
Unleashing the Potential of AQFP Logic Placement via
Entanglement Entropy and Projection

Yinuo Bai
SSSLab, China University of

Petroleum-Beijing

Enxin Yi
SSSLab, China University of

Petroleum-Beijing

Wei Xing
The University of Sheffield

Bei Yu
The Chinese University of Hong Kong

Zhou Jin
SSSLab, China University of

Petroleum-Beijing

Abstract
Adiabatic quantum-flux-parametron (AQFP) logic, known for its

energy efficiency, has emerged as a prominent superconductor-based
logic family, surpassing traditional rapid single flux quantum (RSFQ)
logic. In AQFP circuits, each cell operates on AC power, serving as
both a power supply and clock signal to drive data flow across clock
phases. However, signal attenuation with increasing wirelength may
result in more potential data errors. To address this, rows of buffers
are inserted as repeaters to ensure data synchronization and avoid
wirelength violations. However, these inserted buffer rows in the
AQFP placement significantly amplifies power consumption and
circuit delay. To address these challenges, in this paper, we propose
an innovative and analytical method for the placement of AQFP. The
proposed method aims at minimizing the need for additional buffers.
The framework incorporates two key features: (1) entanglement en-
tropy for topology initialization and (2) projection for placement and
buffering. These features offer advantages such as avoiding intensive
computations, including fix-order Lagrangian optimization in large-
scale scenarios, while significantly reducing the required number of
buffer rows. The experimental results validate the efficiency of the
proposed framework, demonstrating an average reduction of 81%
in the required number of buffers and acceleration of 1.88x in the
processing time compared with the state-of-the-art method.

Keywords
Superconductor-based logic, adiabatic quantum-flux-parametron
(AQFP), placement.

1 Introduction
The adiabatic quantum-flux-parameter (AQFP) is a highly energy-

efficient Josephson Junctions (JJ)-based superconducting logic tech-
nology [1]. It operates at clock frequencies up to 10GHz, consuming
significantly less energy than conventional superconducting logics
such as rapid single flux quantum (RSFQ) and single flux quantum
(SFQ) [1]. The exceptional performance of AQFP demonstrates its

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06. . . $15.00
https://doi.org/10.1145/3649329.3658467

tremendous potential as a highly efficient alternative to CMOS tech-
nology. Using fabrication processes such as the MIT-LL SFQ process
[2], AQFP circuits can achieve gains in energy efficiency ranging
from 104 to 105 compared with state-of-the-art CMOS, even at high
clock frequencies.

As the size of the circuit increases, the utilization of design au-
tomation (EDA) tools becomes essential to facilitate the development
of AQFP circuits. However, the application of existing EDA tools
developed for CMOS technology is not directly feasible in the realm
of superconducting electronics. This is primarily due to some funda-
mental differences in active components, passive components, basic
logic gate sets, clocking schemes, as well as the inclusion of buffers,
splitters, and AC biasing, which contribute to additional complexities
and costs.

Recent research in EDA tools for AQFP has seen significant progress
[3–9]. Several frameworks have been proposed to automate different
stages of the AQFP design flow. Among these stages, placement holds
crucial importance as it profoundly impacts circuit efficiency [10],
taking into account two key constraints: 1) data synchronization and
2) maximum wirelength constraint. Meeting these constraints ne-
cessitates the insertion of numerous buffers, which fill a significant
portion of the circuit, resulting in increased power consumption and
longer delay. The initial placement method, first presented in [4] and
further enhanced in [5], employs a genetic algorithm (GA) to relo-
cate cells within each row, in order to mitigate wirelength violations
and minimize buffer insertion. However, these GA-based methods
are time-intensive and may still yield solutions with considerable
inserted buffers. Among the placement algorithms proposed in [6]
and [7], ASAP stands out by utilizing fix-order Lagrangian relaxation
and the directed-force method for cell balancing in the solution from
topology initialization. ASAP transforms the Lagrangian relaxation
solution into a polynomial-time shortest-path problem solution to
accelerate large-scale circuit placements. However, neither the La-
grangian relaxation nor the directed force method specifically targets
minimizing the maximum wirelength. Their objective functions fo-
cus on minimizing total half-perimeter wirelength [11] in the entire
circuits or total quadratic wirelength in local circuits, respectively,
thus causing ample room for further optimization.

