
Deep Learning Enhanced Time-step Control in
Pseudo Transient Analysis for Efficient Nonlinear DC Simulation

Xiaru Zha1, Haojie Pei1, Dan Niu2, Xiao Wu3∗ and Zhou Jin1∗
1.Super Scientific Software Laboratory, China University of Petroleum-Beijing, Beijing, China

2.School of Automation, Southeast University, Nanjing, China
3.Huada Empyrean Software Co. Ltd, Beijing, China

Email: 2019011712@student.cup.edu.cn, haojiepei@student.cup.edu.cn,
101011786@seu.edu.cn, wuxiao@mail.empyrean.com.cn, jinzhou@cup.edu.cn

Abstract—With the development of VLSI, circuit simulation
plays an important role in circuit design, and DC analysis,
as the basis of circuit behavior analysis, is the foundation for
nonlinear electronic circuit simulation. Pseudo transient anal-
ysis(PTA) methods have gained great success among various
continuation algorithms. However, PTA tends to be computa-
tionally intensive without proper time-step control method. In
this paper, we harness the latest advancing in deep learning
to resolve this issue. Particularly, a coarse and fine grained
hybrid sampling strategy is used to search the optimal time-
step, which resolves the problem that the optimal time-step
is no precise definition in PTA theory. Afterwards, the long
short-term memory(LSTM) algorithm can be utilized to learn
an optimal time-step control method through feature selec-
tion and two-stage data preprocessing strategy accelerating
DC analysis ultimately. Experimental results demonstrate a
significant speedup of up to 41.98X.

Index Terms—Circuit Simulation, Nonlinear DC Analysis,
Pseudo Transient Analysis, Time-Step Control, Deep Learning

1. Introduction
With the development of semiconductor technology, the

integration and complexity of integrated circuits show an
exponential growth trend and DC analysis, as the basis of
circuit simulation, is also required to solve very large scale
and strong nonlinear algebraic system constructed by modi-
fied nodal analysis(MNA) [1] efficiently. As is well-known,
Newton-Raphson(NR) method is the most commonly used
method to solve nonlinear algebraic equations because of its
quadratic convergence. However, when NR method solves
very large scale and strong nonlinear algebraic system, NR
does not converge frequently [2]. Therefore, the continuation
method of DC analysis is widely studied, including PTA
[3], Gmin stepping [4], source stepping [5], homotopy [6],
etc. Unfortunately, the convergence of Gmin stepping and
source stepping are often inferior in strong nonlinear DC
analysis. Similarly, although homotopy can guarantee global
convergence, its realization is highly dependent on device
model. Therefore, among the continuation methods, PTA is
expected to solve the very large scale and strong nonlinear
DC analysis, and PTA has been proved to be the most

promising method because it is easy to implement and has
no discontinuity issue.

PTA is a method that transforms nonlinear algebraic
systems, which are difficult to solve directly, into ordinary
differential systems with initial value problems by inserting
pseudo-elements. Once the PTA solver forms the ordinary
differential system, it is solved iteratively to the steady
state using numerical integration methods based on time-
step control. However, the efficiency of PTA is subject to
the time-step control method, which determines the discrete
time points that need to be solved, including the time-
consuming and resource-consuming NR iterations. Some
time-step control methods based on simple formulas have
been proposed to accelerate PTA, as described in previous
studies [7], [8]. However, these methods quickly become
inadequate for simulating very large and strongly nonlinear
systems. Therefore, there is a pressing need for a more
effective time-step control method.

