
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Adaptive Auto-tuning Framework for Global
Exploration of Stencil Optimization on GPUs

Qingxiao Sun, Yi Liu, Hailong Yang, Zhonghui Jiang, Zhongzhi Luan, and Depei Qian

Abstract—Stencil computations are widely used in high performance computing (HPC) applications. Many HPC platforms utilize the
high computation capability of GPUs to accelerate stencil computations. In recent years, stencils have become more diverse in terms
of stencil order, memory accesses and computation patterns. To adapt diverse stencils to GPUs, a variety of optimization techniques
have been proposed. Due to the diversity of stencil patterns and GPU architectures, no single optimization technique fits all stencils.
Therefore, stencil auto-tuning mechanisms have been proposed to conduct parameter search for a given combination of optimization
techniques. However, parameter search for an inappropriate optimization combination (OC) misses the globally optimal solution. To
address the above problems, we propose GSTuner, an adaptive auto-tuning framework that efficiently determines the optimal
parameter setting of the global optimization space for stencils on GPUs. Specifically, GSTuner represents stencil patterns as
neighboring features and unifies feature vectors of OCs through data pre-processing. In addition, GSTuner samples parameter settings
from superior OCs via the quota-based reward policy and regression mechanisms. After that, GSTuner employs the genetic algorithm
that considers sub-population similarity to reduce the cost of evolutionary search. The experiment results show that GSTuner can
identify better performing settings with higher auto-tuning speed compared to the state-of-the-art works.

Index Terms—Stencil Computation, GPU, Auto-tuning, Performance Prediction, Deep Learning, Genetic Algorithm.

✦

1 INTRODUCTION

Stencil computation is one of the most adopted computa-
tion patterns in scientific applications. Stencil computations
appear in many domains such as cellular automata [1],
physical simulation [2] and image processing [3]. A stencil
computation sweeps a computation grid and accesses fixed
neighbors around each point to update its value, where the
extent of the neighbors along each dimension is referred to
as the stencil order [4]. For instance, box-shape stencils are
used to perform smoothing and other neighbor-pixel-based
computations in image processing [5], [6].

In recent years, stencil computations have become more
diverse in terms of stencil order, data accesses and com-
puting patterns [7], [8]. The diverse stencils tend to have
abundant parallelism, which makes GPU a good candidate
for performance acceleration. However, due to the com-
plexity of GPU architecture, the programmers must ensure
memory coalescing, reduce thread divergence and trade off
between parallelism and resource utilization when optimiz-
ing stencils on GPU. Many optimization techniques based
on streaming and tiling [9], [10] have been proposed to
adapt to the high computation capability and limited mem-
ory bandwidth of GPU architecture. However, no single
optimization technique fits all stencils due to the diversity
of stencil patterns [11].

• Qingxiao Sun, Yi Liu, Hailong Yang, Zhonghui Jiang, Zhongzhi Luan,
Depei Qian are with Sino-German Joint Software Institute, the School of
Computer Science and Engineering, Beihang University, Beijing, China,
100191.
Qingxiao Sun is also with Super Scientific Software Laboratory, College
of Information Science and Engineering, China University of Petroleum-
Beijing, Beijing, China, 102249.
Email: {qingxiaosun,yi.liu,hailong.yang,jiangzhh,07680,depeiq}@
buaa.edu.cn.

Stencil domain-specific languages (DSLs) explore the
automatic code generation with the integration of optimiza-
tion techniques [12], [13], [14], [15]. Although the DSLs are
effective in improving stencil performance, it is difficult to
evaluate the performance impact of individual optimization
techniques within a particular optimization combination
(OC). In addition, stencil auto-tuning frameworks [16], [17]
have been proposed to determine the optimal parameter set-
tings for specific OCs. However, whether an OC can gener-
ate high-performant code depends on the target stencil and
GPU architecture. Conducting a time-consuming parameter
search for sub-optimal OCs will significantly deteriorate the
effectiveness of auto-tuning mechanisms. Therefore, it is
necessary to explore the global optimization space to avoid
missing the optimal parameter setting [18].

Performance prediction is often used to study the impact
of optimizations on stencil computation [19], [20]. Since no
actual execution is required, performance prediction can
efficiently reduce the search cost involved in stencil auto-
tuning. However, it is challenging to extract the effective
features representing stencil neighboring patterns. In addi-
tion, the pre-processing of varying-length feature vectors
should be conducted to handle inconsistent optimizations
among different OCs. Since the performance similarity of
superior settings leads to inevitable prediction errors [21],
it is almost infeasible to accurately determine the optimal
setting through performance prediction. Instead, perfor-
mance prediction is generally utilized to guide filtering out
inappropriate settings to avoid massive measurements on
actual hardware [22].

To address the above challenges, we propose an adaptive
auto-tuning framework GSTuner, which efficiently deter-
mines the optimal parameter setting of the global opti-
mization space for stencil computation on GPUs. GSTuner

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

first generates stencil programs that satisfy stencil patterns
with symmetric neighbor accesses. After that, GSTuner col-
lects the stencil datasets and trains regression models for
the global optimization space through data pre-processing.
Then, GSTuner iteratively samples parameter settings from
OCs, where the sampling ratios are adjusted according
to the prediction results. Finally, GSTuner performs the
search process for the sampled settings via a customized
genetic algorithm with termination conditions. We evaluate
GSTuner on various typical stencils to prove its effectiveness
in performance auto-tuning on GPUs.

This paper is an extension of our previous works [11],
[21]. Compared to [11], [21], we further implement a
holistic pipeline for global exploration of stencil op-
timization. In addition, we overcome the limitations
of [11], [21] by making significant design improvements
in each critical component. GSTuner is open-sourced
at https://github.com/sunqingxiao/GSTuner . Specifically,
this paper makes the following contributions:

• We comprehensively analyze the impact of opti-
mization selection on the stencil performance due to
diverse access patterns. We also discuss the distribu-
tion of high-performance parameter settings among
OCs and their adaptability for grid sizes.

• We propose a stencil transformation mechanism that
extracts stencil features and unifies feature vectors
of OCs through data pre-processing. We also offer
a stencil generator that outputs a variety of stencils
that satisfy symmetric neighbor accesses.

• We design a search space narrowing mechanism that
samples parameter settings from OCs. The sampling
process is guided by deep learning-based regression
models, where the sampling ratios are determined
according to a quota-based reward policy.

• We implement an evolutionary search mechanism
with a customized genetic algorithm. The genetic al-
gorithm reduces the search cost by adopting the sub-
population similarity as the termination condition.

• We develop an adaptive stencil auto-tuning frame-
work GSTuner that efficiently determines the optimal
parameter setting of the global optimization space on
GPUs. The experiment results show that GSTuner can
identify better performing settings in a shorter time
compared to the state-of-the-art works.

The rest of this paper is organized as follows: Section 2
and Section 3 present the background and motivation. Sec-
tion 4 presents the details of GSTuner design. Section 5
presents the evaluation results of GSTuner. Section 6 dis-
cusses the related work, and Section 7 concludes this paper.

2 BACKGROUND

2.1 GPU Architecture and Execution Model
The GPU consists of dozens to hundreds of Streaming
Multiprocessors (SMs) depending on the GPU generation.
Each SM contains hundreds of computing cores and other
resources such as registers, shared memory and L1 cache.
The code executed on the GPU is called kernel. When a
kernel is launched on the CPU host, thousands of threads
are created on GPU and every 32 threads are grouped into

a warp. Furthermore, multiple warps are grouped into a
thread block (TB), and the size of a TB is determined by
kernel configuration. The TB scheduler dispatches TBs to
SMs according to the Round-Robin policy, which maximizes
GPU occupancy under resource and hardware constraints.

Due to the limited computing resources in SMs [23], GPU
tasks have to be fine-tuned to achieve a tradeoff between
system utilization and performance speedup. For instance,
some optimization strategies (e.g., loop unrolling) increase
register-level data reuse to improve performance [24]. How-
ever, the resulting code is highly constrained by register
pressure and even causes register spilling. In addition, pa-
rameter settings need to be carefully determined to achieve
better performance. For instance, an appropriate TB size
maximizes thread-level parallelism (TLB) within hardware
constraints. However, high TLB may cause cache thrashing,
especially for memory-intensive tasks such as stencils [11].
Therefore, it is not enough to conduct performance tuning
of GPU tasks through analytical modeling alone [13].

2.2 Optimizations for Stencil Computation

Widespread attention has been draw to accelerate stencil
computation on GPU due to its high computation capabil-
ity [5], [8], [10], [13]. We briefly discuss the optimizations of
stencil computation on GPUs (Table 1).

TABLE 1: The stencil optimizations on GPUs.

No. Optimzation Abbr. Constraint

1 Streaming ST −
2 Block Merging BM Not valid when CM enabled.
3 Cyclic Merging CM Not valid when BM enabled.
4 Retiming RT Only valid when ST enabled.
5 Prefetching PR Only valid when ST enabled.
6 Temporal Blocking TB −

2.2.1 Streaming
Streaming is a commonly used optimization that improves
data reuse and reduces computation redundancy along
the streaming dimension. For 3-D input grids, an effective
implementation of streaming is 2.5-D spatial blocking [13].
Specifically, the computation of 2-D tiles is streamed over
one dimension, and the data of each tile is reused for
updating the next tiles. However, given large problem size,
streaming increases computation granularity thus limit-
ing parallelism. To achieve better performance, concurrent
streaming [8] divides the streaming dimension into tiles,
where the TBs traverse the streaming dimension in parallel
at the granularity of tiles. Meanwhile, loop unrolling has
been applied to increase register-level data reuse.