In this paper, to tackle these challenges, we propose a novel place-
ment framework for AQFP Logic circuits. The algorithm comprises
two main steps: (1)Topology initialization and (2) Placement and
buffering. In the topology initialization phase, we introduce the en-
tanglement entropy of circuits as an objective function and minimize
it by exchanging cells in the same row to approach a better circuit

https://doi.org/10.1145/3649329.3658467

1

1

1

Time 1

1

2

2

2

3

3

2

4

3

Time 2 Time 3 Time 4

In
p

ut
 D

at
a

O
ut

p
ut

 D
at

a

(a)

1

1

1

Time 1

1

2

2

2

3

3

3

4

4

Time 2 Time 3 Time 4

In
p

ut
 D

at
a

O
ut

p
ut

 D
at

a

(b)

B B

cell

legal wire

B buffer

illegal
wire

previously
illegal wire

newly added
legal wire

Figure 1: Path balancing process. (a) The circuit before path
balancing. Two wires (red) connect cells that are not located
between adjacent rows. (b) The circuit after path balancing.
Two wires with excessive length are cut in the middle using
buffers.

topology. For the placement and buffering phase, we position cells
on their ideal position determined by the proposed projection-based
strategy in iterations and incorporate the buffer insertion within
the iteration to eradicate the persisted wirelength violation. Our
approach achieves remarkable reductions of 98% and 81% in inserted
buffers and substantial improvements of 81.82x and 1.88x in run-
time on benchmark circuits [12] compared with the GA method and
ASAP, respectively. Our contributions can be highlighted as follows:
(1) We propose the entanglement entropy in the topology initializa-

tion phase as the objective function. A superior topology exhibits
a lower entanglement entropy.

(2) In the placement and buffering phase, we utilize a novel projection-
based strategy to determine locally wire-saving positions for
each cell. Through iterations, we achieve a globally optimized
solution.

(3) To further enhance efficiency, we emphasize the topology with
relatively low entanglement entropy rather than the minimum
one in the topology initialization phase. Furthermore, we pro-
posed a coordinate adjustment method to eradicate overlaps
among cells in the placement and buffering phase.

2 Background
2.1 AQFP Logic and Circuit Topology

The pivotal constituents of an AQFP circuit encompass diverse
AQFP logic cells and interconnecting wires. The output ports of
each logic cell device are linked to the signal input ports of one or
more logic cells via wires. Each logic cell features a pair of JJs[13].
The minimalist design approach forms the foundation for the devel-
opment of a comprehensive cell library. The library encompasses
essential logic gates, including AND, OR, NOT, MAJORITY, BUFFER,
and SPLITTER [14].

By incorporating AC power as the power source and clock phase
indicator, AQFP circuits have effectively overcome the energy dissipa-
tion limitations faced by conventional superconductor logic families
such as RSFQ. To facilitate data transmission, cells in the circuit
sharing the same clock phase are organized into the same row, as
illustrated in Fig. 1.

(c)

Max
Wirelength
Constraint

Max
Wirelength
Constraint

B

out-of-constraint wire

optimized
wire

ordinary
wire

B B

Max
Wirelength
Constraint

length > max

wirelength

(b)

Max
Wirelength
Constraint

B
length < max

wirelength

but the signal
didn't arrive
simultaneously

signal arrive
simultaneously

Max
Wirelength
Constraint

Max
Wirelength
Constraint

(a)

illegal
place

modified
legal place

cell

bufferB

Figure 2: Buffer insertion to eliminate wirelength violations
in fixed-order circumstance. (a) The red wire exceeds the max-
imum wirelength constraint. (b) Inserting a buffer to address
the issue of wirelength, but encountering problems with path
balancing. (c) A row of buffers ought to be inserted to address
the issue of path balance.

2.2 Physical Constraints
In this subsection, we will provide a detailed explanation and so-

lution of the two primary physical constraints : data synchronization
and maximum wirelength constraints, which need to be thoroughly
considered throughout the entire placement process.

Data Synchronization. For the circuit topology in Fig. 1, signal
delay or advance that occurs in any row can potentially result in
significant data errors in the final output. This necessitates the simul-
taneous arrival of input data to any given layer. Therefore, all cells in
the same phase can only receive data from that in the above adjacent
phase. By disregarding time delays along the data wires, it effectively
requires that any wire can only connect cells located in adjacent
rows. Such a constraint is referred to as Data Synchronization. A
circuit that satisfies this constraint is termed path balanced. For all
non-path-balancing circuits, buffers are necessary to equalize the
input delay of all cells, as illustrated in Fig. 1.