Fortunately, the rise of deep learning has enabled the
solution of many complex problems, including computer
vision [9] and natural language processing [10], presenting
an opportunity for the development of efficient time-step
control methods. However, such methods must overcome
several challenges. (1) While different circuit types have
varying time-step requirements, common process variables
can be used as features, based on expert experience, to
identify these requirements. (2) An optimal time-step sam-
pling strategy needs to be explored since PTA theory lacks
a precise definition for the optimal time-step. (3) Timing
information is crucial for PTA time-step control, so any
proposed algorithm must have the ability to process this
information. This paper proposes an optimal time-step con-
trol method enhanced by deep learning, which solves the
first challenge. It also contains a hybrid sampling strategy,
combining coarse and fine-grained approaches, to solve the
second challenge. Lastly, it uses long short-term memory
(LSTM) to address the third challenge. By solving these
challenges, our contributions will be discussed as follows.

(1) The optimal time-step is approximated by coarse
and fine grained hybrid sampling strategy, which solves
the problem that the optimal time-step cannot be defined
theoretically.

(2) The time-step control method enhanced by deep
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learning and based on feature selection and two-stage data
preprocessing strategy has better generalization and simula-
tion efficiency.

(3) The proposed method has been implemented in
an out-of-the-box SPICE-like simulator and is verified by
benchmark circuits. Significant acceleration is achieved, i.e.,
a maximum 41.98X speedup is demonstrated on practical
circuits.

2. Preliminaries
2.1. Pseudo Transient Analysis

PTA [7], [11], [12] transforms original hard-to-solve
nonlinear algebraic systems

F (x) = 0 (1)

(where F (·) : Rm → Rm, x = (v, i)T ∈ Rm, m = N+M ,
variable vector v ∈ RN denotes node voltage, and vector
i ∈ RM represents internal branch current) into ordinary
differential systems

F (x) +D ∗ ẋ(t) = 0 (2)

(where ẋ(t) = (v̇(t), i̇(t)), and D represents for the inci-
dence matrix of inserted pseudo-elements) with an initial
value problem by inserting specific pseudo-elements such
as capacitors and inductors into the circuit.

Implicit numerical integration algorithms, e.g.(3), are
used to discretize the time-domain, and the steady state is
obtained through iterative difference approximation of the
differential term.

ẋ(t)|t=tn+1
= (xn+1 − xn)/hn+1 (3)

The process of choosing the appropriate h value in Eq.(3) for
each iteration in PTA is referred to as the time-step control
method.

2.2. Time-step Control Method
There are two time-step control methods based on simple

formulas. The conventional PTA methods use a simple
iteration counting method [7] to determine the time-step
size. This method employs time-step control through two
options (IMAX and IMIN). The number of NR iterations at
each time-point is compared with these options to determine
the next time-step. The advantage of this method is that the
time-step can be increased quickly and easily. However, it
is challenging to select appropriate parameters, including
IMAX, IMIN, initial time-step, and time-step growth rate,
for different circuits.

The adaptive time-step control method was proposed
in [8] based on the Switched Evolution/Relaxation (SER)
method, which uses the following equation to control the
time-step.

hn+1 = E(hn, Nitrn, x,F (x))

= hn ·MAX(1, δ · γ · ∥F (x)∥) (4)

This heuristic method employs domain experience and has
demonstrated great potential in speeding up intelligent time-
step control. However, it still does not guarantee that the
time-step is always as large as possible.

2.3. Long Short-Term Memory
Long short-term memory (LSTM) is a type of recursive

neural network (RNN) [13] that can analyze time series
and overcome the vanishing gradient issue. It is commonly
used in sequential tasks that involve time-dependent data,
such as speech recognition and machine translation. Unlike
traditional RNNs, which suffer from the problem of long-
term dependence, LSTM was designed to address this issue
from the outset. This allows LSTM to effectively convey
and express information from long time series without for-
getting useful information from the distant past. The LSTM
architecture is composed of three gate structures, namely the
forget gate, input gate, and output gate. These gates allow
for the retention and management of temporal information.
The forget gate, as shown in Eq.(5), serves the purpose of
deciding which information should be forgotten.

ft = σ(Wf · [ht−1, xt] + bf ) (5)

The input gate, as expressed in Eq.(6), is responsible for
determining which new information should be stored and
which existing information should be updated.