2.2.2 Block/Cyclic Merging
Naively, each GPU thread works on a single output point.
Merging the computations of several output points reduces
the overhead of kernel launching and eliminates duplicated
memory accesses. Two strategies have been proposed for
merging computations such as block merging and cyclic
merging. For block merging, a number of adjacent output
points are merged. Whereas for cyclic merging, every two
points are merged with a fixed distance. However, both

https://github.com/sunqingxiao/GSTuner

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

strategies may increase the register pressure and reduce the
number of threads that reside on each SM, thus hurting
parallelism. Furthermore, block merging in the innermost
dimension of the global grid can disrupt memory coalesc-
ing [17]. In general, the choice of merging strategy and
the number of points to merge can significantly impact the
stencil performance.

2.2.3 Prefetching
In streaming optimization, after updating the output grid,
the data located in the shared memory is shifted to continue
the computation for the next iteration. Due to the concurrent
execution of massive threads on GPU, a synchronization
barrier has to be performed between adjacent iterations to
ensure the correctness of the results. The synchronization
can cause serialization between kernels and thereby dete-
riorate performance. Prefetching [8] can hide the delay of
synchronization by overlapping the computation and data
loading. Specifically, the data used for the next iteration is
loaded into registers simultaneously with the computation
of the current iteration. However, prefetching may exhaust
the registers that are quite limited on GPU.

2.2.4 Retiming
Retiming [25] improves data reuse by decomposing a stencil
computation into a set of sub-computations along with
accumulations. Retiming can balance the resource usage
between memory and registers by homogenizing stencil
accesses [8]. In general, high-order stencils can benefit from
retiming optimizations due to the effective reuse of registers.
However, retiming may not improve the performance of
stencils with low register pressure.

2.2.5 Temporal Blocking
Even though stencil computation has data dependency
across time steps, the dependency range of one point is
limited by the stencil pattern and the number of time steps
elapsed since the point’s last update [13]. Temporal blocking
exploits hidden temporal locality by fusing time steps and
avoiding global memory accesses. The dependency along
the time dimension is resolved by redundantly loading from
adjacent blocks. However, temporal blocking may incur
performance degradation for register-constrained stencils.

The above optimizations can be combined under certain
constraints (Table 1) to improve performance further. The
optimizations should be carefully determined to adapt the
target stencil to hardware architecture. Further, inappropri-
ate parameter settings under specific OCs inevitably lead
to performance degradation. This motivates our work for
the global exploration of stencil optimization with auto-
tuning mechanisms that take both optimization strategies
and parameter settings into account.

2.3 Limitations of Stencil Auto-tuning Mechanisms
Due to the diversity of stencil patterns, any optimization
has to be fine-tuned to maximize its performance. Stencil
Domain-Specific Languages (DSLs) expose performance-
related parameters to auto-tuning mechanisms integrated
into their frameworks [6], [8], [12]. For instance, Halide [12]
applies stochastic search to find good pipeline schedules

automatically. Artemis [8] tunes the computation for high-
impact optimizations first and then selects a few high-
performance candidates. GoPipe [6] finds the best task gran-
ularity for each stage of a pipelined box stencil (e.g., image
convolution). Since the auto-tuning mechanisms are cus-
tomized for particular stencil DSLs, they have poor scalabil-
ity to evaluate more optimizations during parameter tuning.

To overcome the limitation, several works have consid-
ered speeding up the auto-tuning performance of stencil
computation [16], [17], [21]. OpenTuner [16] implements a
collection of search techniques (e.g., differential evolution
and hill climber) to find the optimal solution. Garvey [17]
groups optimization parameters based on experience and
exhaustively searches for the parameter settings of each
group with random sampling enabled. csTuner [21] lever-
ages statistics and machine learning methods to generate
parameter groups and sampled settings. Then, csTuner re-
designs the genetic algorithm with approximation to reduce
the search time. The stencil auto-tuning mechanisms usually
perform parameter search for pre-specified optimizations or
their combinations. This limits stencil computation to local
optima, whereas the tuning results under different OCs may
exhibit large performance discrepancies.

In addition to parameter auto-tuning, performance pre-
diction is utilized to study the impact of optimizations on
stencil computation [11], [19], [20]. Martı́nez et al. [19] fed
the kernel configurations and hardware counters to the
support vector machine (SVM) to predict the GFLOPS and
execution time of stencils. Cosenza et al. [20] utilized ordinal
regression to predict the performance ranking of stencil code
variants and the quality of the obtained ranking is evaluated
by Kendall coefficients. StencilMART [11] represented the
stencil patterns as binary tensors via tensor assignment,
and predicted the best OC with the convolutional neural
network (CNN). However, the above works lack effective
combination with parameter auto-tuning and exhibit large
search cost for exploiting stencil optimization space. In
addition, actual measurements are required to refine the per-
formance models to tolerate possible prediction errors [22].

3 MOTIVATION

We make four main observations by comparing the per-
formance of optimization combinations (OCs), where any
combination of optimizations under the constraints (Table 1)
is taken into consideration. The representative stencils we
select cover a variety of shapes (star, box and cross), orders
(1-4) and dimensions (2-D and 3-D). The input grids of 2-
D and 3-D stencils are 8, 1922 and 5123, respectively. We
randomly sample more than 10,000 parameter settings for
each stencil to conduct the motivation experiments. For each
OC, the parameter setting with the shortest execution time
is selected for performance comparison among OCs.

3.1 Performance Gap among OCs

Figure 1 shows the performance discrepancy between the
worst OC and the best OC for each stencil on V100 GPU.
Note that there are some cases where OC crashes under
certain stencils, which are not reflected in the figure. For
example, temporal blocking fails to be applied for 3-D

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

order-4 stencils without streaming enabled. This is because
streaming can effectively avoid intra-SM resource spilling
that may be caused by temporal blocking. As seen, the
performance gap among OCs is significant, where the best
OC achieves an average speedup of 9.95× over the worst
OC. In addition, for stencils of the same shape, a higher
dimension or order usually means a larger performance
gap. However, manually determining the high-performance
OCs requires considerable engineering efforts. Therefore,
the performance of different OCs should be predicted in
advance to avoid parameter auto-tuning under poor OCs.

0

5

10

15

20

25

30

Sp
ee

du
p

Worst OC Best OC

Fig. 1: The speedup of the best OC of each stencil over its
worst OC on V100 GPU.

3.2 Similarity of High-performance OCs

Figure 2 shows the performance comparison of the second-
best OC and the best OC for each stencil on V100
GPU. As seen, the optimal parameter settings under high-
performance OCs are similar, where the second-best OC
achieves an average speedup of 0.99× over the best OC.
Even for the stencil with the largest performance difference
(i.e., cross3d4r), the speedup of 0.94× is achieved. The reason
is that high-performance OCs usually contain a subset of
optimizations that have a large impact on performance. In
such cases, roughly predicting the best OC by classification
algorithms may lead to low prediction accuracy due to OC
similarity [11]. It is more reasonable to predict the perfor-
mance of parameter settings via regression algorithms, and
then sample the settings unevenly from the OCs for actual
measurements. This way, we can better balance the tradeoff
between search cost and achieved performance.

0.90

0.92

0.94

0.96

0.98

1.00

Sp
ee

du
p

Second-best OC Best OC

Fig. 2: The performance of the second-best OC of each stencil
over its best OC on V100 GPU.

3.3 Adaptability of Optimization Settings for Grid Sizes
We randomly select six stencils to explore whether high-
performance parameter settings are adaptable for grid sizes.
For each stencil, we randomly sample more than 1,000 pa-
rameter settings and collect top-100 parameter settings with
small grid sizes (2, 0482 for 2-D, and 1283 for 3-D). The top-
100 parameter settings are then applied to other grid sizes
(4, 0962 and 8, 1922 for 2-D, 2563 and 5123 for 3-D). Figure 3
shows the speedup distribution of parameter settings in
ascending order of performance over the optimum for each
grid size. It can be observed that the speedup curves of
different grid sizes for each stencil are similar. For 2-D
stencils, the best parameter setting for 4, 0962 and 8, 1922

sizes achieve the speedup of 1× and 1× over the optimum,
respectively. Whereas for 3-D stencils, the best parameter
setting for 2563 and 5123 sizes achieve the speedup of 1×
and 0.94× over the optimum. The above results indicate
that the parameter settings adapted to the target stencil and
underlying hardware are relatively stable within a certain
range of grid sizes. Since only the relative performance of
parameter settings is required for search space sampling,
the trained model of one grid size can be applied to other
sizes without re-collecting the training data.

3.4 Pairwise Correlation of OCs
We define that high correlation corresponds to the small
difference in performance achieved by pairwise OCs under
the same stencil. Further, this indicates that the effect of
pairwise OCs on stencil computation is similar. We use
the Pearson correlation coefficient (PCC) [26] to quantify
the correlation between pairwise OCs. The closer to 1 the
absolute value of PCC is, the stronger the correlation of the
OC pair is. Figure 4 shows the value distribution of top-
100 PCCs achieved by pairwise OCs on GPUs of various
architectures including 2080Ti, P100, V100 and A100. As
seen, the value distribution of top-100 PCCs is close, and the
intersection of pairwise OCs under all architectures accounts
for 28% of the total. This indicates that the influence of
certain OCs on stencil computation is general among archi-
tectures. Therefore, we can empirically group the OC pairs
in the intersection to reduce the optimization space range.
The OC with the best prediction performance is selected
from each group for the sampling process.