Maximum Wirelength Constrain. Due to signal current atten-
uation along the wire, it is imperative to ensure that the length of
each wire remains within the permissible limits, such as the one
prescribed for the MIT-LL process, which is approximately 1mm.
Whenever a wire exceeds this maximum length, it becomes nec-
essary to incorporate buffer insertion as repeaters along the wire
to effectively reduce its length. It should be emphasized that the
addition of a single buffer necessitates the insertion of an entire row,
even multiple rows in certain case, of buffers to maintain the path
balance. For reference examples that demonstrate buffer insertion
between two neighboring rows, please consult Fig. 2. In this paper,
it is worth noting that the clock wire of the phase-aligned cell, re-
sponsible for delivering power and clock phase signals, is not taken
into consideration [15].

Explicating Tasks. The legalized placement process must observe
the mentioned constraints. With the aim of minimizing the number

2

The impracticality in the topology of the circuit decreases

cell

wire intersections

Entanglement Entropy
of the topology

number of
intersections

A1

A2

B1

B2

C1

C2

Eab=2 Eac=2 Ebc=-1

A1

A2

B1

B2

C1

C2

A1

A2

B1

B2

C1

C2

(b)(a) (c)
N : 2 N : 1 N : 0

N

E
E :-6(-4-1-1) E :-3(-2-2+1) E :3(2+2-1)

value
decline

a b c a b c a b c

Eab=-2 Eac=-2 Ebc=1 Eab=-1 Eac=-4 Ebc=-1

Figure 3: Rearranging the order to eliminate wirelength vi-
olations. The intersections and the entanglement entropy
continuously decrease throughout the process. Entanglement
entropy in (a), (b) and (c) reaches 3, -3 and -6, respectively.

of inserted buffers, considering the specified size, phases, and con-
nections of cells and buffers, the outputs of the placement process are
as follows: (1) Coordinates of each cell or buffer. These coordinates
must ensure no overlaps among cells and buffers. (2) Connections
among cells and buffer including any additions made later.

It is worth noting that the number of buffers inserted to achieve
path balance in the original circuit does not change with the order
of cells within each row. This implies that these buffers are neces-
sary. Furthermore, the buffer insertion methods employed are both
straightforward and unequivocal. Hence, in this paper, the consider-
ation of path balancing for the original circuit will be omitted. It is
assumed that the circuits in the context have already undergone the
path balancing process by default. In the subsequent paper, we will
provide a detailed explanation of our proposed method.

3 Proposed Framework
Our work consists of two stages: Topology Initialization and Place-

ment and Buffering. This section would comprehensively explain
the implementation specifics for both stages.

3.1 Topology Initialization
In topology initialization, our objective is to optimize the order

of cells in each row. The placement based on this can serve as an
initialization for further placement and buffering, significantly ac-
celerating its iterations. The algorithm is presented in Algorithm
1. Some details of the algorithm will be further explained in the
following.

Entanglement Entropy. We examine wirelength violation in a
topological scenario, as depicted in Fig. 3, to illustrate the entangle-
ment entropy. By following the steps shown, we can easily eliminate
the violation. A noticeable geometric change is the gradual reduc-
tion of wire intersections. This observation suggests that a better-
designed circuit topology may have fewer intersections. However,
solely counting intersections is inadequate. First, finding a simple
function accurately measuring the quantity of intersections is chal-
lenging. Second, the perception of intersection count often fails in
complex scenarios where a cell emits or receives multiple wires, as
shown in Fig. 4.

Building upon the preceding analysis, we introduce a novel term,
called entanglement entropy, as a comprehensive definition for the
entire circuit. To formulate this definition, let us denote the set of
all wires 𝑙 in the actual circuit as 𝑆 . We consider a partition of 𝑆 into
subsets 𝑆1, 𝑆2, ..., 𝑆𝑖 , where 𝑆𝑖 represents the set of wires in the gap
between the i-th and (i + 1)-th rows. Consequently, the entanglement

practicality in topology

wire intersections

Entanglement Entropy
of the topology

number of
intersections

E =-1

(b)
N : 5

N

E

E :6(-1-1+3+1-4+1+3+4)

E =-4 E =3

E =0

E =1

E =-1

E =4

E =3

E =0

E =1

(a)
N : 5 E :9(1-2+3+2-2-1+6+2)

