nodes
Insertion time (s) speed-up

TICER TICER+AMS vs TICER

circuit1 2094 0.0001 0.0001 1.00X
circuit2 77214 0.1207 0.0959 1.26X
circuit3 152643 0.3580 0.1681 2.13X
circuit4 335698 0.9871 0.2812 3.51X
circuit5 2574826 48.6445 4.6503 10.46X

Average - - - 3.672X

C. Order Reduction Accuracy

Next, to verify the reduction accuracy, we conduct the

transient analysis (TA) using the Ngspice for the reduced

RC networks, which are obtained by the TICER, GCN-based

TICER and the proposed TSA-TICER. Moreover, in order to

test the effectiveness of the GAT, the betweenness centrality

TABLE I: Order reduction efficiency comparisons with different MOR methods for RC networks

Circuits Number of
original nodes

Number of
eliminated nodes

Running time of MOR (s) Speedups

TICER GCN-based TICER TSA-TICER (Ours) vs TICER vs GCN-based TICER

circuit1 2094 1569 0.035 0.0041 0.0040 8.75X 1.03X
circuit2 77214 56910 7.585 0.2799 0.2739 27.69X 1.02X
circuit3 152643 110849 20.022 0.5012 0.4798 41.72X 1.04X
circuit4 335698 247778 45.360 0.7786 0.7848 57.80X 0.99X
circuit5 2574826 1919275 8034.697 10.5660 10.0912 796.21X 1.05X

Average - - - - - 186.434X 1.03X



metric (BCM), bi-level aggregation based topology updating

(BiTu) and adaptive merging strategy (AMS) for the MOR

accuracy, the ablation experiments are added. The proposed

TSA-TICER only with GAT (ours without BCTu), TSA-

TICER without BCM (ours without BCM), without BiTu (ours

without BiTu) and without adaptive merging strategy (ours

without AMS) are tested. The maximum relative errors in

transient analysis using above-mentioned MOR methods are

presented in Table III.

TABLE III: Maximum relative error of TA with different

MOR methods
Number
of nodes TICER GCN-based

TICER Ours Ours w/o
BCTu

Ours w/o
BCM

Ours w/o
BiTu

Ours w/o
AMS

2094 0.065% 0.584% 0.186% 0.391% 0.374% 0.358% 0.184%
77214 0.087% 0.613% 0.206% 0.398% 0.390% 0.378% 0.201%
152643 0.102% 0.718% 0.242% 0.461% 0.455% 0.431% 0.230%
335698 0.117% 1.084% 0.499% 0.862% 0.711% 0.660% 0.481%

2574826 0.192% 1.475% 0.574% 1.020% 0.954% 0.921% 0.543%

From this table, the maximum relative errors of those GNN

based TICER are higher than that of the TICER, but our

TSA-TICER transient analysis error are much lower than

the GCN-baded TICER. Moreover, by comparing the results

among the proposed method (Ours), Ours without BCTu, Ours

without BCM, Ours without BiTu and GCN-based TICER,

it is clear that both the BCM-based sample selection strat-

egy, attention mechanism and the bi-level aggregation based

topology updating scheme can enhance the node classification

accuracy and further the order reduction accuracy. In addition,

by comparing Ours with Ours without AMS, it can be obtained

that the proposed adaptive merging strategy (AMS) can largely

increase the fill-in efficiency, but with just slight accuracy loss.
Finally, a transient solution curve of example node in

circuit5 is shown in Fig. 3. It can be seen that all the MOR

methods can achieve high transient solution accuracy and the

proposed TSA-TICER can achieve higher solution accuracy

than GCN-based TICER.

Fig. 3: The transient solution curves in circuit5 under

different MOR methods

From the experimental results, it is demonstrated that the

proposed two-stage order reduction acceleration framework

(TSA-TICER) using BCTu-GAT based node classification and

adaptive merging strategy for fill-in capacitors can significantly

enhance the reduction efficiency than the TICER while ensur-

ing high reduction accuracy.

V. CONCLUSION

In this paper, we propose a two-stage TICER acceleration

framework (TSA-TICER). First, an improved graph attention

network named BCTu-GAT equipped with betweenness cen-

trality metric (BC)-based sample selection strategy and bi-

level aggregation-based topology updating (BiTu) scheme is

proposed to speed up the eliminated-node classification stage

in TICER. Moreover, an adaptive merging strategy for small

new capacitor is designed to decrease the fill-in amount and

further improve the insertion efficiency. Test results demon-

strate that the proposed TSA-TICER can significantly enhance

the order reduction efficiency (up to 796.21X) while keeping

high simulation accuracy.
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