4 GSTUNER METHODOLOGY

4.1 Design Overview
In this section, we propose an adaptive stencil auto-tuning
framework GSTuner that determines the optimal param-
eter setting through a holistic pipeline with the global
exploration of optimization space. As shown in Figure 5,
GSTuner consists of four important components including
random stencil generator (Section 4.2), regression mech-
anisms (Section 4.4), search space sampling (Section 4.5)
and evolutionary search (Section 4.6). Up arrows (↑) denote
new components proposed by GSTuner, whereas up-right
arrows (↗) denote components extended from previous
works [11], [21]. The random stencil generator outputs a
variety of stencil programs for training data collection. The
regression mechanisms predict the performance under each

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100

Sp
ee

du
p

of Parameter Setting

2048 4096 8192

box2d2r

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100

Sp
ee

du
p

of Parameter Setting

2048 4096 8192

cross2d2r

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100

Sp
ee

du
p

of Parameter Setting

2048 4096 8192

star2d4r

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

Sp
ee

du
p

of Parameter Setting

128 256 512

j3d27pt

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

Sp
ee

du
p

of Parameter Setting

128 256 512

cross3d2r

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

Sp
ee

du
p

of Parameter Setting

128 256 512

star3d3r

Fig. 3: The speedup distribution of the top-100 parameter settings for 2, 0482 and 1283 grid sizes over the optimum for
other 2-D (4, 0962 and 8, 1922) and 3-D (2563 and 5123) grid sizes.

of OC

0
5

10
15

20

o
f O

C

0

5

10

15

20

0.994

0.995

0.996

0.997

0.998

0.999

1.000

2080 Ti

0.994

0.995

0.996

0.997

0.998

0.999

ab
s(

PC
C)

of OC

0
5

10
15

20

o
f O

C

0

5

10

15

20

0.990

0.992

0.994

0.996

0.998

1.000

P100

0.990

0.992

0.994

0.996

0.998

ab
s(

PC
C)

of OC

0
5

10
15

20

o
f O

C

0

5

10

15

20

0.9800
0.9825
0.9850
0.9875
0.9900
0.9925
0.9950
0.9975

V100

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

ab
s(

PC
C)

of OC

0
5

10
15

20

o
f O

C

0

5

10

15

20

0.990

0.992

0.994

0.996

0.998

1.000

A100

0.990

0.992

0.994

0.996

0.998

ab
s(

PC
C)

Fig. 4: The value distribution of top-100 PCCs achieved by pairwise OCs on GPUs.

unique parameter setting after data pre-processing. The
search space sampling designs a quota-based reward policy
to select parameter settings in high-performance OCs. The
evolutionary search finds the optimal parameter setting via
the genetic algorithm with termination conditions.

Stencil Options
 stencil dimension
 maximum order

Feature Extraction
 number/density of non-zeros
 neighboring/stepping features

Random Stencil
Generator

Symmetric
Stencils

Data Pre-processing
 zero-padding, varying-length

Training Data Collection
 optimization combination (OC)
 Pearson correlation coefficient
 random parameter search

Stencil Dataset

Regression Mechanisms
 ZPNet (MLP), VLNet (RNN)

Stencil Optimizations
 streaming, prefetching,

block/cyclic merging,
temporal blocking …

generating

processing

Search Space Sampling
 batched performance prediction
 quota-based reward policy
 iterative selecting from OCs

Sampled
Search Space

Optimal Parameter
Setting

training

Evolutionary Search
 multi-process genetic algorithm
 MCR termination condition

guided
sampling

iterative searching

Fig. 5: The design overview of GSTuner.

Figure 5 illustrates the holistic pipeline of GSTuner. The
access pattern of each generated stencil is transformed
into neighboring features through feature extraction. The
parameter settings in each OC are randomly searched to
profile the performance of each stencil input. During this
period, GSTuner exploits data pre-processing to address the
inconsistency of vector lengths across different OCs. The
profiled dataset is used to train the regression model, which

guides the process of search space sampling without actual
execution. GSTuner iteratively selects parameter settings
from OCs, where the sampling ratio of OCs in each iteration
is adjusted according to the reward policy. The genetic al-
gorithm performs auto-tuning with termination conditions
regarding the sub-population similarity. This eliminates the
need to manually set the number of iterations based on
experience, thus improving the efficiency of auto-tuning.

Since GSTuner inherits the strengths of our previous
works [11], [21], we expect GSTuner to be well-suited for
both local and global stencil optimization exploration on
any GPU architecture. The GSTuner pipeline can be ex-
tended to incorporate more optimization parameters cap-
turing future stencil optimizations. At this time, only the
regression model needs to be retrained and the subsequent
components can be reused. In addition to stencil computa-
tion, GSTuner can also support auto-tuning of more general
GPU algorithms due to the versatility of its components.

4.2 Random Stencil Generation
Inspired by [20], we represent the access pattern of a stencil
with any dimension or shape as a sparse tensor. Figure 6
shows an example of transforming a 2-D stencil with a
maximum order of 4 into a sparse tensor with a size of
9×9. The higher-dimensional stencils can be analogized in
the same way. We consider sampling access points in the
tensor space to generate random stencils for model training.
In this regard, the most straightforward solution is to sample
within the index range of a fixed-sized tensor randomly.
However, this solution does not conform to the computation

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

characteristic of stencils that processes the neighbors of
each point to update its value. To address this issue, we
design a stencil generator based on the adjacency property
in StencilMART [11]. However, it still lacks consideration of
symmetric patterns for common stencils [8], [13].

Algorithm 1 Stencil generator with symmetric patterns.
1: Input: stencil order (N), dimension (Dim), tensor (Tensor)
2: Output: The list of neighbor points accessed (npList)
3: LR = Tensor / pow(2, Dim) // local regions for sampling
4: for order in range [1, N] do
5: if order == 1 then
6: // randomly sample neighbors of central point from LR1

7: selectedorder = central.neighbors.random(LR1)
8: else
9: // randomly sample neighbors of low-order selected points

10: selectedorder = selectedorder−1.neighbors.random(LR1))
11: // delete the sampled low-order neighbor points
12: selectedorder.delete(neighbororder−1)
13: if order > 2 then
14: selectedorder.delete(neighbororder−2)
15: end if
16: end if
17: end for
18: for rID in range [2, pow(2, Dim)] do
19: // Symmetrically map sampled points to other local regions
20: selectedorder.symmetry(LRrID)
21: end for
22: // store non-redundant neighbor points to the list
23: npList.append(set(selectedorder))

Algorithm 1 illustrates the process of random stencil
generator that meets the symmetric patterns, where the
input includes the stencil order, stencil dimension and fixed-
sized tensor. The output is a list of neighbor points accessed
by a stencil. Specifically, we partition the tensor space into
local regions with overlapping boundaries and pick one of
them for sampling (Line 3). After that, we iteratively sam-
ple access points from low-order neighbors to high-order
neighbors within the local region. During each iteration, we
randomly sample the higher-order neighbors of the selected
points in the previous iteration (Lines 4-17). Then, we sym-
metrically map the sampled points to other local regions of
the tensor space (Lines 18-21). Finally, we remove redundant
neighbor points generated during sampling and mapping
from the list (Lines 22-23). The random stencils generated
in this way cover the popular stencil shapes (Figure 6) and
conform to the symmetric neighbor access patterns.

4.3 Stencil Representation
As shown in Figure 6, we convert the offset of the accessed
neighbor points from the central point into the location
of the non-zero elements of a tensor. The representation
of a sparse tensor captures the distribution of neighbors
accessed. Unlike StencilMART which generates binary ten-
sors, we assign the location of each non-zero element the
Manhattan distance from the central element. This type
of information largely dominates the latency of memory
operations, which in turn significantly impacts the perfor-
mance of stencil computation under certain optimizations.
StencilMART feeds the assigned tensor of a fixed size to
the convolutional neural network (CNN) to predict the
best OC of a stencil. However, such aggressive pruning is
likely to miss the global optimum that is surrounded by
poor parameter settings [18]. Instead, GSTuner predicts the

performance of certain parameter settings with regression
algorithms that guide the search space sampling process.

Regression algorithms are usually combined with feature
engineering to achieve better fitting results [27]. As shown
in Table 2, we extract the candidate feature set according
to the computation patterns of stencils. Different from [28],
the candidate features extracted by GSTuner focus on the
distance between neighbor points and the central point
instead of the sparsity distribution in the entire tensor space.
For example, the feature set includes the number and ratio
of neighbor points of each order. The step-m indicates that
the Manhattan distance between neighbor points and the
central point is m. Note that m ranges from 1 to M , where
M is the product of the stencil order and stencil dimension.
The Manhattan distance-related features separate stencils
with the same number of neighbors within each order.
Compared to the assigned tensor, the feature set reflects the
access pattern of a stencil in a more intuitive way.

TABLE 2: The candidate feature set of a stencil.

Feature Meaning

order The maximum extent of non-zeros.
nnz The number of non-zeros in the tensor.

sparsity The density of non-zeros in the tensor.
nnzorder−n The number of non-zeros of order-n neighbors.

nnzRatioorder−n The ratio of non-zeros of order-n neighbors.
nnzstep−m The number of non-zeros of step-m locations.

nnzRatiostep−m The ratio of non-zeros of step-m locations.

4.4 Performance Prediction
GSTuner uses pre-trained machine learning models to make
performance predictions. We treat this prediction task as a
regression problem: given a series of input features, predict
the execution time of stencil computation. The input features
include two parts: candidate feature set of a stencil and
parameter setting in an OC. The parameter space includes
parameters of numeric type (e.g., merging factor), Boolean
type (e.g., shared memory usage) and enumeration type
(e.g., streaming dimension) [21]. For the numerical parame-
ters, we restrict their values to power of two inconsistent
with existing works [8], [13]. We parameterize the range
of the Boolean type as {0, 1}. We start from 1 with the
unit stride to represent the parameters of the enumeration
type. Note that when converted to input features, GSTuner
performs log2 operation on the numerical parameters to
ensure the stability of network training.