E =1

E =-2 E =6

E =0

E =-1

E =-2

E =2

E =3

E =0

E =2

value
declines

value holds
constant

E

N

high
correlation

low
correlation

The impracticality in the topology of the circuit decreases

wire that exceeds max
wirelength constraint

Figure 4: Two topologies exhibits the same 5 intersections but
different entanglement entropy. Entanglement entropy in (a)
and (b) reach 9 and 6, respectively. Wirelength violations are
fewer in (b).

entropy (𝐸) of the entire circuit can be expressed as follows:

𝐸 =
∑︁
𝑖

∑︁
𝑙1,𝑙2∈𝑆𝑖

−(𝑋𝑙1 − 𝑋𝑙2) × (𝑌𝑙1 − 𝑌𝑙2). (1)

Here, 𝑋𝑙1 represents the order of the endpoints of wire 𝑙1 in the
previous row, while 𝑌𝑙1 denotes the order of endpoints in subsequent
rows. The equation captures the interplay between the horizontal
and vertical positions of the wire endpoints within each subset 𝑆𝑖 .
Upon examining Fig. 3, it becomes evident that 𝐸 exhibits a grad-
ual decrease in steps, resembling intersections. This characteristic
suggests that the entanglement entropy consistently decreases, ef-
fectively minimizing the number of intersections within the circuit
placement. The visual representation of 𝐸 in Fig. 4 further highlights
its ability to indicate a relatively better topology, even when the
conventional intersection-counting perception fails to do so.

Reduction of Entanglement Entropy. The key point of this al-
gorithm lies in efficiently computing the reduction of entanglement
entropy (Δ𝐸) to optimize the process. A crucial aspect is avoiding
the inefficient recalculation of 𝐸 and taking the difference for each
exchange of two cells within the same row. Therefore, it becomes
imperative to derive an explicit expression for Δ𝐸 to streamline the
computation.

To derive the expression for Δ𝐸, let us consider 𝐸𝑖 as the entangle-
ment entropy in the gap between the i-th and (i+1)-th row. Suppose
the m-th and n-th cells in the previous row are exchanged. As a
result, 𝑆𝑖 can be divided into subsets: 𝑆𝑖,1 and 𝑆𝑖,2 representing the
wires connected to the two cells, respectively, while the remaining
wires form the set 𝑆𝑖,3. These subsets contain elements 𝑡1, 𝑡2, and
𝑁𝑖−𝑡1−𝑡2, respectively, where𝑁𝑖 represents the number of elements
in 𝑆𝑖 . Before the exchange, 𝐸𝑖 can be expressed as in Eq. (2). Here W

𝐸𝑖 = −
∑︁

𝑙𝑘 ∈𝑆𝑖,3

∑︁
𝑙𝑓 ∈𝑆𝑖,1

(𝑚 − 𝑋𝑙𝑘) (𝑌𝑙𝑓 − 𝑌𝑙𝑘)

−
∑︁

𝑙𝑘 ∈𝑆𝑖,3

∑︁
𝑙𝑔∈𝑆𝑖,2

(𝑛 − 𝑋𝑙𝑘) (𝑌𝑙𝑔 − 𝑌𝑙𝑘)

−
∑︁

𝑙𝑓 ∈𝑆𝑖,1

∑︁
𝑙𝑔∈𝑆𝑖,2

(𝑚 − 𝑛) (𝑌𝑙𝑓 − 𝑌𝑙𝑔) +𝑊 .

(2)

represents the terms that do not include m and n. After the exchange,
𝐸𝑖 transforms into 𝐸′

𝑖
with exchange m and n in Eq. (2). Hence, Δ𝐸𝑖

can be obtained by taking the difference as in Eq. (3). In fact, it is not
difficult to deduce that:

Δ𝐸 = Δ𝐸𝑖−1 + Δ𝐸𝑖 . (4)
3

Δ𝐸𝑖 = 𝐸𝑖 − 𝐸′𝑖

= −
∑︁

𝑙𝑘 ∈𝑆𝑖,3

∑︁
𝑙𝑓 ∈𝑆𝑖,1

(𝑚 − 𝑛) (𝑌𝑙𝑓 − 𝑌𝑙𝑘)

−
∑︁

𝑙𝑘 ∈𝑆𝑖,3

∑︁
𝑙𝑔∈𝑆𝑖,2

(𝑛 −𝑚) (𝑌𝑙𝑔 − 𝑌𝑙𝑘)

−
∑︁

𝑙𝑓 ∈𝑆𝑖,1

∑︁
𝑙𝑔∈𝑆𝑖,2

(𝑚 − 𝑛) (𝑌𝑙𝑓 − 𝑌𝑙𝑔)

= (𝑚 − 𝑛){(𝑡1 − 𝑡2) (
∑︁

𝑙𝑓 ∈𝑆𝑖,1
𝑌𝑓 +

∑︁
𝑙𝑘 ∈𝑆𝑖,3

𝑌𝑘 +
∑︁

𝑙𝑔∈𝑆𝑖,2
𝑌𝑔)

+ 𝑁𝑖 (
∑︁

𝑙𝑔∈𝑆𝑖,2
𝑌𝑔 −

∑︁
𝑙𝑓 ∈𝑆𝑖,1

𝑌𝑓)}.