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = it · C̃t

(6)

The output gate, as shown in Eq.(7), controls which infor-
mation should be propagated to the next cell.

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot · tanh(Ct)
(7)

3. Proposed methods

3.1. Overview
The time-step control for PTA method is not determined

by accuracy considerations. Instead, the time-step is made
as large as possible, consistent only with the convergence
of the NR iteration [8]. Based on these characteristics of
time-step control in PTA, we introduce the coarse and fine
grained hybrid sampling strategy to find the optimal time-
step that allows for the largest time-step while ensuring the
convergence of the NR iteration.

There are two kinds of optimal time-step. In one case,
when the sampling strategy is coarse-grained, the time-step
is increased according to the conventional time-step control.
When the previous NR iteration converges, but the current
NR iteration does not, the fine-grained search is triggered. In
this case, the time-step decreases with a certain granularity
from large to small until a convergent time-step is found
and marked as the optimal time-step. In the other case,
the current NR iteration converges and the time-step has
reached the maximum time-step. And the maximum time-
step is marked as the optimal time-step in this case.

After obtaining the optimal time-step as described above,
the proposed method involves mapping time-step control as
a regression prediction problem. This is achieved by fitting
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Figure 1. Entire flow of proposed method

an optimal time-step control function between time-step h
and selected features s on training set.

h = f(s, θ) (8)

, the parameters θ need to be learned during training. Then,
we use LSTM on the training set to find parameters θ∗ on
training set, which makes model f(s, θ∗) be closed to the
actual optimal time-step control function f(s, θ). As a result,
the differential system reaches the steady state rapidly, as
demonstrated in Eq.(9).

NRiters = lim
n→Nstop

min
θ∗

F (xn)+D · xn − xn−1

fn(s, θ∗)
= 0 (9)

The entire flow of the proposed method is illustrated in
Figure1. During the PTA iteration, samples are collected
for offline model training. The trained model is then used
for online prediction during the subsequent PTA iterations.
Note that PTA itself is an ordinary differential system over
time, thus LSTM is quite suitable for this work due to its
superiority in processing time series information.

3.2. Coarse and Fine Grained Hybrid Sampling
As mentioned previously, the first task to be addressed is

the sampling of the optimal time-step. However, there is no
precise definition of what constitutes an optimal time-step
in PTA. The PTA method comprises two layers of iterations,
an outer PTA iteration, and an inner NR iteration. The
objective of the sampling process is to find the optimal time-
step for each PTA iteration. In order to achieve efficiency,
a larger time-step that ensures NR convergence results in
fewer discrete time points that need to be computed. Con-
versely, non-convergence of NR leads to rollback, necessi-
tating additional computation. Therefore, the optimal time-
step is approximated by the largest possible time-step that
guarantees NR convergence. To obtain the optimal time-step,
we introduce the coarse and fine-grained hybrid sampling
method, as shown in Fig.2.

The reason why the above flow uses the combination of
coarse and fine granularity to search the time-step is that the
result of PTA iteration is too radical to obtain the optimal
time-step precisely under the coarse grained decrease based
on the conventional method. At the same time, in order
not to affect the sampling efficiency, we add a fine-grained
search, which can select automatically the proper granularity
according to the dimension of time-step to reduce the time-
step, so that the optimal time-step under this granularity can
be obtained accurately and quickly.
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Figure 2. Coarse and fine grained hybrid sampling strategy

The presented sampling strategy has been shown to pro-
vide a high-quality dataset for implementing deep learning
enhanced optimal time-step control, as demonstrated by the
speedup results of several simulated circuits listed in Table1.