Unlike StencilMART that makes predictions for a specific
OC, GSTuner targets at the global optimization space. Since
the optimizations contained in different OCs are inconsis-
tent, the input feature vector cannot be naively generated
by concatenating parameters. As shown in Figure 7, GSTuner
uniformly pre-processes the parameter settings among OCs
into two data formats including zero-padding and varying-
length. The zero-padding format reserves space for global
optimizations in the feature vector, where the parameters
not in OCs are padded with zero. The varying-length format
groups parameters according to specific optimizations, and
the parameter groups in each OC are chained into a se-
quence. The input with the above formats can be fed into the
network structure, where zero-padding and varying-length

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

1
1 0 1

1

4 3 2 3 4
3 2 1 2 3
2 1 0 1 2
3 2 1 2 3
4 3 2 3 4

6 6
4 4

2 2
0

2 2
4 4

6 6

Order-1 Star Order-2 Box Order-3 Cross Any-order any-shape Stencils

7 6 5 4 5 6 7
7 6 5 4 3 4 5 6 7
6 5 4 3 2 3 4 5 6
5 4 3 2 1 2 3 4 5
4 3 2 1 0 1 2 3 4
5 4 3 2 1 2 3 4 5
6 5 4 3 2 3 4 5 6
7 6 5 4 3 4 5 6 7

7 6 5 4 5 6 7

Order-4 No-corner

Order-4 neighbors

Order-2 neighbors

Order-1 neighbors

Order-3 neighbors

Fig. 6: An example of transforming the access pattern of a 2-D stencil into a sparse tensor, where the location of each
non-zero element is assigned the Manhattan distance from the central element.

𝑜𝑝𝑡ଵGlobal Optimizations𝑜𝑝𝑡ଶ𝑜𝑝𝑡ଷ 𝑜𝑝𝑡ସ
Zero-padding Varying-length𝑂𝐶ଵ𝑂𝐶ଶ 0 0 0 0 0

0 0 0

0 0 00 0 0 0𝑂𝐶ଷ
Fig. 7: Data pre-processing of feature vectors with inconsis-
tent lengths across OCs.

are suitable for multilayer perceptron (MLP) and recurrent
neural network (RNN), respectively.

fe
at

ur
e

ve
ct

or 4×1

MLP Layers

hi
dd

en
 u

ni
ts

FC & Relu

output

FC & Linear

Fig. 8: The structure design of ZPNet.

GSTuner implements two regression mechanisms includ-
ing ZPNet and VLNet for performance prediction. For ZP-
Net, the padded parameter setting is concatenated with the
stencil feature set as the input feature vector. As shown in
Figure 8, ZPNet comprises an input layer, multiple hidden
MLP layers and an output layer that produces the predicted
execution time for stencil computation. The number of MLP
layers and the number of units per MLP layer can be
adjusted to balance prediction performance and inference
overhead. The input of VLNet includes varying-length pa-
rameter sequence and the stencil feature set. As shown in
Figure 9, VLNet comprises a masking layer, a long short-
term memory (LSTM) layer and multiple fully-connected
(FC) layers. The masking layer exploits mask values to tell
the LSTM layer to skip missing parameter groups when
processing the data. The stencil feature set is fed into the
FC layer, whose output and LSTM output are merged as
joint features that flow into the subsequent FC layers.

va
ry

in
g-

le
ng

th
 se

qu
en

ce 𝑋(𝑡)

𝑋(𝑡 − 𝑛)
𝑋(𝑡 − 1)𝑋(𝑡 − 2)

M
as

ki
ng

 L
ay

er 𝑐𝑒𝑙𝑙ଵLSTM Layer

𝑐𝑒𝑙𝑙ଶ𝑐𝑒𝑙𝑙
4×1

feature vector
FC &
Relu 8×1

+
concatenate

12×1

FC Layers

output

FC & Linear

𝐹𝐿×1

Fig. 9: The structure design of VLNet.

4.5 Search Space Sampling

For the trained regression model, the most straightforward
idea is to traverse the optimization space and regard the
parameter setting with the shortest prediction execution
time as the optimum. However, the predicted optimum
may fail to run at runtime due to resource spilling such
as shared memory [21]. In addition, the predicted optimum
usually differs from the actual optimum due to inevitable
prediction errors and the similarity of high-performance
settings. To address this issue, GSTuner utilizes the trained
regression model to guide search space sampling, where the
quota-based reward policy filters high-performance settings
for subsequent evolutionary search. Search space sampling
aims to avoid the actual execution of massive stencil in-
stances, thus greatly reducing the auto-tuning cost.

Algorithm 2 illustrates the sampling process with the
quota-based reward policy. The principle is that the sam-
pling ratio of the OC with the optimum should be increased
as a reward for its performance potential. At first, we
initialize the sampling ratio of each OC (SR) according to
the ratios of settings within OC to the total (Lines 3-4). The
explicit constraints between optimization parameters [21]
are checked when counting the number of settings in each
OC. Next, we iteratively sample settings from OCs until a
pre-set number (N) is reached (Line 5). Specifically, we reset
the settings sampled in the last iteration (iterSMP), and then
randomly sample without replacement from each OC based
on SR (Lines 6-8). The sampling ratio of an empty OC is set
to zero (Lines 9-10). We extract the OC with the predicted
optimum in this iteration from iterSMP (Lines 13-14). We
restrict the selection of the best OC to each iteration rather
than all iterations evaluated currently, to avoid a single OC
with an “early promise” dominating the entire sampling
process.

We pre-define the total sampling ratio (TR) for one
iteration, where TR equals to the summation of SR. We
adjust the sampling ratio of each OC according to the
prediction results. Specifically, the sampling ratios of other
OCs are subtracted by the adjust ratio (AR), and then the
remaining quota of TR is allocated to the best OC (Lines 15-
24). Since the optimum is generally surrounded by worse
settings [18], the optimal parameter setting may exist in
OCs with poor mean performance. We set a lower limit (LR)
for the sampling ratios of OCs, so that OCs that performed
poorly in previous iterations always get a chance to “coun-
terattack” with the optimum sampled. Finally, we append
the settings sampled in this iteration to the total sample list
(Line 25). The quota-based reward policy achieves the global
exploration of the stencil optimization space and improves

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Algorithm 2 Sampling with quota-based reward policy.
1: Input: number of settings to be sampled (N), number of OCs

(nOC), settings of OCs (ocSET), sampling ratios of OCs (SR), total
ratio (TR), adjust ratio (AR), lower ratio (LR)

2: Output: total settings sampled (totSMP)
3: // initialize SR as the ratios of OC settings to the total
4: SR.initialize(ocSET.ratios(), TR)
5: while totSMP.count() < N do
6: iterSMP.reset([]) // settings sampled in this iteration
7: for id in range [1, nOC] do
8: iterSMP.append([ocSETid.sample(SRid)])
9: if ocSETid.empty() then

10: SRid = 0.0 // set the sampling ratio of empty OC to zero
11: end if
12: end for
13: // index of the best performing OC predicted in this iteration
14: bpID = iterSMP.predict.argmin()
15: for id in range [1, nOC] do
16: if id == bpID or SRid == 0.0 then
17: continue // skip to the next OC
18: end if
19: if SRid −AR >= LR then
20: SRid− = AR // reduce the sampling ratios of other OCs
21: end if
22: end for
23: // allocate the remaining quota of TR to the best OC
24: SRbpID = TR− SR.sum()
25: totSMP.append(iterSMP.squeeze()) // add sampled settings
26: end while

the sampling quality while ensuring the search breadth.

4.6 Evolutionary Search

Although the search space has been greatly narrowed after
sampling, it is still time-consuming to use exhaustive search
to determine the optimal parameter setting. Therefore, we
propose an evolutionary search using genetic algorithm
to find the optimal parameter setting efficiently. Figure 10
presents the multi-process genetic algorithm in GSTuner.
As shown, multiple genes constitute an individual, which
is evaluated by the fitness. Many individuals constitute a
population, where the operations of each sub-population
are handled by a process. The migration among the sub-
populations is achieved using MPI communication. For
migration, each sub-population exchanges individuals with
its two neighborhoods (single-ring topology [29]).

…
…

migration

…
…

…
…

sub-population steps

Population

Processes

Individual

Processes Processes

𝑀𝐶𝑅 ൏𝑡ℎ𝑟𝑒𝑠ℎℎ𝑜𝑙𝑑

Neighborhood

Sub-population

parent
selection

Parent Individual

cross-over
mutation

New Individual

Gene

Fig. 10: Multi-process genetic algorithm in GSTuner.