(3)

Thus, Eq. (3) and Eq. (4) will assist in circumventing redundant
computations of Δ𝐸, thereby greatly enhancing the efficiency of
topology initialization.

Order Initialization. Assuming 𝑚 > 𝑛, then the polarity of Δ𝐸
would be determined by the following two terms:

𝑁𝑖 (
∑︁

𝑙𝑔∈𝑆𝑖,2
𝑌𝑔 −

∑︁
𝑙𝑓 ∈𝑆𝑖,1

𝑌𝑓), (5)

(𝑡1 − 𝑡2) (
∑︁

𝑙𝑓 ∈𝑆𝑖,1
𝑌𝑓 +

∑︁
𝑙𝑘 ∈𝑆𝑖,3

𝑌𝑘 +
∑︁

𝑙𝑔∈𝑆𝑖,2
𝑌𝑔). (6)

In many cases, Eq. (5) could be neglected compared to Eq. (6). Thus,
when 𝑡1 > 𝑡2, there is a high probability that Eq. (4) will be greater
than 0. This means that in the topology with lower 𝐸, in each row,
cells connected to more wires are more likely to be located on the
left end. Inspired by this fact, in topology initialization, we arrange
the cells in each row in descending order according to the number
of connected wires.

3.2 Placement and Buffering
In this section, we present an analytical method for placement

and buffering, as outlined in Algorithm 2. It constitutes the complete
placement work flow in conjunction with the Topology Initialization.
Some details on specific steps within the algorithmwill be elaborated
in subsequent subsections.

Coordinate Initialization. In this module, we precisely position
each cell at specific coordinates based on the circuit topology derived
from the Algorithm 1, serving as the initialization for subsequent
iterations. Our convention assumes that the data flow in Fig. 1 occurs
along the positive y-axis, with the positive x-axis representing the
perpendicular direction to the right.

To reduce thewire cost while avoiding cell overlap, for y-coordinate,
we ensure that the minimum coordinate of the top-left corner of cells
in a row equals the maximum coordinate of the bottom-left corner
of cells in the row above. Additionally, we align the center of all cells
within each row with the same y-coordinate. For the first row, we
set the minimum y-coordinate of the top-left corner of the cell as 0.
Due to analogous considerations, cells are arranged tremendously
closely within each row in accordance with the sequence established
by topology initialization. The upper left corners of the leftmost
cells in each row are aligned, and the x-coordinate is defined as 0.

Throughout the iteration, we only adjust the x-coordinate of each
cell.

Algorithm 1 Topology Initialization
Input: Netlist including size, phase, and connection of all cells.
Output: Circuit topology with relatively low entanglement entropy.
1: Order initialization;
2: for 𝑖𝑡𝑒𝑟 = 1 to𝑀𝑎𝑥𝐼𝑡𝑒𝑟 do
3: Exchange two cells in the same row;
4: Calculate the entanglement entropy reduction Δ𝐸;
5: if Δ𝐸 > 0 then
6: Update the topology;
7: end if
8: if convergence then
9: break;
10: end if
11: end for

Ideal Position for Sole Cell. Ideal location plays a pivotal role
in minimizing the maximum length of the wires connected with
the cell. Therefore, determining the ideal position is the core of this
algorithm. In our following analysis, we assume that the distribution
of cells connected to a given cell follows the pattern depicted in
Fig. 5.

Considering the relatively small size of cells within the scope of
this paper, we can disregard variations in the y-axis projection of
each wire. Consequently, the connections among the cells and buffer
centers in each row can be approximated as a set of equidistant
parallel lines. Due to the symmetry, for simplicity of analysis, we can
project cells located on different lines onto a single line, as illustrated
in Fig. 5.

After the projection, by observing that the lengths of all wires
cannot simultaneously exceed the lengths of the outer two wires,
the ideal position of each cell becomes apparent: it is the average of
the x-coordinates of the leftmost and rightmost connected cells.

