
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 2022 1

OSSP-PTA: An Online Stochastic Stepping Policy
for PTA on Reinforcement Learning

Dan Niu, Member, IEEE, Yichao Dong, Graduate Student Member, IEEE, Zhou Jin, Member, IEEE, Chuan
Zhang, Senior Member, IEEE, Qi Li, Member, IEEE, Changyin Sun, Senior Member, IEEE,

Abstract—DC analysis is essential and still quite challenging in
large-scale nonlinear circuit simulation. Pseudo transient analysis
(PTA) is a widely-used and has great potential solver in the
industry. However, the PTA convergence and simulation efficiency
is still seriously affected by its stepping policy. This paper
proposes an online stochastic stepping policy (OSSP) for PTA
based on deep reinforcement learning (DRL). To achieve better
policy evaluation and stronger stepping exploration ability, the
dual soft Actor-Critic agents work with the proposed valuation
splitting and online momental scaling, enabling our OSSP to
intelligently encode PTA iteration status and online further adjust
forward and backward time-step size for unseen test circuits
without human intervention and domain knowledge, trained
solely by RL from self-search. Our public sample buffer and
priority sampling are also introduced to overcome the sparsity
and imbalance of sample data. Numerical examples demonstrate
that the proposed OSSP achieves a significant efficiency speedup
(up to 47.0X less NR iterations) and convergence enhancement
on unseen test circuits compared with the previous iter-based
and SER-based stepping methods, in just one stepping iteration.

Index Terms—DC analysis, pseudo transient analysis, stochas-
tic stepping, valuation splitting, momental scaling

I. INTRODUCTION

IN circuit simulation, robust computation of DC operating
point of large-scale nonlinear circuit is still a fundamental

and difficult task [1], [2]. DC analysis is not only a first
basic check of circuit operating, but also a precondition with
influential repercussions for subsequent analyses in SPICE-
like transistor-level simulators, which include small-signal AC
analysis, transient analysis and sensitivity analysis [3], [4].
In essence, DC analysis is to solve a large set of nonlinear
algebraic equations established by modified nodal analysis
(MNA) [1], [5], [6].

Early circuit simulators, which relied mainly on the Newton-
Raphson (NR) method or one of its variants to calculate

Manuscript received July 29, 2022; revised October 16, 2022. This work
was supported by the Natural Science Foundation of Jiangsu Province of China
under Grant BK20202006, the Commercialization of Scientific and Research
findings of Jiangsu Province under Grant BA2021012. (Corresponding author:
Zhou Jin and Dan Niu.)

Dan Niu are with the Key Laboratory of Measurement and Control of CSE,
Ministry of Education, Nanjing 210096, China.

Dan Niu, Yichao Dong and Qi Li are with the School of Automation,
Southeast University, Nanjing 210096, China.

Changyin Sun is with the School of Artificial Intelligence, Anhui University,
Hefei 230601, China.

Zhou Jin is with the Super Scientific Software Laboratory, China University
of Petroleum-Beijing, Beijing 102249, China.

Chuan Zhang is with the LEADS of Southeast University, the National
Mobile Communications Research Laboratory of Southeast University, and
the Purple Mountain Laboratories, Nanjing 211189, China.

the operating point, are considered unreliable [1], [7]. These
methods are robust and quadratically convergent if supplying
a starting point sufficiently close to a solution. But NR-based
methods may fail if no such point is selected [8], [9]. To solve
the convergence issue, a variety of continuation methods are
further proposed, including Gmin stepping methods [10], [11],
Source stepping methods [12], [13], Homotopy methods [14],
[15], Pseudo-transient analysis (PTA) [16]–[19]. Among these,
Gmin stepping and Source stepping methods are relatively
simple and mature. Homotopy methods are highly device
model-dependent and difficult to be implemented in actual
simulators, though they are globally convergent [13], [20].
During the homotopy implementation, a complex modification
of the SPICE source program is required.

In contrast, PTA and its variants (e.g. Pure PTA (PPTA)
[21], [22], Damped PTA (DPTA) [23], [24] and Compound
element PTA (CEPTA) [25]) do not depend on the device
model. They have been used as the most practical and domi-
nant solver in the industry due to no discontinuity issues and
ease of implementation [26], [27]. The idea in PTA is to first
modify the circuit network by adding some pseudo elements,
in such a way that a prespecified state x0 can become a valid
initial state. Then a transient analysis is carried out, starting
from x0, until reaching a steady state [25]. In this case, DC
analysis is simplified to work out the steady state of a system
of ordinary differential equations (ODEs), which can be solved
iteratively through numerical integration stepping.

Obviously, the stepping policy is quite important for PTA
convergence and simulation efficiency, since it determines the
number and the difficulty level of nonlinear equations to be
solved at discrete timepoints. However, choosing the stepping
policy is nontrival and still the bottleneck in the PTA applica-
tion [20]. Currently some heuristic stepping control methods
have been proposed [28], [29]. But these stepping techniques
rely on heuristics and manually-setting formulas that are too
general and do not consider the specificities of each circuit
netlist. In addition, the enhancement of device nonlinearity and
exponential increase of the parasitic parameters pose bigger
challenges for the PTA convergence. In this situation, it has
emerged as a promising and hot research topic that whether
and how to design a “intelligent” and “adaptive” PTA stepping
policy by blending machine learning (ML) methods [4], [30].

Reinforcement learning (RL), as an important branch of
machine learning, has resulted in the creation of self-learning
agents achieving superhuman performance at the games of Go,
Shogi and Chess [31], [32]. In electronic design automation
(EDA) field, deep RL is also used with large success in many

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3251731

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: China University of Petroleum. Downloaded on April 17,2023 at 07:14:19 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 2022 2

applications such as chip placement, logic synthesis and device
sizing automation [33]–[35]. In the PTA for DC analysis,
the optimal step size at each PTA time-step is unknown and
thus the supervised learning is not applicable. But the circuit
simulation states at current PTA time-step can provide a wealth
of effective information to determine the step size for the next
PTA time-step iteration. The PTA iteration process can be
approximately treated as a Markov decision process that RL
owns a great benefit to solve [30], [36].

In this paper, dual autonomous RL agents working seam-
lessly with valuation splitting and online momental scaling
for online stochastic PTA stepping policy (OSSP-PTA) are
proposed to adaptively tune the PTA forward stepping and
backward stepping, which will accelerate PTA convergence
remarkably without human intervention and domain knowl-
edge, trained solely by RL from self-search. Moreover, for the
unseen test circuit simulations, the proposed method can still
continuously learn and online further adjust the stepping policy
compared with the supervised learning with fixed network. The
contributions of this paper are as follows.

1) We achieves a significant efficiency speedup and con-
vergence enhancement for DC analysis on unseen test circuits
by applying the proposed online stochastic stepping policy
(OSSP) for PTA methods, without any additional training and
in just one PTA iteration process. It intelligently encodes
PTA iteration status and online adaptively tune forward and
backward time-step size without supervised samples.

2) We introduce dual soft Actor-Critic agents and propose an
online stochastic stepping policy (OSSP) based on maximum
entropy. Compared with the deterministic stepping policy in
the previous PTAs, OSSP achieves stronger stepping space
exploration ability and helps damp out the oscillations to
obtain better convergence.

3) Continuous valuation splitting architecture with three
streams is proposed to produce separate estimates of the state
value function and advantage function. It can achieve better
policy evaluation in the presence of redundant or similar
actions to accelerate simulation.