The new individual in the sub-population is bred
through uniform cross-over and mutation. The breeding
involves three steps: 1) the parents are selected from the
four neighborhoods (higher fitness means higher selection

chance); 2) each gene of the individual is randomly chosen
from the parents; 3) the genes of the individual mutate
with a certain probability (mutation rate). The mutation is
used to prevent the individuals from falling into local opti-
mum [30]. Genes are stored in binary, and the valid value
range of each gene needs to be given in advance. However,
the parameter values in the sampled search space are no
longer continuous. To address this problem, we reindex the
valid values of the parameter settings from the sampled
search space. Assuming that the available value set of the
parameter settings are {(0, 1), (4, 2), (3, 4)}, we reindex the
set to {0, 2, 1} based on the ascending order. Then, the value
range of the gene can be designated as [0, 2].

csTuner [21] takes into account the approximation of
high-performance parameter settings, where the search pro-
cess is stopped if the coefficient of variation (CV) of top-n
fitness is less than a given threshhold. However, the appro-
priate threshhold varies with stencils, and a uniform thresh-
hold may either increase the search cost or find sub-optimal
parameter settings due to early stopping. Furthermore,
calculating the CV for top-n fitness requires aggregating
each subpopulation via MPI, which introduces considerable
communication overhead. Instead, GSTuner adopts the sub-
population similarity as the termination condition. Specifi-
cally, the optimal parameter setting is determined when the
ratio of the maximum-count individuals (MCR) in any sub-
population reaches a certain threshhold (MCRT). In such
case, GSTuner achieves better stencil scalability and reduces
the communication overhead within the population.

5 EVALUATION

5.1 Experiment Setup
5.1.1 Hardware and Software Platforms
As shown in Table 3, we evaluate the effectiveness of
GSTuner on a server that consists of Intel Xeon E5-2680 v4
CPU and two NVIDIA Tesla V100 GPUs. The experiments
are conducted on Ubuntu 16.04 with GCC v7.5 and NVCC
v10.1. The neural networks involved in GSTuner (i.e., ZPNet
and VLNet) are built using TensorFlow release v1.15 [31].

TABLE 3: Hardware specifications.

CPU GPU × 2

Model Intel Xeon E5-2680 v4 NVIDIA Tesla V100
Frequency 2.4GHz 1.5GHz
Cores 28 13440 (80 SMs)
Cache 32KB L1, 256KB L2, 35MB L3 6MB L2
Memory 378GB DDR4 32GB HBM2
Bandwidth 76.8GB/s 900GB/s

5.1.2 Stencil Programs and Datasets
We randomly generate 500 2-D and 500 3-D double-
precision stencil programs using GSTuner, where the max-
imum stencil order is set to 4. The input grids of 2-D and
3-D stencils are set to 8, 1922 and 5123. We merge the OCs
through PCCs and reduce the number of predicted OCs to
8. For each stencil program, we randomly select parameter
settings from OCs and make measurements on GPU. After
that, we obtain 211,766 2-D and 133,857 3-D stencil instances

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

to form the stencil dataset. The stencil dataset is randomly
divided into a training set and a test set during cross vali-
dation (Section 5.1.4). To evaluate the effectiveness of auto-
tuning, we explore 24 typical stencil programs (Section 3),
which are a mixture of various patterns including stencil
order, dimension, and shape. During sampling, the model
trained on the stencil dataset is leveraged to predict the
performance of typical stencil programs.

5.1.3 Search Methods and Implementation Details
We compare GSTuner with two popular stencil auto-tuning
methods including Artemis [8] and OpenTuner [16]. For
GSTuner, we set the sampling ratio of the global search space
to 10%. In addition, TR, AR and LR (Algorithm 2) are set to
1%, 0.1% and 0.1%, respectively. For the genetic algorithm
adopted in GSTuner, the number of sub-populations is set
to 2, where each subpopulation contains 16 individuals.
The cross-over rate and the mutation rate are set to 0.8
and 0.005, respectively. We extend Artemis and OpenTuner to
support global optimization exploration by pre-processing
parameter settings to the zero-padding format. For Open-
Tuner, we adopt the global genetic algorithm as the basis
of its evolutionary technique. The options of the genetic
algorithm are set to be consistent with GSTuner.

5.1.4 Comparison Metrics
We use the 5-fold cross validation method [28] to evaluate
the accuracy of the models. For both ZPNet and VLNet,
we select the Adam stochastic optimizer with a 0.0005
learning rate and a batch size of 256. We have fine-tuned
the number of layers and the layer size. We take the mean
absolute percentage error (MAPE) as the comparison metric
for performance prediction. The key metric for determining
the efficiency of auto-tuning methods is the amount of
time required to obtain the optimal setting. Therefore, we
compare GSTuner against Artemis and OpenTuner on iso-time
search quality [32], where all methods are run until a fixed
wall-clock time. To isolate the effects of randomness, we run
each method 10 times and present the average results.

5.2 Results for Prediction
Figure 11 shows the testing error curves of ZPNet and
VLNet during cross validation. As the number of training
epochs increases, the test errors of both networks gradually
converge to an almost constant value. The prediction results
indicate that GSTuner efficiently extracts the features of
stencil instances that contribute to execution time. We can
also observe that ZPNet converges faster and achieves lower
test errors than VLNet. This is mainly because stencil opti-
mizations do not have the sequence relationship common
in natural language processing, making it inappropriate to
utilize LSTM to handle varying-length format. In contrast,
ZPNet combines MLP and zero-padding format for better
fitting, where the zero-padding format concatenates the
global stencil optimizations to a fixed length.

Figure 12 shows the test errors of predicting typical
stencils with the trained model. As seen, the test errors
of stencils with diverse shapes, orders and dimensions are
relatively stable. This indicates that the random stencil gen-
erator of GSTuner can generalize the computation patterns

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80 90 100

Te
st

Er
ro

r

Epoch

2-D-ZPNet 2-D-VLNet
3-D-ZPNet 3-D-VLNet

Fig. 11: Error curves of ZPNet and VLNet during testing.

with neighbor accesses by outputting a limited number
of symmetric stencils. ZPNet still significantly outperforms
VLNet, achieving average test errors of 6.1% and 28.6%,
respectively. Furthermore, the inference time of VLNet is
7.6× that of ZPNet due to the computationally expensive
LSTM processing. Considering the low test accuracy and
high computation cost of VLNet, we will only adopt ZPNet
in GSTuner for the following auto-tuning experiments.

0.0

0.1

0.2

0.3

0.4

0.5
Te

st
Er

ro
r

ZPNet VLNet

Fig. 12: Test errors of typical stencils with ZPNet and VLNet.

5.3 Results for Auto-tuning

Figure 13 shows the search range comparison between
GSTuner and Artemis for typical stencils. As mentioned
above, the sampling ratio of GSTuner is set to 10%, whereas
Artemis divides the parameters into groups and performs
hierarchical tuning on the parameter groups. As seen, the hi-
erarchical mechanism of Artemis greatly reduces the search
space, which is only 0.32× that of GSTuner on average.
However, such aggressive pruning is hard to cover settings
that meet performance requirements. OpenTuner searches
the global parameter space, thus not shown in the figure.

Figure 14 shows the iso-time comparison between
GSTuner and other auto-tuning methods for typical stencils,
where the x-axis represents the elapsed time. The cutoff
times for 2-D and 3-D stencils are set to 200 and 300
seconds, respectively. The missing points mean that the
search process ends prematurely because it either exhausts
potential parameter settings for search or reaches termina-
tion conditions (e.g., MCR in GSTuner). As seen, GSTuner has
a better starting point and converges faster than Artemis and
OpenTuner. This indicates that the reward policy of GSTuner
guarantees the high quality of the sampled search space.
Artemis spends less search time due to the fewer parameter

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

0

2

4

6

8
N

or
m

al
iz

ed
 S

ea
rc

h
Ra

ng
e

Artemis GSTuner

Fig. 13: Search range of GSTuner and Artemis normalized to
Artemis on V100 GPU.

settings through hierarchical tuning. Since OpenTuner does
not implement sampling methods, the large search space
makes it difficult to converge in a short time.

Figure 15 shows the iso-time performance of auto-tuning
methods normalized to OpenTuner. As seen, GSTuner out-
performs Artemis and OpenTuner for most stencils. For the
best performance found in iso-time evaluation, GSTuner
achieves an average speedup of 1.5× and 1.4× over Artemis
and OpenTuner, respectively. This proves that the feature
extraction and evolutionary search adopted by GSTuner can
be effectively generalized to diverse stencils. In contrast,
OpenTuner tends to fall into a local optimum with small
population size. Artemis achieves erratic performance due
to experience-based hierarchical auto-tuning that may miss
high-performance settings. For box3d3r stencil, Artemis even
achieves 4.8× slowdown compared to GSTuner. In sum,
GSTuner identifies better parameter settings with higher
speed than other auto-tuning methods.

5.4 Applying to other GPU Hardware
To demonstrate the generality of our method, we evaluate
GSTuner on another platform equipped with two NVIDIA
Tesla A100 GPUs. Specifically, we recollect the stencil
dataset on the new GPU hardware and reuse the GSTuner
pipeline to quickly search for high-performance settings.
Figure 16 shows the iso-time performance normalized to
OpenTuner on A100 GPU. Again, GSTuner outperforms other
auto-tuning methods for most stencils. GSTuner achieves
2.5× and 1.3× speedup on average over Artemis and Open-
Tuner, respectively. OpenTuner falls into a local optimum
due to the large optimization space. Artemis maintains
unstable performance due to its aggressive search space
pruning. For example, GSTuner achieves comparable per-
formance as Artemis for certain stencils (e.g., star2d4r and
star3d3r), and significantly outperforms Artemis for others
(e.g., 13.1× speedup for box2d3r). Note that the global
regression mechanisms and reward-based sampling policy
adopted in GSTuner do not require any expert knowledge.
Therefore, GSTuner can be easily applied to various hard-
ware platforms with stable auto-tuning quality.