Buffer Insertion. If wirelength violations persist even after the
iteration process has converged, buffer insertion should be employed
to eliminate them. We insert one buffer row at a time, instead of
multiple rows, as the additional freedom introduced by each newly
inserted buffer may potentially resolve remaining violations during
the algorithm iteration. The y-coordinate of the inserted buffer is
determined using the same approach as in Coordinate Initialization.
As for the x-coordinate, it is set in the middle of the dual-ended cells
of the truncated wire.

X-Coordinate Adjustment. Adjusting cell positions and inserting
buffers may result in overlaps among cells and buffers, requiring a
secondary adjustment to their x-coordinate. In the secondary adjust-
ment, the x-coordinates of all cells require the following computation:
𝑥𝑖
𝑗
= max(𝑥𝑖

𝑗
, 𝑥𝑖

𝑗−1 +𝑤 (𝑥𝑖
𝑗−1)), where 𝑥

𝑖
𝑗
represents the x-coordinate

of the top-left corner of the cell in the i-th row and j-th position, and
𝑤 (𝑥𝑖

𝑗
) represents its width.

4

Longest wire

cell

symmetrically
flipped cellsymmetric

flip
symmetric

flip

symmetric flip

horizontal
movement

Horizontal
movement

wire

(a)

1 1

2
flip

back
flip

back
3

Longest

wire

(b) (c)

make sure they are
the same length

The length of the longest wire is reduced

Longest wire

3

Figure 5: Move cells to the ideal position: (a) Flip two cells onto a different row while preserving the wirelength through
symmetry. (b) Move the cell to the average of rightmost and leftmost connected cells. (c) Positioning the cell on this ideal
position would minimize the maximum wirelength. Flip the two cells back.

Algorithm 2 Placement and Buffering
Input: The circuit topology generated by topology initialization
Output: Coordinate of each cell;
1: Coordinate Initialization;
2: Place the cells with wirelength violations on the ideal position;
3: X-coordinate adjustment;
4: Record the adjacent rows of the adjusted cell.
5: for 𝑟𝑜𝑤 in recorded ones do
6: if 𝑟𝑜𝑤 is recorded a set times then
7: Buffer insertion
8: Recording the inserted row
9: X-coordinate adjustment
10: else
11: Place the cells in the row with wirelength violations on

the ideal position
12: Recording adjacent row
13: X-coordinate adjustment
14: end if
15: end for
16: Row distance adjustment;

Row distance Adjustment. In actual circuit layouts, it is unde-
sirable to have adjacent cells abutting each other in adjacent rows.
Therefore, it is necessary to adjust the distance between rows after
the iteration. We increment the distance until the first wirelength
violation occurs, ensuring that the wirelength violation do not arise
while maintaining a reasonable gap between adjacent rows.

4 Experimental Result
In order to assess the performance of our proposed algorithm, we

implement it using the C++ programming language and conduct
tests on an AMD EPYC 7702 CPU operating at a clock speed of
3.6 GHz, with 512 GB of RAM. To optimize its runtime speed and
efficiency, we compile the implementation using the -O3 option of
g++ 9.4.0. To evaluate the effectiveness of our algorithm, we test it
on benchmark circuits shown in Table 1 [12]. “#Cell” and “#Buffer”
represent the quantities of cells and buffers contained in the path-
balanced cases, respectively. In these test cases, cells range from 7
to 3256, and buffers range from 6 to 17701. This set of benchmark
circuits has been carefully selected to ensure a wide coverage in
terms of structure, scale, and characteristics, thereby representing
diverse layout requirements encountered in practical applications.

Table 1: Test cases and detailed information.

Index Case #Cell #Buffer Index Case #Cell #Buffer
1 c17 7 6 7 c2670 718 1839
2 c432 183 812 8 c3540 1183 3639
3 c499 588 1151 9 c5315 1915 8762
4 c880 444 2184 10 c6288 3256 17701
5 c1355 584 1091 11 c7552 2129 7666
6 c1908 468 1782

We conduct experiments to compare the proposed algorithm with
two state-of-the-art placement algorithms, namely ASAP [6] and the
GA-based method [4, 5]. Specifically, we compare their generated
circuits in two primary dimensions, including time overhead and
buffer insertion. The results are shown in Table 2. “#Buffer” and
“#Row” represent the quantities of additional buffers and buffer rows
inserted to eliminate all wirelength violations while ensuring path
balance. The “Per1” and “Per2” represent ratio of the performance
of the proposed method and that of the GA method and ASAP,
respectively. The “Speedup1” and “Speedup2” stand for the inverse
ratio.