4) An adaptive and momental step scaling along with online
stepping policy update are put forward to deal with the circuit
differences between offline training and online prediction.
Biased first and second moment estimates are introduced to
obtain online momental step scaling by encoding the previous
step sizes of the unseen test circuit. It breaks through the gain
limitations to further improve the simulation efficiency.

In addition, the public sample buffer and priority sampling
are introduced to solve insufficient and imbalance sample data.

The proposed OSSP method is compatible to almost all
kinds of PTA solvers and easy to be implemented in the
SPICE-like simulators.

II. PRELIMINARY

In this section, PTA as well as its typical time-step control
methods are reviewed.

A. PTA Method
Consider a nonlinear circuit to be solved. Let the number of

nodes in a circuit be N+1, the number of independent voltage

sources be M . Such a circuit can be described by modified
nodal equations to obtain nonlinear algebraic equations [37],
that is

F(x) = 0, (1)

where x = (v, i)T ∈ Rn, and n = N + M . The variable
vector v ∈ RN denotes the node voltages to the datum
node and the variable vector i ∈ RM represents the branch
currents of the independent voltage sources [38]. When the
target circuit is modified to the PTA case, the set of ordinary
differential equations (ODEs) can be obtained as{

Dẋ(t) = −F(x(t), t),
x (t0) = x0,

(2)

where ẋ(t) = (v̇(t), i̇(t)) is the derivative of x with respect
to the time t, and D is the incidence matrix that represents
the inserted pseudo elements [25]. Then the implicit DDF-k
numerical integration [20], shown in Eq. (3), is employed to
Eq. (2) at the discrete time point tn+1, where n≥k-1.

ẋ(t)|t=tn+1
=

xn+1 − xn+1−k

k−1∑
j=0

(hn+1−j)

. (3)

By Eq. (3), Eq. (2) is numerically integrated to a
steady state using some variable time-step schemes. The
time interval [0, tf] is replaced with discrete time points
t0, t1, . . . , tn, tn+1, . . . , tf through numerical integration, and
the time-step size is hn ≡ tn − tn−1. tf is the time point
when the pseudo circuit is settled down. Obviously, a suitable
stepping policy is essential for whether and how fast the PTA
iterations reach steady state.

B. Time-Step Control Methods

In the commercial EDA tools, a simple NR iteration count-
ing stepping method called “iter-based method” here, is
widely utilized in PTA methods [28], [29]. It compares the
number of NR iterations at each PTA time-step with two
options (IMAX and IMIN) to determine next time-step size.
Generally, when the number of NR iterations is less than
IMIN, the next step size will be enlarged by 2 times. If the
number is more than IMAX, the simulator rolls back to the
previous time-step and the new size will be set as 1/8 of previ-
ous size. Otherwise, the step size keeps the same. This policy
is simple and fast. However, it only considers the NR iteration
number and employs the fixed size change rates, which are
too rigid to achieve good simulation performance. Moreover,
selecting approximate parameters (e.g. IMAX, IMIN, initial
time-step size) for different circuits are also difficult [20].

Moreover, a adaptive time-step control method based on
switched evolution/relaxation (SER) was proposed in [39]
(called “SER-based method” here). In this method, the resid-
ual F(x), the relative change of x and the iteration count Nitrn
are considered to optimize the time-step size. The forward
stepping algorithm, in its simplest, is

hn+1 = E (hn,Nitrn,x,F(x))

= hn ·MAX (1, δ · γ · ∥F (xn−1)∥ / ∥F (xn)∥) ,
(4)

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3251731

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: China University of Petroleum. Downloaded on April 17,2023 at 07:14:19 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 2022 3

where δ denotes the relative change of x per time-step,
and γ assesses the difficulty of NR convergence, defined as
IMIN /Nitrn.

In the backward stepping, cautious strategy is adopted to
reduce the time-step size gradually, which is expected to
improve the backward stepping efficiency. The parameter G
(usually initialized to 10) is set to control the decrement ratio
of step size, that is

hn+1 =
G

1 +G
hn, (5)

It is a manually set formula. G will be reduced by half for
each roll-back step.

While larger backward step size can be obtained, the
conservative backward strategy reduces the step size too slow
and usually continuous rollbacks are required to achieve NR
convergence again, which will waste too much NR iterations.
Besides, It is also difficult to optimize parameters for various
circuits. It is still a heuristic method relying on artificial exper-
tise and has weak generalization ability. However, it has been
demonstrated that intelligent and flexible time-step control
methods have great potential to enhance PTA convergence and
accelerate simulation efficiency.

III. PROPOSED ONLINE STOCHASTIC STEPPING POLICY

A. Overview

In this section, the PTA iterative solution tracing process is
treated as a MDP problem and an online stochastic stepping
policy is proposed to interact with the circuit simulation
environment. We build dual RL agents that tune the forward
and backward step size of PTA iterations autonomously, with
the objective of minimizing total NR iterations while achieving
PTA convergence. Our RL-based stepping problem consists of
the following four key elements:

States: the set of PTA iteration state parameters from the
EDA tools. A single state st consists of a state parameter set
at one time-step tn.

Actions: the set of actions that the agent can use to compute
the PTA iteration solution of pseudo circuit. An action at is to
generate proper next time-step size hn+1 for transient analysis.

State transition: given a state st and an action at, the next
state is the iteration state parameters of the same pseudo circuit
with next time-step size hn+1.

Reward: the reward increases if the action generates the
time-step size to make PTA iterations tend to converge.

In RL, our two agents learns from interacting with transient
iteration of pseudo circuit over a number of discrete time-
steps. At each time-step tn, the agents receive a state st, and
output a normalized action at ((-1,1) range) according to its
policy π. In return, the agents receive a reward signal rt and
transition to the next state st+1. An optimal policy is one that
maximizes the expected returns or values [31].

B. Our RL stepping settings

In this work, PTA stepping policy is a combinatorial opti-
mization problem where state set is very large and exhaustive
search is infeasible. For the agents adaptively selecting a

proper action, a good representation of PTA iteration status
must be firstly defined.

Our States The selection of RL states is quite important
to transfer the knowledge across very different circuit netlists
so that our agents generalize stepping tuning policy to unseen
circuit netlists. It should reflect the PTA iteration status and
evaluate whether and how difficult the iteration tends toward
convergence. Considering that circuit topologies and circuit
scales vary, node voltages or branch currents and even their
normalized values are not appropriate and are not considered
as states. In this work, our state st is written as a concatenation
of the following parameters NR iters, Res and RC rate.
• NR iters: is the NR iteration number to get the transient

solution at each time-step tn and it indirectly translates the
difficulty of NR iterations.
• Res: is the residual, defined as

Res = CR
∥xn − xn−1∥
∥tn − tn−1∥

, (6)

where CR is the residual coefficient. Res evaluates whether
the equations are close to final solution.
• RC rate: is the relative change rate of solutions, which

is given by

RC rate = CRC
∥xn − xn−1∥
∥xn−1 − xn−2∥

, (n ≥ 2), (7)

where CRC is the coefficient of relative change rate. RC rate
is served to indicate whether the iteration solution tends toward
the steady state or still changes drastically.