TABLE 1. VERIFY THE VALIDITY OF THE COARSE AND FINE GRAINED
HYBRID SAMPLING STRATEGY ON SEVERAL CIRCUITS

circuit conventional proposed sampling speedup

fadd32 1968 121 16.26
ab opamp 2417 213 11.35
ab integ 4540 159 28.55

schmitfast 5681 68 83.54
THM5 5331 80 66.64

3.3. Feature Selection
Appropriate feature selection not only reduces the com-

putational burden of model training but also improves the
accuracy of prediction. Furthermore, after the feature selec-
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TABLE 2. FEATURES AND DESCRIPTIONS

Features Brief Descriptions Data Type

NRsn−1 Evaluate the difficulties of NR convergence at previous optimal time-step Scalar
Resn−5:n−1 Evaluate whether equation is close to final solution at five discrete time points respectively Vector

T ime− stepn−1 The previous optimal time-step Scalar
V oln−5:n−1,1:10 The ten voltage solution curves in descending order of fluctuation Matrix

tion process is complete, we need to simulate all training
netlists to generate the complete dataset.

The time-step control in PTA is not restricted to the
circuit but is dependent on the change trend of the pro-
cess variable in the simulation. Hence, we select process
variables from the simulation as features instead of relying
on circuit-specific features like circuit type. This approach
allows us to build a sample set that is not limited to a par-
ticular circuit type and can be sampled from the simulation
process of all circuits to obtain as many samples as possible.
In addition, according to PTA and expert experience, the
symbolic representation, brief description, and data types of
the selected features are shown in Table2. It is important
to note that we use the features from five consecutive time
points to predict the sixth time-step. This is because too few
time points are insufficient to adequately capture the volt-
age fluctuation of nodes. Additionally, in order to address
the issue of inconsistent numbers of features arising from
different numbers of nodes across circuits, we uniformly
select the ten solution curves with the largest fluctuation for
each circuit. The detail description of important features are
given following.

NRsn−1 represents the difficulties of NR convergence
at previous optimal time-step. A smaller value of it indicates
that NR converges more easily, allowing for a larger next
time-step.

Resn−5:n−1 represents the distance of PTA conver-
gence. A larger time-step can also ensure the convergence
of NR when the residual value enters the PTA convergence
stage.

T ime− stepn−1 represents time-step at previous op-
timal time-step, which is basement for next time-step.

V oln−5:n−1,1:10 represents ten voltage solution curves
with the largest fluctuation, which are related to the time-
step used in the simulation. Typically, a smaller time-step is
needed for simulations with more dramatic voltage fluctua-
tions.

3.4. Two-stage Data Preprocessing Strategy
Inside data preprocessing strategy. Based on the data

types in Table2, it is evident that different features have vary-
ing data types. However, for the model to function properly,
it requires input features with uniform data types, specifi-
cally one-dimensional row vectors. Consequently, there is
a need for unification of residuals and voltages. Firstly,
for the voltage with matrix type, in order to describe the
fluctuation of each voltage solution curve, the variance is
adopted to normalize each voltage solution curve and a one-
dimensional row vector of size 10 can be obtained. Secondly,
for residuals with a one-dimensional column vector type, we

utilized the standard deviation to normalize the residuals
and obtain a scalar value, which describes the convergence
distance of the current equations. Then, we concatenated in-
dependent features based on the column direction to form a
one-dimensional row vector. It is worth noting that the range
of time-step may vary by several orders of magnitude, which
can increase the difficulty of model learning. To simplify
the learning process, we converted time-step prediction to
a prediction based on the multiples of the previous step. In
Table3, the effectiveness of the prediction based on the time-
step multiples of the previous step is verified by the speedup
for models with two different labels on several circuits.

TABLE 3. VERIFY THE EFFECTIVENESS OF CONVERTING TIME-STEP
PREDICTION INTO MULTIPLES BASED PREDICTION ON SEVERAL

CIRCUITS

circuit time-step(#iters) ours(#iters) speedup

g1310 121 56 2.16
hussamp 1365 240 5.69

D2 545 56 9.73
DCOSC 654 188 3.48
UA709 2160 711 3.04
UA733 1073 133 8.07

Outside data preprocessing strategy. After performing
internal data processing, we concatenated all processed one-
dimensional row vectors into a large matrix to form the
training set. As we are aware, using a training set with
different value ranges and dimensions for each column
feature can significantly increase the training time and even
result in non-convergence of the model. Hence, to ensure
numerical consistency, we utilized maximum and minimum
normalization for each column of the training set.