5.5 Comparison with Previous Works
We extend csTuner and StencilMART to handle global opti-
mization spaces represented in zero-padding format. After
that, we compare GSTuner with csTuner and StencilMART

in terms of iso-time performance and prediction accuracy,
respectively. Figure 17 shows the iso-time performance
normalized to GSTuner on V100 GPU. As seen, GSTuner
outperforms csTuner for most stencils. Specifically, GSTuner
achieves 1.1× speedup on average over csTuner. This is
mainly because the reward mechanism of GSTuner effec-
tively filters out poorly performing parameter settings. In
addition, GSTuner takes subpopulation similarity as the
termination condition, thereby avoiding the overhead of
frequent MPI communication and determining parameter
settings immediately when the algorithm converges.

Figure 18 shows the test errors of predicting typical
stencils with StencilMART and GSTuner. StencilMART and
GSTuner adopt the same MLP-based network structure,
where the difference lies in the stencil feature sets fed into
the model. GSTuner extends the original candidate set with
Manhattan distance-related features. As seen, GSTuner out-
performs StencilMART for all stencils, achieving average test
errors of 6.1% and 9.7%, respectively. The reason is that the
Manhattan distance-related features separate stencils with
the same number of neighbors within each order, and thus
more precisely represent the neighboring access patterns for
stencil computation.

5.6 Adapting to other Grid Sizes

We have demonstrated in Section 3.3 that the parameter
settings adapted to the target stencil and underlying hard-
ware are relatively stable within a certain range of grid
sizes. Since only the relative performance is required for
search space sampling, we discuss whether the trained
model of one grid size can be directly adapted to other
sizes. Figure 19 shows the iso-time performance of auto-
tuning methods, where the models used by GSTuner are
trained with stencil dataset of 8, 1922 (2-D) and 5123 (3-
D) sizes. It can be observed that GSTuner outperforms other
auto-tuning methods for most stencils. For 2, 0482 (2-D) and
1283 (3-D) sizes, GSTuner achieves an average speedup of
1.5× and 1.5× over Artemis and OpenTuner, respectively.
For 4, 1962 (2-D) and 2563 (3-D) sizes, GSTuner achieves
2.5× and 1.4× speedup on average. The results indicate
that when varying grid sizes, GSTuner can reuse the model
to achieve superior auto-tuning performance without re-
collecting the stencil dataset.

5.7 Parameter Sensitivity Analysis

5.7.1 Network Depth and Width

Figure 20 shows the test errors of ZPNet as we vary the
number of MLP layers along with their size. The x-axis
represents the layer size ranging from 24 to 210 with a stride
of ×2. As seen, ZPNet for 2-D and 3-D stencils appears
to follow a similar error trend. Specifically, increasing the
number of layers and their sizes leads to lower test errors.
In addition, increasing the number of layers beyond seven
leads to diminishing returns for improving prediction ac-
curacy. Therefore, we can conclude that using seven MLP
layers for ZPNet is a reasonable setting. GSTuner provides
an easy-to-use interface for modifying network parameters
to evaluate the impact of network designs.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

0.5

1.0

1.5

2.0

2.5

3.0

20 40 60 80 100 120 140 160 180 200

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

j2d5pt

0.5

1.0

1.5

2.0

20 40 60 80 100 120 140 160 180 200

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

star2d2r

0.0

1.0

2.0

3.0

4.0

5.0

20 40 60 80 100 120 140 160 180 200

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

star2d3r

0.0

1.0

2.0

3.0

4.0

20 40 60 80 100 120 140 160 180 200

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

star2d4r

0.0

1.0

2.0

3.0

4.0

20 40 60 80 100 120 140 160 180 200

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

box2d1r

0.0

1.0

2.0

3.0

4.0

20 40 60 80 100 120 140 160 180 200

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

box2d2r

1.0

2.0

3.0

4.0

5.0

6.0

20 40 60 80 100 120 140 160 180 200

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

box2d3r

1.0

1.5

2.0

2.5

3.0

3.5

20 40 60 80 100 120 140 160 180 200

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

box2d4r

0.7

0.8

0.9

1.0

1.1

1.2

20 40 60 80 100 120 140 160 180 200

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

cross2d1r

0.5

1.0

1.5

2.0

20 40 60 80 100 120 140 160 180 200

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

cross2d2r

1.0

2.0

3.0

4.0

5.0

6.0

20 40 60 80 100 120 140 160 180 200

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

cross2d3r

1.0

1.5

2.0

2.5

3.0

3.5

20 40 60 80 100 120 140 160 180 200

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

cross2d4r

1.5

2.0

2.5

3.0

3.5

4.0

30 60 90 120 150 180 210 240 270 300

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

j3d7pt

2.0

3.0

4.0

5.0

6.0

30 60 90 120 150 180 210 240 270 300

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

helmholtz

4.0

5.0

6.0

7.0

8.0

30 60 90 120 150 180 210 240 270 300

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

star3d3r

3.0

4.0

5.0

6.0

7.0

30 60 90 120 150 180 210 240 270 300

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

star3d4r

2.0

4.0

6.0

8.0

30 60 90 120 150 180 210 240 270 300

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

j3d27pt

4

6

8

10

12

30 60 90 120 150 180 210 240 270 300

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

box3d2r

0

20

40

60

80

30 60 90 120 150 180 210 240 270 300

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

box3d3r

10

20

30

40

50

30 60 90 120 150 180 210 240 270 300
Ex

ec
ut

io
n

Ti
m

e
(m

s)

Time (s)

GSTuner
Artemis
OpenTuner

box3d4r

2.0

3.0

4.0

5.0

30 60 90 120 150 180 210 240 270 300

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

cross3d1r

2

4

6

8

10

12

30 60 90 120 150 180 210 240 270 300

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

cross3d2r

4

6

8

10

12

30 60 90 120 150 180 210 240 270 300

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

cross3d3r

4

8

12

16

30 60 90 120 150 180 210 240 270 300

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Time (s)

GSTuner
Artemis
OpenTuner

cross3d4r

Fig. 14: Iso-time comparison of stencil auto-tuning methods on V100 GPU.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 T
im

e

GSTuner Artemis OpenTuner1.8 2.6

Fig. 15: Iso-time performance of auto-tuning methods normalized to OpenTuner on V100 GPU.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

0.5

1.0

1.5

2.0

2.5

3.0

3.5
N

or
m

al
iz

ed
 T

im
e

GSTuner Artemis OpenTuner12.2
5.3

Fig. 16: Iso-time performance of auto-tuning methods normalized to OpenTuner on A100 GPU.

0.9

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

 T
im

e

GSTuner csTuner

Fig. 17: Iso-time performance of csTuner and GSTuner nor-
malized to GSTuner on V100 GPU.

0.00

0.05

0.10

0.15

0.20

0.25

Te
st

Er
ro

r

GSTuner StencilMART

Fig. 18: Test errors of typical stencils with StencilMART and
GSTuner on V100 GPU.

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 T
im

e

GSTuner Artemis OpenTuner
3.92048_128 4096_256

Fig. 19: Iso-time performance of auto-tuning methods for
other grid sizes. The models used by GSTuner are trained
with stencil dataset of 8, 1922 (2-D) and 5123 (3-D) sizes.

0.04

0.06

0.08

0.10

0.12

0.14

4 5 6 7 8 9 10
Te

st
Er

ro
r

log2(Layer Size)

4 5

6 7

8 9

10

(a) 2-D

0.05

0.10

0.15

0.20

0.25

4 5 6 7 8 9 10
log2(Layer Size)

4 5

6 7

8 9

10

(b) 3-D

Fig. 20: Test error of ZPNet as we vary the number of hidden
layers and layer size. The x-axis is in a logarithmic scale.

5.7.2 Sampling Ratio
Figure 21 shows the iso-time performance of GSTuner with
different sampling ratios, where SR-X means that the sam-
pling ratio is X . In theory, a smaller sampling ratio com-
pletes the search process faster, but the limited search range
may miss the optimal setting. In contrast, a larger sampling
ratio is more promising to find the optimal setting, yet
with a longer search time. As seen, GSTuner with SR-20%
outperforms that with SR-10% for 14 out of 24 stencils. How-
ever, GSTuner with SR-20% achieves unstable performance,
achieving more than 1.1× slowdown compared to that with
SR-10% for certain stencils (e.g., j3d7pt and box3d3r). This
further indicates that GSTuner effectively filters out poor-
performing settings through the reward-based policy at low
sampling ratios. Therefore, we select SR-10% for GSTuner to
balance the search space and search speed.

0.8

0.9

1.0

1.1

1.2

1.3

N
or

m
al

iz
ed

 T
im

e

SR-10% SR-20%

Fig. 21: Iso-time performance of GSTuner with different
sampling ratios. SR-X means that the sampling ratio is X .

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

5.7.3 MCR Threshhold
Figure 22 shows the final tuning performance and search
cost of GSTuner with different MCRTs normalized to that
with 0.75 MCRT. MCRT X ET and MCRT X ST indicate
the normalized execution time and search time when MCRT
is set to X . A good MCRT enables GSTuner to quickly
terminate the search process after finding the optimal set-
ting. As seen, GSTuner with 0.5 MCRT achieves the same
performance as that with 0.75 MCRT for stencils except for
j3d27pt. In addition, GSTuner with 0.25 MCRT is inferior
to that with 0.75 MCRT for 8 stencils, and even achieves
over 1.1× slowdown for cross3d2r and cross3d3r. Whereas
for search cost, GSTuner with either 0.5 or 0.25 MCRTs
completes faster for most stencils, achieving up to 2.2×
and 1.3× lower time. The results demonstrate the stencil
scalability of MCR termination conditions. We select 0.5
MCRT for GSTuner considering performance stability.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.90

0.95

1.00

1.05

1.10

1.15

1.20

N
or

m
. S

ea
rc

h
Ti

m
e

N
or

m
. E

xe
cu

tio
n

Ti
m

e

MCRT-0.25_ET MCRT-0.5_ET MCRT-0.25_ST MCRT-0.5_ST

Fig. 22: Final performance and search cost of GSTuner
with different MCRTs normalized to that with 0.75 MCRT.
MCRT X ET and MCRT X ST indicate the normalized
execution time and search time when MCRT is set to X .