In addition, two flags (Conv NR and Conv PTA) are used
to represent the convergence status and will be used in
reward functions. Conv NR denotes whether the NR iterations
converge or not. It is obtained by comparing the NR iteration
number with a constant parameter. It is important to determine
whether backward stepping works. Conv PTA as a successful
ending flag indicates whether the PTA iterations reach the
steady state.

The fore-mentioned state inputs are normalized and en-
codered by our agents. As shown in Fig. 1, two actor networks
in the proposed dual Actor-Critic agents will online adaptively
output an stochastic action a to generate the next time-step size
hn+1 for forward stepping or hb

n+1 for backward stepping.
Our Dual Agents As shown Fig. 1, our dual agents include

forward agent and backward agent. According to the input
state sn at tn timepoint, the dual agent network will firstly
determine which agent (Forward or Backward) works. Then
the Actor module in Forward agent or Backward agent outputs
the stochastic action an, which is used to generate the next
step size for PTA iterations. For DC analysis by PTA iterations,
conventional single agent structure of RL is unsuitable due to
two main reasons. First, not only forward stepping operations
but also backward stepping operations may occur in circuit
simulation, especially solving DC analysis of “difficult” cir-
cuits. When NR iterations converge, forward stepping oper-
ation is expected to take large enough step size to enhance
simulation efficiency. Otherwise, backward stepping operation
rollbacks to the previous time-step and a smaller step size

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3251731

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: China University of Petroleum. Downloaded on April 17,2023 at 07:14:19 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 2022 4

 PTA iteration states Next step
size

 NR converge
 NR non-converge
 NR converge
 NR non-converge

Forward Agent

a

a

Stochastic

Policy

Gaussian

distribution
Time-step

Size

Stochastic

Policy ()f a

 NR_iters

 Res

 RC_rate

 Conv_NR/PTA

 NR_iters

 Res

 RC_rate

 Conv_NR/PTA
Actor

Critic Entropy

Online

Momental

Scaling

Actor

Critic Entropy

Backward Agent

NR
Converge

NR
Non-converge

()f a

()~ ,a N

()~ ,a N

nh

1nh +

nt

1

b

nh +

1nt +
2nh +

3

b

nh +

3

b

nh +

2nt +

3nh +

3nt +

1nt −

Fig. 1. Proposed dual soft Actor-Critic agents with stochastic stepping policy

should be chosen carefully to solve NR non-convergence. This
differs from many existing RL game tasks where ”Undo” does
not exist. Besides, when NR non-convergence occurs, solution
xn+1 at time-step tn+1 is non-existent and the states (e.g.
Res and RC rate) for RL can not be obtained, which is also
different from many RL tasks. Secondly, the training samples
at forward steppings are much more than those at backward
steppings, which results in sample imbalance. In this case, it
is hard for single agent structure to learn valuable backward
stepping information and the network is easily unstable on
account of the imbalanced samples. This forms an obstacle
for actor network online update. In this work, dual agents
called forward agent and backward agent, are introduced to
cope with the NR convergence and non-convergence situation
separately and output the optimal stepping policy.

Online Stochastic Stepping Policy As shown in Fig. 1,
the proposed online stochastic stepping policy will give the
next step size by sampling from a probability distribution. An
online stochastic stepping policy rather than a deterministic
stepping policy [28], [30], [39] in previous PTAs is proposed
to realize stronger stepping space exploration ability, which
is helpful to damp out the oscillation to obtain better PTA
convergence performance. Moreover, the stochastic stepping
policy is also be online updated to deal with the circuit
differences between offline training and online prediction.
The output action a is a Gaussian distribution whose mean
and covariance is obtained by the Actor networks, where
the improved soft Actor-Critic [40] with valuation splitting
is proposed (shown in subsection C). A soft Q value function
Qθ(st, at), and a tractable policy πϕ(at|st) is employed. Three
streams are proposed to explicitly separate the representation
of state values and (state-dependent) action advantages. They
are combined to produce the estimate of the soft Q value
function, which can effectively stabilize modal training.

The soft Q value function is trained by minimizing the soft
Bellman residual. It is convenient to train simultaneously with

the policy networks. The update of Q value network is:

∇θJQ(θ) = ∇θ
1

|B|
∑

(s,a,r,s)∈B

(Qθ(s, a)− y (r, s′))
2
, (8)

where B is the set of samples whose quantity is batch-size.
y (r, s′) is defined as:

y (r, s′) = r + ξ (Qθ (s
′, a′)− κ log πθ (a

′ | s′)) , (9)

where ξ is the decay factor, κ is the entropy temperature factor.
Note that Qθ (s, a) − y (r, s′) is the TD error [31]. The TD
error is proportional to the gradient in the update of Q function
network.

The policy parameters are learned by directly minimizing
the expected KL-divergence. Therefore, we derive the update
gradient of policy:

∇ϕJπ(ϕ) = ∇ϕ
1

|B|
∑
s∈B

(κ log πϕ(π(s) | s)−Qθ (s, πϕ(s))) .

(10)
Policy network outputs the Gaussian mean me and covari-

ance var:
[me, var] = πϕ (st) . (11)

Then the output Gaussian action a is firstly normalized to
the interval (-1,1) by the activation function tanh.

a = tanh(me+ εt ∗ var), (12)

where εt is sampled by standard normal distribution. Next,
two exponential equations are proposed to generate the next
time-step size separately from the action a. The equation in
the forward stepping is expressed as

hn+1 = mfe
a+nf ∗ hn, (13)

In the backward agent, however, continuous multiplication
operations are employed by

hb
n+1 = (mb)

o
o∏

i=1

e−ai+nb ∗ hn+1 = kb ∗ hn+1, (14)

where kb is defined as the backward size reduction coeffi-
cient. hb

n+1 is the reselected time-step size due to NR non-
convergence. Constant parameters mf , nf ,mb, nb are set by
the desired maximum and minimum change rates of time-step
size. o is the number of continuous NR non-convergence. In
this work, action ai is not the output of a explicit mathematical
formula like in iter-based or SER-based stepping methods,
but the output of dynamic actor network. This actor network
is online updated by batch sampling and batch gradient de-
scent. In this case, when continuous NR non-convergences
occur, it can not be guaranteed that size reduction coefficient
mbe

−ai+1+nb for the next time-step must be smaller than the
previous size reduction coefficient mbe

−ai+nb . However, it is
confirmable that mbe

−ai+1+nb < 1 holds and then continuous
multiplication is proposed to obtain a certain smaller and
smaller step size (mb)

o
∏o

i=1 e
−ai+nb ∗hn+1 when continuous

NR non-convergences occur.
Reward Functions Lastly, the weighted sum of iteration

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3251731

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: China University of Petroleum. Downloaded on April 17,2023 at 07:14:19 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 2022 5

states and additional bias are utilized to design the forward
reward function rf and backward reward function rb, respec-
tively. They are expressed as

rf =

2∑
i=0

cfi

∥∥∥S̃RLi

∥∥∥+Rfend +Bf , (15)

rb =

2∑
i=0

cbi

∥∥∥S̃RLi

∥∥∥+Rbend +Bb, (16)

where S̃RLi denotes the normalized states, which are ob-
tained by using the min-max normalization for the states
NR iters, Res and RC rate. cfi and cbi are the weight
coefficients. Rfend and Rbend are constant rewards added
when the current PTA iteration converges. Bf and Bb are
constant biases, which aim to keep the total reward value be
negative.

Algorithm 1 presents the detailed pseudo-code for the
online stochastic stepping policy.