4.1 Comparison on Buffer Insertion
According to Table 2, the GA method is only suitable for small

benchmark cases such as c17 and c432. As the size of the circuit
increases, the number of inserted rows and buffers increases signifi-
cantly, even achieving 83 in c3540 and 13657 in c5315, respectively.
ASAP performs better in larger benchmark tests, with more than half
of the benchmark cases requiring no additional inserted buffer and
row, especially ranging from c432 to c1908. The proposed algorithm
surpasses all previous algorithms, with no buffer insertion in the
majority of cases, particularly in c2670 and c5315. Moreover, in some
cases where the insertion of buffers is unavoidable, our proposed
algorithm can reduce the required number of inserted buffers and
rows compared to ASAP. Projection-based methods play a crucial
role in minimizing the maximum length of wires.

4.2 Comparison on Time Overhead
In Table 2, ASAP achieves a substantial acceleration over the GA

method due to the transformation from Lagrangian subproblem to
the shortest path problem. The average time overhead has been
reduced by at least 95%. Breakthroughs have been achieved even in
numerous cases ranging from c880 to c7552, where GA methods are
highly likely to fail to converge. Our algorithm has taken a significant
step forward on this basis, which achieves an average runtime that

5

Table 2: Comparisons among algorithms.

Case GA Method [5] ASAP [6] Proposed Algorithm
#Buffer #Row Runtime(s) #Buffer #Row Runtime(s) #Buffer Per1 Per2 #Row Per1 Per2 Runtime(s) Speedup1 Speedup2

c17 0 0 141.9 0 0 8.55 0 - - 0 - - 3.78 37.54x 2.26x
c432 37 1 1472.09 0 0 25.71 0 100% - 0 100% - 9.86 149.30x 2.61x
c499 1848 24 2983.3 0 0 40.99 0 100% - 0 100% - 22.56 132.24x 1.82x
c880 2828 38 >3600 0 0 54.85 0 100% - 0 100% - 31.92 >112.78x 1.72x
c1355 2126 28 >3600 0 0 41.64 0 100% - 0 100% - 19.62 >183.49x 2.12x
c1908 1732 26 >3600 0 0 60.46 0 100% - 0 100% - 43.56 >82.64x 1.39x
c2670 6376 48 >3600 315 2 81.29 0 100% 100% 0 100% 100% 52.97 >67.96x 1.53x
c3540 10600 83 >3600 2294 13 94.96 834 92% 64% 5 94% 62% 42.15 >85.41x 2.25x
c5315 13657 45 >3600 1426 5 374.04 0 100% 100% 0 100% 100% 283.64 >12.69x 1.31x
c6288 2838 12 >3600 0 0 158.48 0 100% - 0 100% - 192.53 >18.70x 0.82x
c7552 11594 48 >3600 4170 17 590.86 1766 85% 58% 9 81% 47% 208.72 >17.25x 2.83x

Average - - - - - - - 98% 81% - 98% 77% - >81.82x 1.88x

0 5 10 15 20 25 30 35 40

Increasement Percentage (%)

Time
 Delay

Power

Area

34

42

38

13

15

19

ASAP Proposed Method

Figure 6: Comparison on increasement percentage of different
metrics, including time delay, power and area, for c3540 before
and after different placement strategies.

is at least 81.82x of ASAP’s and 1.88x of GA method’s, even with
the ability to achieve up to 2x acceleration across multiple cases
compared to the latter. It demonstrates that the circuit layout based
on the topology with lower entanglement entropy could facilitate a
faster convergence of detailed placement. The failure of c6288 could
potentially be attributed to the absence of generating such a circuit
topology during the global placement stage.

4.3 Comparison on Circuit Metrics
Time delay, power consumption, and area serve as crucial met-

rics to evaluate the overall performance of practical circuits and are
significantly influenced by the placement phase. Therefore, for a
more comprehensive assessment of the effectiveness of the proposed
method, in addition to the previous direct comparison, it is imper-
ative to simulate and measure the practical circuits obtained from
the placement process and subsequently compare their parameters.
Taking c3540 as an example, the circuits processed by ASAP and the
proposed method were evaluated, and the corresponding parameters
are illustrated in Fig. 6. Remarkably, the circuits processed by the
proposed method exhibit a substantial reduction in time delay, power
consumption and area simultaneous, indicating greater promise of
the proposed method for industrial applications in comparison to
previously proposed placement strategies.