3.5. Modeling and Training

As mentioned earlier, the LSTM deep learning model
is particularly effective in processing timing information
and avoiding the gradient disappearance problem commonly
associated with traditional RNN. In our work, we leveraged
the PyTorch machine learning library to construct and train
our LSTM model using all available data. Specifically, we
designed the LSTM network structure to include four hidden
layers, each with 120 cells and ReLU activation functions.
For optimization, we utilized a batch size of 32, learning
rate of 0.0005, Adam optimizer, and mean square error loss
function. Finally, we used Alg.1 to process the data and train
our model. Upon completion of the training process, we
obtained a reliable model capable of accurately predicting
the time-step.
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Algorithm 1 Deep learning enhanced time-step control
method for PTA
Input: Training netlists ξ
Output: Time-step predictor f(s, θ∗)

1: Coarse and Fine Grained Hybrid Sampling Strategy
2: Construct nonlinear equation F (x) by ξ
3: for PTA is not converge do
4: Execute NRsolverF (x)
5: Find the maximum time-step that ensures NR con-

vergence and mark as the optimal time-step
6: end for
7: Obtain optimal time-step set H1:n

8: Feature Selection
9: Select features S1:n,1:k

10: Two-stage data preprocessing strategy
11: Execute S

′

1:n,1:k, Ĥ1:n = Inside(S1:n,1:k, H1:n)

12: Execute Ŝ1:n,1:k = Outside(S
′

1:n,1:k)
13: Modeling and Training
14: Construct LSTM model with trainable parameters θ
15: for i to n / Batch do
16: Loss(LSTM(Ŝ1:k,i:i+Batch, Ĥ1,i:i+Bactch, θ))
17: Update θ ← θ
18: Update i← i+Batch+ 1
19: end for
20: f(·)← LSTM(·)

4. Experiment results

4.1. Experimental Setup
The deep learning model of the proposed method is

trained using python and the torch framework, implemented
in the WSPICE simulator based on SPICE3f5. A total of
745 samples from 5 circuits are used to train the model
and obtain the final version. We compared the efficiency
and robustness of the proposed method with those of the
conventional PTA algorithm and adaptive PTA algorithm by
examining the total number of NR iterations used during
simulation. All circuits used in the experiments were se-
lected from benchmark [14] as well as from our laboratory.

4.2. Acceleration Simulation Efficiency
To demonstrate the effectiveness of the proposed method

in improving simulation efficiency, we compare it with the
adaptive method and conventional method. For each time-
step control method, pseudo-elements are inserted into the
transistors between each node and ground using the diagonal
embedding position [15], to improve the convergence effect.
We evaluate the efficiency in terms of the number of NR
iterations on 11 testing circuits, and the results are pre-
sented in Table4. The proposed method shows a significant
improvement over the conventional method, achieving up to
41.98X speedup, and over the adaptive method, achieving
up to 41.92X speedup, in damped pseudo-transient anal-
ysis(DPTA). DPTA, a variation of PTA, solves oscillation
problems by artificially increasing the damping effect in the
numerical integration algorithm. Furthermore, we demon-
strate the use of circuit features such as nodes, bjt, mos,

etc, indicating that our algorithm has superior generalization
capabilities - a crucial metric in deep learning.