C. Proposed Valuation Splitting Architecture
In this part, continuous valuation splitting architecture with

three streams is proposed to separately estimate the state value
function and advantage function, which achieves better policy
evaluation to accelerate simulation. In the simulation of unseen
test circuits, the pre-trained OSSP by the offline training circuit
set will further learn and online update using the simulation
data that it has just experienced in the unseen test circuits. The
data are usually insufficient and imbalance, especially at the
early stage of online learning. Therefore, it is vital to improve
the RL model stability and fast convergence capability.

In the conventional soft Actor-Critic model, the input of
the critic network is state-action pair (s, a). Updating the critic
network by TD error only improves the Q value of the current
action at the current state. It means that only the value for one
of the actions is updated, the values for other actions remain
untouched. The state value can not be better approximated,
which is important to more quickly identify the correct action
during policy evaluation for faster convergence. Inspired by
advantage function in policy gradient [41], [42], valuation
splitting architecture is proposed for soft Actor-Critic model in
this work, where the representation of state values and (state-
dependent) action advantages are explicitly separated by the
proposed double-Actor architecture. As shown in Fig. 2, the
valuation splitting architecture has three streams to separately
estimate state value V (s) and the advantages A(s, a) for
each action. The three streams are combined via a special
aggregating layer to produce an estimate of the state-action
value function Q, which can replace the current single-stream
Q network of conventional soft Actor-Critic model without any
extra supervision. The state value V (s) measures how good
a particular state s is. The Q function, however, measures
the value of choosing a particular action a in this state s.
The advantage function A(s, a;β), whose network parameters
are β, obtains a relative measure of the importance for each
action a. The stream V (s;α) where α are the value network
parameters, learns a general value that is shared across many
similar actions at s, hence leads to faster convergence.

Algorithm 1 Proposed online stochastic Stepping Policy
Require: Important parameters setting:

1: Reward function rf , rb, step function τf , τb;
2: Learning rate λQ, λϕ, λκ;

Ensure:
3: Build algorithm structure:
4: Critic network Qθf , Qθb , actor network πϕf

, πϕb
;

5: Target actor networks π∗
ϕf

, π∗
ϕb

;
6: Independent buffer Bf , Bb, public buffer Bp;
7: Temperature coefficient κf , κb;
8: Priority set Pf , Pb, P;
9: Connect SPICE software;

10: Simulate with initial time step h;
11: Record state s, Conv NR, Conv PTA, Conv NR′;
12: while Conv PTA ̸= True do
13: if Conv NR ̸= False then
14: get action a ∼ πϕf

(a | s); ▷ forward agent
15: update momental scaling Km; ▷ online scaling
16: calculate next time step h′ ← Kmτf (a)h;
17: get next state s′, update Conv NR′, Conv PTA;
18: calculate r ← rf (s, a),
19: store sample Bf ← Bf ∪ {(s, a, r, s′)};
20: else
21: get action a ∼ πϕb

(a | s); ▷ backward agent
22: update momental scaling Km; ▷ online scaling
23: calculate next time step h′ ← Kmτb (a)h;
24: get next state s′, update Conv NR′, Conv PTA;
25: calculate r ← rb (s, a), update priority set Pb;
26: store sample Bb ← Bb ∪ {(s, a, r, s′)};
27: end if
28: if Conv NR⊕ Conv NR′ then
29: update priority set P; ▷ public sample buffer
30: store sample Bp ← Bp ∪ {(s, a, r, s′)};
31: update time step h;
32: end if
33: Extracted in public and independence buffer:
34: take N samples according to priority set;
35: Λf ∼ Pf , Λb ∼ Pb; ▷ priority sampling
36: Calculate the Q value: ▷ valuation splitting
37: for i in {f, b} do
38: Qθi(s, a) = Vαi(s) + (Ãβi(s, πϕi(s))− Ãβi(s, π

∗
ϕi
(s)))

39: end for
40: gradient update:
41: θi ← θi − λQ∇θiJQ (θi) for i ∈ {f, b};
42: ϕi ← ϕi − λπ∇ϕi

Jπ (ϕi) for i ∈ {f, b};
43: κi ← κi − λκi

∇κi
J(κi) for i ∈ {f, b};

44: Iterate to the next step:
45: s← s′, h← h′, Conv NR← Conv NR′;
46: end while

The module where the three streams of fully connected
layers are combined to output a Q estimate, requires very
thoughtful design. From Fig. 2,

Q(s, a;α, β) = V (s;α) +A(s, a;β), (17)

where Q(s, a;α, β) is only a parameterized estimate of the true
Q value function. Eq. (17) is unidentifiable in the sense that

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3251731

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: China University of Petroleum. Downloaded on April 17,2023 at 07:14:19 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 2022 6

SPICE

Actor
--

+

Target
Actor

SPICE

Target
Actor

Actor

--

+

 Soft Update

Sample Buffer

a

*a

Extract State

s

s

s

*,s a

,s a

(,)A s a

*(,)A s a

(,)A s a

()V s

(,)Q s a

Dueling Critic (,)Q s a

(,)A s a

*(,)A s a

(,)A s a

()V s

,s a

*,s a

s

s

a

*a

s

Dueling Critic

Sample Buffer

Soft update

Fig. 2. Proposed valuation splitting of the critic network

V (s) and A(s, a) cannot be recovered uniquely from given
Q, which gives poor practical performance. To solve it, the
advantage function estimator is forced to have zero advantage
at the optimal action, that is

{
Q(s, a; θ) = V (s;α) +A(s, a;β),

A(s, a;β) = Ã(s, a;β)− max
a∗∈|A|

Ã (s, a∗;β) , (18)

where θ represents the total parameters of the critic network
which fits the Q value function. In deep Q-learning network
(DQN) [43], the relative rank of the A (and hence Q) values
does not be changed and any greedy or ϵ-greedy policy based
on Q values is preserved. From Eq. (18), the maximum
action advantage max

a∗∈|A|
Ã (s, a∗;β) is required to obtain the

identifiable advantage value.
Different from the traditional DQN method, the soft Actor-

Critic model outputs a continuous action space and the
maximum advantage value can not be obtained directly by
the traversal method on the discrete action space. In this
work, double-Actor architecture using actor and target actor
is proposed to obtain the maximum advantage value. For the
actor, it will converge to output an action to get the maximum
Q value, which depends on different actions at the same
state, namely the advantage function. Therefore, we take the
output action of the target actor as the optimal action a∗ with
the maximum advantage value. Moreover, the update of the
actor uses the policy gradient under the current policy. To
distinguish the actor that provides optimal policy from that
needs to update policy, a target actor network is introduced
to avoid the gradient disappearance problem of advantage
network updating in the same actor. It copies from the actor
at regular intervals of the updating process, which makes a
network difference to produce the gradient.

Q(s, a; θ) = V (s;α)+(Ã(s, π(s);β)−Ã(s, π∗(s);β)), (19)

where the π∗(s) represents the target actor. This optimization
can better fit the true Q value, and improve the stability of
model training and simulation efficiency.

Note that Eq. (19) is implemented as part of the network

and not as a separate algorithmic step. Training of the valu-
ation splitting architecture requires only back-propagation as
standard Q networks. The estimates V (s;α) and A(s, a;β)
are computed automatically without any extra supervision.