5 Conclusion
In this paper, we propose a novel analytical algorithm for the

efficient placement of AQFP logic circuits. Our primary objective is
to minimize the additional buffers inserted in the AQFP circuits to

improve the power, performance, and area. By introducing the entan-
glement entropy, we successfully acquiring the topology that could
make detailed placement convergence fast. We propose a detailed
placement method that could finally decide the specific coordinate of
each cell. Additionally, we incorporate buffer insertion with refined
cell positions to achieve a legalized placement solution. The experi-
mental results demonstrate the superiority of the proposed method
over previous methods, with an average reduction of 98% and 81%
in buffer requirements and 81.82x and 1.88x in time requirements
compared with two advanced algorithm.

Acknowledgment
This work was supported by NSFC (Grant No.62204265, 62234010,

U23A20301). Zhou Jin is the corresponding author.

References
[1] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa. Energy efficiency of adiabatic

superconductor logic. Supercond Sci Technol, 2014.
[2] S. K. Tolpygo, V. Bolkhovsky, T. J. Weir, A. Wynn, D. E. Oates, L. M. Johnson,

and M. A. Gouker. Advanced fabrication processes for superconducting very
large-scale integrated circuits. IEEE T APPL SUPERCON, 2016.

[3] K. Inoue, N. Takeuchi, K. Ehara, Y. Yamanashi, and N. Yoshikawa. Simulation and
experimental demonstration of logic circuits using an ultralow-power adiabatic
quantum-flux-parametron. IEEE T APPL SUPERCON, 2013.

[4] Y. Murai, C. L. Ayala, N. Takeuchi, Y. Yamanashi, and N. Yoshikawa. Development
and demonstration of routing and placement eda tools for large-scale adiabatic
quantum-flux-parametron circuits. IEEE T APPL SUPERCON, 2017.

[5] T. Tanaka, C. L. Ayala, Q. Xu, R. Saito, and N. Yoshikawa. Fabrication of adiabatic
quantum-flux-parametron integrated circuits using an automatic placement tool
based on genetic algorithms. IEEE T APPL SUPERCON, 2019.

[6] Y. Chang, H. Li, O. Chen, Y. Wang, N. Yoshikawa, and T. Ho. Asap: An analytical
strategy for aqfp placement. In ICCAD, 2020.

[7] H. Li, M. Sun, T. Zhang, O. Chen, N. Yoshikawa, B. Yu, Y. Wang, and Y. Lin. Towards
aqfp-capable physical design automation. In DATE, 2021.

[8] S. Lee, H. Riener, and G. De Micheli. Beyond local optimality of buffer and splitter
insertion for aqfp circuits. In DAC, 2022.

[9] H. Fan, C. Guo, and W. Luk. Optimizing quantum circuit placement via machine
learning. In DAC, 2022.

[10] F. Chang, Y. Tseng, Y. Yu, S. Lee, A. Cioba, I. Tseng, D. Shiu, J. Hsu, C. Wang,
C. Yang, R. Wang, Y. Chang, T. Chen, and T. Chen. Flexible chip placement via
reinforcement learning: Late breaking results. In DAC, 2022.

[11] C. Cheng, A. B. Kahng, I. Kang, and L. Wang. REPLACE: Advancing solution
quality and routability validation in global placement. IEEE TCAD, 2019.

[12] https://sportlab.usc.edu/~msabrishami/benchmarks.html, 2023.
[13] J. Clarke and A. Braginski. The SQUID Handbook: Applications of SQUIDs and

SQUID Systems. Wiley-VCH Verlag GmbH & Co. KGaA, 2006.
[14] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa. Adiabatic quantum-flux-parametron

cell library adopting minimalist design. J. Appl. Phys, 2015.
[15] P. Dong, Y. Xie, H. Li, M. Sun, O. Chen, N. Yoshikawa, and Y. Wang. Taas: a

timing-aware analytical strategy for aqfp-capable placement automation. In DAC,
2022.

6

https://sportlab.usc.edu/~msabrishami/benchmarks.html

	Abstract
	1 Introduction
	2 Background
	2.1 AQFP Logic and Circuit Topology
	2.2 Physical Constraints

	3 Proposed Framework
	3.1 Topology Initialization
	3.2 Placement and Buffering

	4 Experimental Result
	4.1 Comparison on Buffer Insertion
	4.2 Comparison on Time Overhead
	4.3 Comparison on Circuit Metrics

	5 Conclusion
	References