Figure 3. The node voltage waveform of “THM5” circuit by using proposed
method

Furthermore, the practical circuit “THM5”, which con-
tains 1 voltage sources and 9 bjt transistors, is selected by us
for more detailed analysis. Generally the time-step control
can be categorized into two distinct phases in PTA: the
search phase and the convergence phase. Fig.3 shows the
voltage curve of node 10, and the solution of each pseudo-
step is close to the final solution in the convergence phase. It
can be clearly seen that the proposed algorithm can provide
a larger time-step, thus reducing the discrete time points
in the convergence stage. Similarly, the subfigure of Fig.3
shows the voltage curve of node 10 in the search stage.
As observed, in the search phase there are the time-step
is small and numerous time points. Because the voltage
changes from zero to full value in the search phase, which
leads to a relatively large fluctuation of the voltage curve.
And a small time-step is able to ensure the convergence of
NR. In addition, the proposed algorithm will not change the
continuity of the voltage curve or cause the oscillation of
the voltage curve, so it has better practicability.

4.3. Improvement Simulation Convergence
It’s worth noting that the proposed method demonstrates

the ability to solve non-convergence(N/A) issues for certain
DPTA cases, as shown in Table5. This is especially valuable
for PTA based on SPICE, as non-convergence problems can
be very challenging for simulators to handle, and their root
causes are often difficult to identify accurately. The proposed
algorithm significantly enhances the robustness of DPTA,
which is an important practical consideration in real-world
applications.

A large circuit named “voter” is used to illustrate the
advantages of the proposed algorithm. The “voter” circuit
consists of 4,243 MOS transistors and 23 voltage sources.
In Fig.4(a), a portion of the voltage curve of node 10 in the
“voter” circuit is shown under the conventional time-step
control method. It is evident that the voltage curve exhibits
oscillations and does not converge, which is a limitation of
the conventional time-step control method. In contrast, the
proposed algorithm overcomes this limitation and prevents
oscillations, as depicted in Fig.4(b), thereby improving the
convergence of DPTA.
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TABLE 4. CIRCUIT CHARACTERISTICS AND SIMULATION EFFICIENCY FOR DPTA

circuit nodes eqn bjt mos2 mos3 c r v
number of iters speedup

conventional adaptive ours vs. conventional vs. adaptive

nagle 26 54 23 0 0 1 11 5 2093 1948 672 3.11 2.90
ab ac 25 28 0 31 0 22 1 3 3961 3947 265 14.95 14.89

ab integ 28 32 0 31 0 24 3 4 4540 4406 402 11.29 10.96
ab opamp 28 31 0 31 0 24 4 3 2417 2536 430 5.62 5.90

e1480 145 204 0 28 0 17 130 3 5553 5514 369 15.05 14.94
mosrect 6 10 0 4 0 0 2 2 838 826 84 9.98 9.83

schmitfast 5 19 0 6 0 0 0 2 5681 5691 176 32.28 32.34
slowlatch 12 37 0 0 14 0 1 5 9382 9353 264 35.54 35.43

fadd32 161 178 0 288 0 25 0 17 1968 1859 284 6.93 6.55
TADEGLOW6TR 18 18 0 3 0 0 18 1 145 102 70 2.07 1.46

THM5 26 26 9 0 0 0 0 1 5331 5324 127 41.98 41.92

TABLE 5. IMPROVEMENT CONVERGENCE FOR DPTA ON SOME
CIRCUITS

circuits
convergence

conventional adaptive ours

bjtff N/A N/A 479
schmitslow N/A N/A 468

toronto N/A N/A 364
add20 N/A N/A 673

mem plus N/A N/A 858
ram2k N/A N/A 526
voter N/A N/A 1261
jge N/A N/A 1342

(a) (b)
Figure 4. Comparison of the node voltage waveform on “voter” circuit at
search phase using two time-step control methods

5. Conclusion
In this paper, we propose a novel time-step control

method that uses deep learning to efficiently complete non-
linear DC analysis in DPTA. Our approach utilizes coarse
and fine grained hybrid sampling strategy and two-stage
data processing strategy to create a high-quality dataset for
training the model. Our numerical experiments demonstrate
that our method achieves a significant speedup of up to
41.98X compared to other time-step control methods. Im-
portantly, we show that our approach can also help address
non-convergence issues that can arise in some circuits due
to time-step control.
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