D. Online Adaptive and momental step scaling

In this part, an adaptive and momental step scaling method
is put forward to break through the size gain limitations
to further improve the simulation efficiency. For the unseen
test circuits, online learning and continuously adjusting the
stepping policy is quite important to enhance the simulation
performance for the new circuit structures and scales. It can be
seen that the scaling bound of step size in Eqs. (13) and (14)
is limited by the range (-1, 1) of action a. When continuous
NR convergences occur, the limited maximum growth rate
mfe

1+nf may not be large enough and more aggressive step
size can be adopted to further improve simulation efficiency.
A similar situation also exists at the limited reduction rate
for backward stepping. In this work, online adaptive scaling
parameter Km is proposed based on the momentum concept
[44]. Eqs. (13) and (14) are modified to

hn+1 = Km ∗mfe
an+nfhn, (20)

hb
n+1 = Km ∗ (mb)

o
o∏

i=1

ean,i+nbhn, (21)

Km = ϱsMn min(
1√

Vn + ϵ
, gn), (22)

where ϱs is a scale factor. Mn is the first moment estimate
of the maximum magnification and Vn is the weighted mean
of second raw moment. ϵ is added to make the denominator
be a positive value. gn is designed to restrict the dynamic
bound of Km. It is based on the exponential moving aver-
ages of the history gn themselves to smooth out unexpected
large Km, especially at the beginning of PTA iterations. The
minimum bounding operation can be seen as clipping the Km

element-wisely so that the output is constrained by the current
smoothed value. The detailed formulas are given by

Mn = η1Mn−1 + (1− η1)Kn−1,

Vn = η2Vn−1 + (1− η2)
1
T

n−1∑
j=n−T

(K̃j − K̄T)
2
,

gn = η3gn−1 + (1− η3)
1√

Vn+ϵ
,

(23)

where the hyper-parameters η1, η2 and η3 control the expo-
nential decay rates for the moment estimates Mn, Vn and gn.
T is the filtering period. The discrete degree of the actions is
calculated. Kn is set as mfe

an+nf and (mb)
o
∏o

i=1 e
an,i+nb

for the forward and backward stepping, respectively. Similarly,
K̃n are mfe

µn+nf and (mb)
o
∏o

i=1 e
µn,i+nb for two stepping

cases, respectively. µn is the mean of the action an. K̄T is the
mean of the K̃j at the last T sample time points.
Mn, Vn and gn are used to online learn the previous time-

step size experiences in the unseen circuit simulation. They
can further increase step size scaling when previous step size
gains are relatively uniform large and further reduces step size
when previous step size gains are not stable. Meanwhile, they

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3251731

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: China University of Petroleum. Downloaded on April 17,2023 at 07:14:19 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 2022 7

TABLE I
SIMULATION EFFICIENCY COMPARISONS UNDER DPTA WITH THREE STEPPING METHODS

Circuits
OSSP iter-based SER-based Speedup (vs iter-based) Speedup (vs SER-based)

step iter step iter step iter step iter step iter

UA733 21 71 39 141 37 152 1.86 1.99 1.76 2.14
UA709 24 137 532 2960 50 339 22.17 21.61 2.08 2.47
mux8 35 101 64 156 46 118 1.83 1.54 1.31 1.17
rca 19 62 29 104 28 119 1.53 1.68 1.47 1.92
fadd32 39 129 939 1968 917 1859 24.08 15.26 23.51 14.41
gm1 20 41 42 85 21 47 2.10 2.07 1.05 1.15
todd3 49 199 4648 9353 4645 9341 94.86 47.00 94.80 46.94
DCOSC 22 90 34 116 34 130 1.55 1.29 1.55 1.44
HVREF 20 73 30 96 22 93 1.50 1.32 1.10 1.27
mosamp 30 140 99 248 97 239 3.30 1.77 3.23 1.71
ab integ 35 158 2232 4540 2167 4406 63.77 28.73 61.91 27.89
e1480 42 207 2760 5553 2741 5514 65.71 26.83 65.26 26.64
mosrect 27 83 412 838 407 826 15.26 10.10 15.07 9.95
RCA3040 19 62 29 104 28 119 1.53 1.68 1.47 1.92
TADEGLOW6TR 21 85 39 145 27 102 1.86 1.71 1.29 1.20
THM5 36 116 2661 5331 2660 5324 73.92 45.96 73.89 45.90
voter25 34 117 72 192 45 124 2.12 1.64 1.32 1.06
cram 23 62 57 130 36 87 2.48 2.10 1.57 1.40
Square root 48 252 95 364 67 259 1.98 1.44 1.40 1.03
Suntraction 24 79 43 112 34 93 1.79 1.42 1.42 1.18

Average 19.26X 10.86X 17.82X 9.64X

help dampen oscillations by adding fractions η1, η2 and η3 at
the past update vector to the current update vector. As a result,
faster PTA convergence can be achieved.

E. Public Sample Buffer and Priority Sampling

In this part, public sample buffer and priority sampling
policy are introduced to deal with insufficient and imbalance
sample data. For the online update of RL model on the unseen
test circuits, the experience samples are usually insufficient
and imbalance, especially at the early stage of online sim-
ulation. Moreover, dual agent structure further aggravates the
insufficient sample situation, where the online training samples
are divided into forward sample buffer and backward sample
buffer. In this work, the public sample buffer is also introduced
to improve the sampling efficiency and enhance the training
stability. For forward agent, the experience where the output
action causes the non-convergence of NR iterations, will be
stored at the public sample buffer, since the backward agent
can also learn from this experience to more sharply shorten
the step size to avoid this low reward action. The similar thing
also happens for backward agent. The public sample buffer
can effectively alleviate the sample insufficiency situation and
accelerate the convergence speed of online learning.

In this work, RL sample Sam consists of the current
state st, action at, the next state st+1, calculated reward
rt, completion flag dt (NOT Conv NR OR Conv PTA) and
sample value Sv. It is stored using the following format:

Sam =< st, at, st+1, rt, dt, Sv >, (24)

where sample value Sv is the node value of the binary tree
in the following priority sampling section. As for action at, it
need to be recalculated by the size reduction coefficient in Eq.
(14) back to the value range (-1, 1) when continuous backward

steppings occur. The recalculation of at is not needed for
forward stepping operation.

The public sample buffer effectively increases the utilization
rate of online training samples. In addition, how to select the
samples to update the network is also important for enhancing
the convergence performance of online learning. In this work,
priority sampling [45] is employed and the samples with larger
TD error (Temporal-Difference error) will be selected with
higher probability. The sampling probability Pk in the k-th
sample can be calculated by the following formula:

Pk =
Svk∑N
i=1 Svi

, (25)

where Svk = |∆TD|+δ. ∆TD is TD error and δ is a positive
bias coefficient.

It is known that larger TD error will contribute a greater
amount to the update of the critic and actor network [31].
In the implementation, the absolute value of the TD error
and the sample value Sv of each sample are stored in the
summation binary tree. In the random sampling process, the
selected probability of the leaf node will be proportional to
the stored value. Note that the samples with small TD error do
not be eliminated. They are beneficial for the sample richness
(diversity) and network learning. It is demonstrated that public
sample buffer and priority sampling policy can remarkably
enhance the PTA convergence and simulation efficiency in
circuit simulation.