5.8 Overhead Analysis

We discuss the overhead of GSTuner from both offline and
online aspects. It takes about 8.5 and 9.1 hours respectively
to collect 2-D and 3-D stencil datasets on our experiment
server. In addition, it takes 8.1 and 5.2 minutes respectively
to train ZPNet with 2-D and 3-D stencil datasets. Since
dataset collection and network training only need to be
done offline once, we do not consider them in the overhead
analysis of online auto-tuning. The online cost of GSTuner
can be divided into two parts pre-processing and search
process. The pre-processing can be further divided into
stencil feature extraction and search space sampling. Search
space sampling contains reward-based setting selection and
performance prediction with network inference. Note that
the pre-processing overhead of GSTuner has been taken into
account in the iso-time experiments.

Since the search process dominates the online cost of
GSTuner, Figure 23 shows the pre-processing time normal-
ized to the search process. GSTuner adopts the genetic algo-
rithm with MCR termination condition in the search process.
As seen, the pre-processing time is negligible compared
to the search process, occupying only 0.8% of the search
time on average. Moreover, the pre-processing overhead of
GSTuner can be further amortized for the larger search space
with more stencil optimizations proposed in the future.

0.0%

0.4%

0.8%

1.2%

1.6%

Pe
rc
en
ta
ge

Pre-processing

Fig. 23: Pre-processing time of GSTuner normalized to the
search process.

6 RELATED WORK

Stencil DSLs and Optimizations. Based on the regular
patterns of stencil computation, existing research works
exploit the integration of optimization schemes into DSLs to
achieve automatic code transformation and optimization [5],
[7], [9], [13], [14], [15], [33], [34], [35]. Physis [9] translated
user-written stencil code into scalable implementation for
GPU-equipped cluster. Forma [5] proposed a DSL for image
processing application with stencil operations. Hagedorn et
al. [7] explored how to use LIFT primitives to implement
stencil codes and optimizations such as tiling. AN5D [13]
implemented high-degree temporal blocking and spatial
blocking, in addition to low-level optimizations to reduce
the resource usage. Li et al. [33] proposed spatial compu-
tation folding to reduce data conflicts and optimized the
vectorization with shifts reusing. TCStencil [15] exploited
tensor cores to accelerate stencil computation by refactoring
it into reduction and summation operations. Ahmad et
al. [35] presented stencil algorithms for linear stencils based
on random walks and Gaussian approximation. The above
works lack effective support for parameter auto-tuning. To
address the limitations of above works, GSTuner can be
integrated into these DSLs to determine the optimal settings
for target optimizations quickly.
Performance Auto-tuning on GPUs. Since identifying the
optimal kernel variants is extremely challenging for both
programmers and code generators, a large amount of re-
search works focus on the auto-tuning of target problems on
GPUs [22], [36], [37], [38], [39], [40], [41], [42], [43]. Kurzak et
al. [36] proposed heuristic auto-tuning to prune the search
space and generate the fastest code variant of matrix multi-
plication kernels. Li et al. [37] resolved the conflict between
concurrency and register usage by precomputing the critical
points and selecting the global optimum. Pfaffe et al. [40]
integrated hierarchical online auto-tuning with polyhedral
parallelization to reduce search complexity and increase
convergence speed. Ansor [22] sampled optimization combi-
nations and utilized an evolutionary search with a learned
cost model to fine-tune the tensor programs. LLAMA [41]
traversed large spaces by dynamically running a cost-based
optimizer and configuring individual operation invocations.
Sun et al. [43] jointly learned the structural and statistical
features via the graph attention network to find the optimal
code implementations. The above works are orthogonal to
this paper that targets the auto-tuning of stencil kernels. In

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

turn, GSTuner can be extended to other target programs due
to its global search capability.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose an adaptive auto-tuning frame-
work GSTuner, which efficiently identifies the optimal pa-
rameter setting of the global optimization space for stencils
on GPUs. GSTuner represents stencil patterns as neighboring
features and unifies feature vectors of OCs for model train-
ing. After that, GSTuner leverages the quota-based reward
policy and trained models to guide the sampling process
of the global space. Finally, GSTuner adopts the genetic
algorithm regarding sub-population similarity to conduct
the parameter search of the sampled space. The experiment
results show that GSTuner can accurately predict the execu-
tion time of stencil instances on GPUs. In addition, GSTuner
can identify high-quality parameter settings in a shorter
time compared to the state-of-the-art works.

A potential limitation of GSTuner is that it cannot sup-
port complex stencils with boundary conditions or kernel
dependencies. Complex stencils are hard to be represented
by a single sparse tensor, which is beyond the scope of the
random stencil generator. In such case, we need to quantify
the impact of boundary conditions and kernel dependencies
on performance, and then extract representative features to
complement the stencil candidate feature set. Furthermore,
the versatility of GSTuner allows it to be extended for
multi-GPU scenarios. After collecting and parameterizing
the optimization collection on multiple GPUs, we can reuse
the GSTuner pipeline for performance auto-tuning.

ACKNOWLEDGMENTS

This work is supported by National Key Research and De-
velopment Program of China (Grant No. 2022ZD0117805),
National Natural Science Foundation of China (Grant
No. 62072018, 62322201 and U22A2028), the Fundamental
Research Funds for the Central Universities (Grant No.
2462023YJRC023 and YWF-23-L-1121), and Iluvatar CoreX
semiconductor Co., Ltd. Hailong Yang is the corresponding
author.

REFERENCES

[1] K. Sano, Y. Hatsuda, and S. Yamamoto, “Multi-fpga accelerator for
scalable stencil computation with constant memory bandwidth,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 3,
pp. 695–705, 2013.

[2] M. Gamell, K. Teranishi, M. A. Heroux, J. Mayo, H. Kolla, J. Chen,
and M. Parashar, “Local recovery and failure masking for stencil-
based applications at extreme scales,” in SC’15: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2015, pp. 1–12.

[3] R. T. Mullapudi, V. Vasista, and U. Bondhugula, “Polymage:
Automatic optimization for image processing pipelines,” ACM
SIGARCH Computer Architecture News, vol. 43, no. 1, pp. 429–443,
2015.

[4] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick, “Stencil computation opti-
mization and auto-tuning on state-of-the-art multicore architec-
tures,” in SC’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing. IEEE, 2008, pp. 1–12.

[5] M. Ravishankar, J. Holewinski, and V. Grover, “Forma: A dsl for
image processing applications to target gpus and multi-core cpus,”
in Proceedings of the 8th Workshop on General Purpose Processing using
GPUs, 2015, pp. 109–120.

[6] C. Oh, Z. Zheng, X. Shen, J. Zhai, and Y. Yi, “Gopipe: a granularity-
oblivious programming framework for pipelined stencil execu-
tions on gpu,” in Proceedings of the ACM International Conference
on Parallel Architectures and Compilation Techniques, 2020, pp. 43–54.

[7] B. Hagedorn, L. Stoltzfus, M. Steuwer, S. Gorlatch, and C. Dubach,
“High performance stencil code generation with lift,” in Proceed-
ings of the 2018 International Symposium on Code Generation and
Optimization, 2018, pp. 100–112.

[8] P. S. Rawat, M. Vaidya, A. Sukumaran-Rajam, A. Rountev, L.-N.
Pouchet, and P. Sadayappan, “On optimizing complex stencils on
gpus,” in 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2019, pp. 641–652.

[9] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka, “Physis: an
implicitly parallel programming model for stencil computations
on large-scale gpu-accelerated supercomputers,” in Proceedings
of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, 2011, pp. 1–12.

[10] T. Grosser, A. Cohen, J. Holewinski, P. Sadayappan, and S. Ver-
doolaege, “Hybrid hexagonal/classical tiling for gpus,” in Pro-
ceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization, 2014, pp. 66–75.

[11] Q. Sun, Y. Liu, H. Yang, Z. Jiang, Z. Luan, and D. Qian, “Stencil-
mart: Predicting optimization selection for stencil computations
across gpus,” in 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2022, pp. 875–885.

[12] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: a language and compiler for optimiz-
ing parallelism, locality, and recomputation in image processing
pipelines,” Acm Sigplan Notices, vol. 48, no. 6, pp. 519–530, 2013.

[13] K. Matsumura, H. R. Zohouri, M. Wahib, T. Endo, and S. Mat-
suoka, “An5d: automated stencil framework for high-degree tem-
poral blocking on gpus,” in Proceedings of the 18th ACM/IEEE
International Symposium on Code Generation and Optimization, 2020,
pp. 199–211.

[14] M. Li, Y. Liu, Y. Hu, Q. Sun, B. Chen, X. You, X. Liu, Z. Luan, and
D. Qian, “Automatic code generation and optimization of large-
scale stencil computation on many-core processors,” in Proceedings
of the 50th International Conference on Parallel Processing, 2021, pp.
1–12.

[15] X. Liu, Y. Liu, H. Yang, J. Liao, M. Li, Z. Luan, and D. Qian,
“Toward accelerated stencil computation by adapting tensor core
unit on gpu,” in Proceedings of the 36th ACM International Conference
on Supercomputing, 2022, pp. 1–12.