IV. EXPERIMENTS AND RESULTS

A. Experimental Environment and Offline Pre-training

The PTA methods with the proposed online stochastic
stepping policy (OSSP) are implemented in a Spice-like circuit
simulator on a server with RTX 2060 6GB GPU and i7-
10750H CPU. The performance is evaluated by dozens of

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3251731

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: China University of Petroleum. Downloaded on April 17,2023 at 07:14:19 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 2022 8

TABLE II
SIMULATION EFFICIENCY COMPARISONS UNDER CEPTA WITH THREE STEPPING METHODS

Circuits
OSSP iter-based SER-based Speedup (vs iter-based) Speedup (vs SER-based)

step iter step iter step iter step iter step iter

UA733 15 75 28 121 31 122 1.87 1.61 2.07 1.63
UA709 48 296 83 407 70 480 1.73 1.38 1.46 1.62
mux8 21 65 48 122 31 103 2.29 1.88 1.48 1.58
rca 15 64 21 82 16 64 1.40 1.28 1.07 1.00
slowlatch 31 154 50 169 38 250 1.61 1.10 1.23 1.62
fadd32 19 76 46 131 28 115 2.42 1.72 1.47 1.51
gm1 15 31 36 74 17 39 2.40 2.39 1.13 1.26
todd3 34 195 131 689 98 777 3.85 3.53 2.88 3.98
DCOSC 17 81 28 126 20 100 1.65 1.56 1.18 1.23
HVREF 17 73 20 77 18 106 1.18 1.05 1.06 1.45
mosamp 21 108 26 106 26 124 1.24 0.98 1.24 1.15
ab integ 38 189 214 499 147 416 5.63 2.64 3.87 2.20
e1480 33 159 51 179 40 252 1.55 1.13 1.21 1.58
mosrect 19 57 20 65 20 64 1.05 1.14 1.05 1.12
RCA3040 15 64 21 82 24 64 1.40 1.28 1.60 1.00
TADEGLOW6TR 15 79 25 110 22 101 1.67 1.39 1.47 1.28
THM5 27 120 33 118 27 135 1.22 0.98 1.00 1.13
bjtff 23 106 35 138 25 142 1.52 1.30 1.09 1.34
toronto 42 239 70 277 44 310 1.67 1.16 1.05 1.30
add32 19 78 58 173 36 119 3.05 2.22 1.89 1.53
pchip 39 230 78 333 56 357 2.00 1.45 1.44 1.55
UA741PFBVINNEG 39 234 57 231 61 340 1.46 0.99 1.56 1.45

Average 1.99X 1.55X 1.52X 1.52X

benchmark transistor circuits. For fair comparisons, the perfor-
mance is evaluated by dozens of benchmark transistor circuits,
whose details can be easily found and checked in [46].

At first, we select seven typical circuits (two MOS circuits
and five BJT circuits) as the training dataset to achieve the
offline pre-training of stepping model. The PTA with the
proposed OSSP conducts the DC analysis for the seven circuits
and the obtained samples are utilized to continuously update
the actor and critic network of the forward agent and backward
agent. After 24 training epochs, the stepping model tends to
converge and the pre-training OSSP is obtained.

Then, for unseen test circuits, the pre-training OSSP will be
online updated by the new samples obtained from the unseen
test circuits and outputs the adaptive and intelligent step size
for PTA iterations to accelerate the DC analysis convergence.

In this work, PTA with the online stochastic stepping policy
(OSSP-PTA) is put forward to enhance the convergence and
computational efficiency of DC analysis. For comparisons,
PTA with other two typical stepping policies (iter-based and
SER-based) are also implemented. As for the convergence,
whether or not finding the dc operating points of test circuits
is illustrated. Considering the computational efficiency, the
number of PTA steps and NR iterations, as two widely-used
evaluation metrics are employed [9], [15], [24].

B. Simulation Efficiency Comparisons

To comprehensively evaluate the performance of the pro-
posed OSSP, it is implemented in two typical PTA methods
(DPTA [23] and CEPTA [25]) and compared with two widely-
used and effective time-step control methods (iter-based step-
ping method [29] and SER-based stepping method [39]).

Both convergence and simulation efficiency performances are
compared and analyzed.

For the simulation efficiency, firstly the DPTA with the
proposed OSSP, conventional iter-based as well as SER-based
stepping methods are implemented and compared. The number
of NR iterations and PTA steps with the three stepping
methods for 20 test circuits are shown in Table I. For more
distinct comparisons, the speedup between different stepping
methods are also presented. From this table, it is clear that the
DPTA with the proposed OSSP has better simulation efficiency
performance, which shows the average 10.86X reduction of
NR iterations and 19.26X reduction of PTA steps compared
with iter-based stepping method. Meanwhile, it shows average
9.64X reduction of NR iterations and 17.82X reduction of PTA
steps compared with SER-based adaptive stepping method.

Figure 3 gives the simulation process of a example circuit
UA709 with the three stepping methods. The bar charts in
the left represent the change rate of step size, which is in
logarithmic form so that the forward and backward steppings
are symmetric with respect to 0-axis. The bar charts in the
right give the NR iteration number taken in each time-step.
The red horizontal lines in the left bar charts represents the
average change rate of the forward step sizes with the three
stepping methods. In the right bar charts, the orange horizontal
lines give the average NR iteration number of total time-
steps (TA: Total Average), and the green lines represent the
average NR iteration number in the forward steppings (FA:
Forward Average). In summary, it is clear that the proposed
OSSP requires the least PTA steps and NR iterations, for two
main reasons. On the one hand, in the forward stepping part,
the proposed method has the highest average size change rate
(21.22=2.329X), but the average NR iteration number at each

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3251731

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: China University of Petroleum. Downloaded on April 17,2023 at 07:14:19 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 2022 9

0 10 20 30 40 504

2

0

2

4
Ch

an
ge

 ra
te

 (L
og

2)

0.79

SER-bForward
Backward

0 10 20 30 40 500
2
4
6
8

10

NR
 it

er
at

io
ns 6.8

5.4

TA
FA

0 100 200 300 400 5004

2

0

2

4

Ch
an

ge
 ra

te
 (L

og
2)

0.55

iter-bForward
Backward

0 100 200 300 400 5000
2
4
6
8

10

NR
 it

er
at

io
ns

5.6
4.7

TA
FA

0 5 10 15 20 25
PTA step

4

2

0

2

4

Ch
an

ge
 ra

te
 (L

og
2)

1.22

OSSPForward
Backward

0 5 10 15 20 25
PTA step

0
2
4
6
8

10
NR

 it
er

at
io

ns

5.8
5.3

TA
FA

Fig. 3. Simulation process of circuit UA709 with three stepping methods

forward time step (FA=5.3) is almost the same as those of
other two methods (5.4 and 4.7), which means that the OSSP
makes the PTA iterations converge with larger step size while
without consuming more NR iterations at each time step. On
the other hand, in the backward stepping part (negative red
parts in the left charts), our method not only usually has less
backward stepping operations, but also has lower and distinct
shrink rate to adaptively solve non-convergences. Compared
with the iter-based stepping method in this circuit, too many
backward steppings seriously affect the simulation efficiency
(large speedup 21.61X of NR iterations is obtained). Moreover,
its shrink rate is fixed at 1/8 (2−3). The sharp backward step-
ping policy in iter-based method may reduce the probability
of continuous backward steppings, but also depresses the step
size and also leads to low convergence speed. Meanwhile, the
SER-based method adopts a conservative and slow backward
stepping policy (G/(G+1) in Eq. (5)) and brings about many
continuous backward steppings. As a result, a large number of
PTA steps and NR iterations are wasted on the non-convergent
time-steps.

In addition, the proposed OSSP is compatible to kinds of
PTA solvers. Similarly, the CEPTA with the three stepping
methods are implemented. The corresponding number of NR
iterations, PTA steps, and speedups for many test circuits are

compared in Table II. From Table II, the simulation efficiency
can also be enhanced remarkably with the OSSP. Compared
with the iter-based stepping method, the acceleration ratio
of NR iterations/PTA steps are 3.53X/5.63X in maximum
and 1.55X/1.99X in average, respectively. Compared with
the SER-based adaptive stepping method, the corresponding
speedups are 3.98X/3.87X in maximum and 1.52X/1.52X in
average.

To sum up, the proposed OSSP can not only achieve larger
average step size at forward steppings, but also adaptively give
as low as shrink rate at backward steppings while minimizing
the occurrence of continuous backward steppings. Therefore,
higher simulation efficiency is obtained.

C. PTA Convergence Comparisons

Apart from simulation efficiency, PTA convergence guaran-
tee is actually more important and promising especially for
large-scale circuits and “difficult” circuits. It is quite frustrat-
ing to take several hours or even days for DC simulation but
non-convergence occurs. It is highly desirable to make non-
convergence cases converge.

First, the test results of ten “difficult” circuits under the
DPTA method with three stepping methods are shown in Table
III. “-” denotes non-convergence. From this table, it can be

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3251731

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: China University of Petroleum. Downloaded on April 17,2023 at 07:14:19 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 2022 10

seen that the proposed OSSP can achieve PTA convergence for
some circuits that other two stepping methods fail to converge.

TABLE III
CONVERGENCE COMPARISONS UNDER DPTA

Circuits iter-b SER-b OSSP

bjtff - - 207
add20 - - 307
add32 - - 174
gm19 - - 379
toronto - - 241
verg - - 22
sram - - 372
mem plus - - 544
pchip 1049 - 399
UA741PFBVIN - - 293

Similar conclusions can also be obtained for CEPTA case.
Table IV presents the test results of CEPTA with the three step-
ping methods. From Tables. III and IV, it is demonstrated that
the proposed OSSP can effectively improve the convergence
performance of the DPTA and CEPTA (widely-used PTAs)
solvers compared with other two stepping methods.

TABLE IV
CONVERGENCE COMPARISONS UNDER CEPTA

Circuits iter-b SER-b OSSP

verg 22 - 22
optrans - - 4573
pump 22 - 22
mem plus - - 230
jge - - 1517

Figure 4 presents the simulation process of a example circuit
jge with two stepping methods, including step sizes and node
voltage curves (V150 node). In the step size subfigure, the red
cross and blue dot represent non-convergence and convergence
steps, respectively. It can be seen that even the voltage solution
curve oscillates between two obvious different voltages, the
iter-based stepping method just judges NR iteration number
and outputs a fixed same step size, rather than comprehen-
sively considers the relative change of solution x so that a
more “intelligent” step size can be generated to jump out of
the local oscillation. In contrast, the OSSP does not fall into
the local non-convergence point and the node voltage curve
approaches the steady state around 1.7V easily.

Similar oscillation non-convergence phenomenon also ap-
pears in the SER-based stepping method. In Fig. 5, the
simulation process of another example circuit add20 with two
stepping methods is shown. We can see that the heuristic
SER-based stepping policy relies on the artificial empirical
formula to deal with the oscillatory and finally the output step
size changes cyclically between keeping same and slightly
decreasing due to non-convergence. Compared with it, the
proposed stochastic stepping policy has stronger discrete size
distribution and stepping space exploration ability. It helps the
PTA damp out the local oscillation to achieve convergence.

In addition, aside from the oscillation, another common
non-convergence situation is called “Time step too small”,
where PTA iterations still fail to converge even the step size

0 10 20 30 40 50
PTA step

0.0

0.5

1.0

1.5

OSSP

0 20 40 60 80
PTA step

0.0

0.2

0.4

0.6

0.8

V(
15

0)
/V

iter-b

0 20 40 60 80
3

2

1

0

1

St
ep

 si
ze

 (L
og

10
)

Backward
Forward

0 10 20 30 40 50

2

0

2

4

6

8

Backward
Forward

Fig. 4. Simulation process of circuit jge with iter-based and OSSP

0 20 40 60 80
PTA step

0

1

2

3

OSSP

0 20 40 60 80
PTA step

0

1

2

3

V(
18

03
)/V

SER-b

0 20 40 60 80

2

0

2

4

St
ep

 si
ze

 (L
og

10
)

Backward
Forward

0 20 40 60 80

0

5

10

15

Backward
Forward

Fig. 5. Simulation process of circuit add20 with SER-based and OSSP

hits the lowest bound. The simulation process of a “difficult”
example circuit optrans with the proposed OSSP and SER-
based stepping methods is shown in Fig. 6. Red cross and blue
dot also represent non-convergence step and convergence step.
From this figure, the SER-based stepping method just keeps
decreasing the step size to struggle for NR convergence, but
the PTA convergence condition can not be satisfied even the
step size reaches the lowest limit (1E-9 s). In contrast, the step
size by the proposed OSSP can maintain in certain range with
strong discrete distribution and does not decrease continuously
to achieve convergence. Thus the proposed OSSP performs
well even in some “difficult” circuits where “time step too
small” will occur by conventional stepping methods.

0 20 40 60 8010

8

6

4

2

St
ep

 si
ze

 (L
og

10
)

time-step
too small

Backward
Forward

0 10 20 30 40 50 60 70 80
PTA step

0.0006

0.0004

0.0002

0.0000

V(
16

56
)/V

SER-b

0 10 20 30 40 50 60 70 80
PTA step

60

40

20

0 OSSP

0 20 40 60 807

5

3

1

1
Backward
Forward

Non-converge (time step too small) in CEPTA

Fig. 6. Simulation process of circuit optrans with SER-based and OSSP

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3251731

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: China University of Petroleum. Downloaded on April 17,2023 at 07:14:19 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 2022 11

D. Performance Comparisons at Different Pseudo Capacitors
In PTA methods, a set of nonlinear algebraic equations

are turned into a system of ordinary differential equations
(ODEs) by inserting pseudo-elements into the circuit. To
obtain an easy-to-solve ODE system rather than an ill-defined
system (e.g., containing bifurcation, fold), the required pseudo-
elements (mainly pseudo capacitors) can be totally different
for different circuits. It is common that various sub-circuits
in a large-scale circuit require different or even incompatible
pseudo-elements to achieve good convergence. Therefore, a
robustness stepping strategy which has a wide applicability
for different pseudo-elements is crucial to enhance PTA sim-
ulation efficiency and convergence in the large-scale circuits.