[16] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible
framework for program autotuning,” in Proceedings of the 23rd
international conference on Parallel architectures and compilation, 2014,
pp. 303–316.

[17] J. D. Garvey and T. S. Abdelrahman, “Automatic performance
tuning of stencil computations on gpus,” in 2015 44th International
Conference on Parallel Processing. IEEE, 2015, pp. 300–309.

[18] R. B. Roy, T. Patel, V. Gadepally, and D. Tiwari, “Bliss: auto-tuning
complex applications using a pool of diverse lightweight learning
models,” in Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
2021, pp. 1280–1295.

[19] V. Martı́nez, F. Dupros, M. Castro, and P. Navaux, “Performance
improvement of stencil computations for multi-core architectures
based on machine learning,” Procedia Computer Science, vol. 108,
pp. 305–314, 2017.

[20] B. Cosenza, J. J. Durillo, S. Ermon, and B. Juurlink, “Autotuning
stencil computations with structural ordinal regression learning,”
in 2017 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE, 2017, pp. 287–296.

[21] Q. Sun, Y. Liu, H. Yang, Z. Jiang, X. Liu, M. Dun, Z. Luan, and
D. Qian, “cstuner: Scalable auto-tuning framework for complex
stencil computation on gpus,” in 2021 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, 2021, pp. 1–12.

[22] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali,
Y. Wang, J. Yang, D. Zhuo, K. Sen et al., “Ansor: Generating
high-performance tensor programs for deep learning,” in 14th
{USENIX} Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 20), 2020, pp. 863–879.

[23] Q. Sun, L. Yi, H. Yang, M. Li, Z. Luan, and D. Qian, “Qos-aware
dynamic resource allocation with improved utilization and energy
efficiency on gpu,” Parallel Computing, vol. 113, p. 102958, 2022.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[24] P. S. Rawat, F. Rastello, A. Sukumaran-Rajam, L.-N. Pouchet,
A. Rountev, and P. Sadayappan, “Register optimizations for sten-
cils on gpus,” in Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, 2018, pp. 168–182.

[25] K. Stock, M. Kong, T. Grosser, L.-N. Pouchet, F. Rastello, J. Ra-
manujam, and P. Sadayappan, “A framework for enhancing data
reuse via associative reordering,” in Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, 2014, pp. 65–76.

[26] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation
coefficient,” in Noise reduction in speech processing. Springer, 2009,
pp. 1–4.

[27] A. Zheng and A. Casari, Feature engineering for machine learning:
principles and techniques for data scientists. ” O’Reilly Media, Inc.”,
2018.

[28] Q. Sun, Y. Liu, M. Dun, H. Yang, Z. Luan, L. Gan, G. Yang, and
D. Qian, “Sptfs: sparse tensor format selection for mttkrp via deep
learning,” in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2020, pp. 1–14.

[29] Z. Xiao, X. Liu, J. Xu, Q. Sun, and L. Gan, “Highly scalable par-
allel genetic algorithm on sunway many-core processors,” Future
Generation Computer Systems, vol. 114, pp. 679–691, 2021.

[30] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito,
W. S. Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor
comprehensions: Framework-agnostic high-performance machine
learning abstractions,” arXiv preprint arXiv:1802.04730, 2018.

[31] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in 12th {USENIX} symposium on
operating systems design and implementation ({OSDI} 16), 2016, pp.
265–283.

[32] K. Hegde, P.-A. Tsai, S. Huang, V. Chandra, A. Parashar, and
C. W. Fletcher, “Mind mappings: enabling efficient algorithm-
accelerator mapping space search,” in Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2021, pp. 943–958.

[33] K. Li, L. Yuan, Y. Zhang, and Y. Yue, “Reducing redundancy
in data organization and arithmetic calculation for stencil com-
putations,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2021, pp.
1–15.

[34] X. You, H. Yang, Z. Jiang, Z. Luan, and D. Qian, “Drstencil: Ex-
ploiting data reuse within low-order stencil on gpu,” in 2021 IEEE
23rd Int Conf on High Performance Computing & Communications;
7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City;
7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems
& Application (HPCC/DSS/SmartCity/DependSys). IEEE, 2021, pp.
63–70.

[35] Z. Ahmad, R. Chowdhury, R. Das, P. Ganapathi, A. Gregory,
and Y. Zhu, “Brief announcement: Faster stencil computations
using gaussian approximations,” in Proceedings of the 34th ACM
Symposium on Parallelism in Algorithms and Architectures, 2022, pp.
291–293.

[36] J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning gemm kernels
for the fermi gpu,” IEEE Transactions on Parallel and Distributed
Systems, vol. 23, no. 11, pp. 2045–2057, 2012.

[37] A. Li, S. L. Song, A. Kumar, E. Z. Zhang, D. Chavarrı́a-Miranda,
and H. Corporaal, “Critical points based register-concurrency
autotuning for gpus,” in 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2016, pp. 1273–1278.

[38] R. Lim, B. Norris, and A. Malony, “Autotuning gpu kernels via
static and predictive analysis,” in 2017 46th International Conference
on Parallel Processing (ICPP). IEEE, 2017, pp. 523–532.

[39] J. Dongarra, M. Gates, J. Kurzak, P. Luszczek, and Y. M. Tsai, “Au-
totuning numerical dense linear algebra for batched computation
with gpu hardware accelerators,” Proceedings of the IEEE, vol. 106,
no. 11, pp. 2040–2055, 2018.

[40] P. Pfaffe, T. Grosser, and M. Tillmann, “Efficient hierarchical
online-autotuning: a case study on polyhedral accelerator map-
ping,” in Proceedings of the ACM International Conference on Super-
computing, 2019, pp. 354–366.

[41] F. Romero, M. Zhao, N. J. Yadwadkar, and C. Kozyrakis, “Llama:
A heterogeneous & serverless framework for auto-tuning video
analytics pipelines,” in Proceedings of the ACM Symposium on Cloud
Computing, 2021, pp. 1–17.

[42] X. Zhang, J. Xiao, and G. Tan, “I/o lower bounds for auto-tuning
of convolutions in cnns,” in Proceedings of the 26th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, 2021,
pp. 247–261.

[43] Q. Sun, X. Zhang, H. Geng, Y. Zhao, Y. Bai, H. Zheng, and B. Yu,
“Gtuner: tuning dnn computations on gpu via graph attention
network,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, 2022, pp. 1045–1050.

Qingxiao Sun is a PhD student in School of
Computer Science and Engineering, Beihang
University. He is currently working on GPU hard-
ware extension and performance optimization.
His research interests include computer archi-
tecture, HPC and deep learning.

Yi Liu is a professor in School of Computer Sci-
ence and Engineering, and Director of the Sino-
German Joint Software Institute (JSI) at Beihang
University, China. In 2000, he completed Ph.D in
Department of Computer Science of Xi’an Jiao-
tong University. His research interests include
computer architecture, HPC and new generation
of network technology.

Hailong Yang is an associate professor in
School of Computer Science and Engineering,
Beihang University. He received the Ph.D de-
gree in the School of Computer Science and
Engineering, Beihang University in 2014. He has
been involved in several scientific projects such
as performance analysis for big data systems
and performance optimization for large scale ap-
plications. His research interests include parallel
and distributed computing, HPC, performance
optimization and energy efficiency.

Zhonghui Jiang received the B.S. degree in
School of Mechanical and Aerospace Engineer-
ing, Jilin University. He is currently pursuing the
M.S. degree in School of Computer Science and
Engineering, Beihang University. His research
interests include GPU performance optimization,
deep learning compiler and machine learning
system.

Zhongzhi Luan received the Ph.D. in the School
of Computer Science of Xi’an Jiaotong Univer-
sity. He is an Associate Professor of Computer
Science and Engineering, and Assistant Director
of the Sino-German Joint Software Institute (JSI)
Laboratory at Beihang University, China. Since
2003, His research interests including distributed
computing, parallel computing, grid computing,
HPC and the new generation of network tech-
nology.

Depei Qian is a professor at the Department
of Computer Science and Engineering, Beihang
University, China. He received his master degree
from University of North Texas in 1984. He is cur-
rently serving as the chief scientist of China Na-
tional High Technology Program (863 Program)
on high productivity computer and service envi-
ronment. He is also a fellow of China Computer
Federation (CCF). His research interests include
innovative technologies in distributed computing,
high performance computing and computer ar-

chitecture.

	Introduction
	Background
	GPU Architecture and Execution Model
	Optimizations for Stencil Computation
	Streaming
	Block/Cyclic Merging
	Prefetching
	Retiming
	Temporal Blocking

	Limitations of Stencil Auto-tuning Mechanisms

	Motivation
	Performance Gap among OCs
	Similarity of High-performance OCs
	Adaptability of Optimization Settings for Grid Sizes
	Pairwise Correlation of OCs

	GSTuner Methodology
	Design Overview
	Random Stencil Generation
	Stencil Representation
	Performance Prediction
	Search Space Sampling
	Evolutionary Search

	Evaluation
	Experiment Setup
	Hardware and Software Platforms
	Stencil Programs and Datasets
	Search Methods and Implementation Details
	Comparison Metrics

	Results for Prediction
	Results for Auto-tuning
	Applying to other GPU Hardware
	Comparison with Previous Works
	Adapting to other Grid Sizes
	Parameter Sensitivity Analysis
	Network Depth and Width
	Sampling Ratio
	MCR Threshhold

	Overhead Analysis

	Related Work
	Conclusion and Future Work
	References
	Biographies
	Qingxiao Sun
	Yi Liu
	Hailong Yang
	Zhonghui Jiang
	Zhongzhi Luan
	Depei Qian