TABLE V
PERFORMANCE COMPARISONS AT DIFFERENT PSEUDO CAPACITORS

Citcuits Algorithms C iter step rejected-
step

jge

iter-b
1.0E-04 - - -
1.0E-02 - - -
1.0E+04 - - -

OSSP

1.0E-08 910 125 43
1.0E-04 454 67 14
1.0E-02 643 112 23
1.0E+04 661 123 24
1.0E+08 655 136 21

SER-b
1.0E-04 6044 1025 57
1.0E-02 - - -
1.0E+04 - - -

votor

iter-b
1.0E-08 14695 3080 47
1.0E-02 - - -
1.0E+04 - - -

OSSP

1.0E-08 728 102 29
1.0E-04 10115 1653 630
1.0E-02 5722 903 353
1.0E+04 11328 1875 697
1.0E+08 10859 1823 683

SER-b
1.0E-08 1225 158 52
1.0E-02 - - -
1.0E+04 - - -

In Table V, the test results of two example “difficult” circuits
with different pseudo capacitors under the three stepping
methods are shown. “-” also represents non-convergence. From
this table, SER-based method takes more NR iterations and
even fails to converge under some pseudo capacitors, while
simple iter-based method fails to converge in most cases.
Compared with other two stepping methods, it can be seen
that the proposed OSSP always converges, even the value
of pseudo capacitors change in a wide range. Therefore, the
proposed OSSP can effectively enhance the robustness of PTA
methods for large-scale circuits.

E. Ablation Experiments
In this section, ablation experiments for online stochastic

stepping policy, value splitting and online momental scaling
are conducted to verify their effectiveness for improving PTA
convergence performance, respectively.

First, Table VI presents the comparison results of the
proposed OSSP with and without the value splitting, which can

better approximate the state value and more quickly identify
the correct action during policy evaluation. From this table,
the NR iterations of test circuits can be effectively decreased
by an average of 1.49 times (3.67X in maximum).

TABLE VI
PERFORMANCE COMPARISONS UNDER PROPOSED STEPPING POLICY WITH

AND WITHOUT THE VALUE SPLITTING

Circuits
OSSP OSSP (non-value) Speedup

step iter step iter iter

DIFFPAIR 16 93 24 107 1.15
jge 249 1517 316 2208 1.46
UA741 42 286 46 353 1.23
UA741PFBVIP 36 230 38 269 1.17
DCOSC 17 81 21 84 1.04
UA709 48 296 65 481 1.63
UA733 15 75 15 86 1.15
bjtff 23 106 28 163 1.54
pchip 39 230 45 323 1.40
mike2 24 89 24 116 1.30
bias 40 260 129 953 3.67
mosamp 21 108 30 173 1.60
add20 34 204 40 277 1.36
slowlatch 31 154 29 193 1.25
schmitfast 20 82 21 111 1.35

Average - - - - 1.49X

Second, the proposed online stochastic stepping policy and
conventional deterministic policy is compared in Table VII.
From the results on test circuits, the NR iterations can be
achieved 1.56 times acceleration in average by the proposed
online stochastic policy. More importantly, it can be seen that
the conventional deterministic policy fail to converge on six
“difficult” circuits, but the proposed online stochastic stepping
policy possesses stronger stepping space exploration ability
and still converges to dc solutions.

TABLE VII
PERFORMANCE COMPARISONS UNDER PROPOSED STEPPING METHOD

WITH ONLINE STOCHASTIC OR CONVENTIONAL DETERMINISTIC STEPPING
POLICY

Circuits
OSSP OSSP (non-stocha) Speedup

step iter step iter iter

DIFFPAIR 16 93 - - -
jge 249 1517 - - -
UA741 42 286 438 54 1.53
UA741PFBVIP 36 230 287 40 1.25
DCOSC 17 81 142 25 1.75
UA709 48 296 468 60 1.58
UA733 15 75 98 22 1.31
bjtff 23 106 184 29 1.74
pchip 39 230 - - -
mike2 24 89 - - -
bias 40 260 309 39 1.19
mosamp 21 108 199 27 1.84
add20 34 204 362 48 1.77
schmitfast 20 82 - - -
toronto 42 239 385 50 1.61
schmitslow 28 137 - - -
TRCKTorig 15 47 91 19 1.94

Average - - - - 1.56X

At last, the effectiveness of the proposed online momental
step scaling is verified in Table VIII. It can break through the

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3251731

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: China University of Petroleum. Downloaded on April 17,2023 at 07:14:19 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 2022 12

gain limitation from Eqs. (13) and (14) and online further ad-
justs the step size scaling by encodering the newly-experienced
size samples of the unseen test circuits. From this table, the
online momental step scaling can further speed up the NR
iterations by average 1.64X (5.41X in maximum) to enhance
the simulation efficiency.

TABLE VIII
PERFORMANCE COMPARISONS UNDER PROPOSED STEPPING METHOD

WITH AND WITHOUT ONLINE MOMENTAL STEP SCALING

Circuits
OSSP OSSP (non-scaling) Speedup

step iter step iter iter

DIFFPAIR 16 93 18 106 1.14
jge 249 1517 316 2208 1.46
UA741 42 286 57 448 1.57
UA741PFBVIP 36 230 51 367 1.60
DCOSC 17 81 15 83 1.02
UA709 48 296 49 398 1.34
UA733 15 75 17 80 1.07
bjtff 23 106 24 135 1.27
pchip 39 230 45 343 1.49
mike2 24 89 24 93 1.04
bias 40 260 167 1406 5.41
mosamp 21 108 27 181 1.68
add20 34 204 34 229 1.12
toronto 42 239 68 473 1.98
ring11 15 56 16 80 1.43

Average - - - - 1.64X

V. CONCLUSIONS

In this paper, we propose an online stochastic stepping
policy (OSSP) for PTA, which employs dual autonomous RL
agents to online adaptively adjust the forward and backward
step sizes of the unseen test circuits for accelerating PTA
convergence. To achieve better policy evaluation, we design a
continuous valuation splitting architecture with three streams
to produce separate estimates of the state value function and
advantage function. To deal with the circuit differences be-
tween offline training and online prediction, online momental
size scaling based on first and second moment estimates was
proposed to work with online stepping policy update for
further enhancing simulation efficiency. By evaluating OSSP
on some banchmark circuits, we demonstrate that the proposed
method is able to online further adjust the step size with strong
stepping space exploration ability and obtain remarkable PTA
convergence and simulation efficiency enhancement (up to
94.86X less PTA steps and 47.00X less NR iterations).

REFERENCES

[1] T. Nakura, “SPICE Simulation”, Essential Knowledge for Transistor-
Level LSI Circuit Design. Springer, Singapore, pp. 19-47, 2016.

[2] J. Zhao, Y. Wen, Y. Luo, Z. Jin, W. Liu, and Z. Zhou, “Sflu:
Synchronization-free sparse lu factorization for fast circuit simulation on
gpus,” in 2021 58th ACM/IEEE Design Automation Conference (DAC),
pp. 37–42, 2021.

[3] S. Uatrongjit, B. Kaewkham-Ai, and K.Prakobwaitayakitt, “Finding all dc
operating points of nonlinear circuits based on interval linearization and
coordinate transformation,” in 2022 International Electrical Engineering
Congress (iEECON), pp. 1–4, 2022.

[4] Y. Chen, H. Pei, X. Dong, Z. Jin, and C. Zhuo, “Application of deep
learning in back-end simulation: Challenges and opportunities,” in 2022
27th Asia and South Pacific Design Automation Conference (ASP-DAC),
pp. 641–646, 2022.

[5] I. N. Hajj, “Circuit theory in circuit simulation,” IEEE Circuits and
Systems Magazine, vol. 16, no. 2, pp. 6–10, 2016.

[6] K. S. Kundert and P. Gray, The Designer’s Guide to Spice and Spectre.
USA: Kluwer Academic Publishers, 1995.

[7] S. Hamedi-Hagh, Computational Electronic Circuits: Simulation and
Analysis with MATLAB®. Springer International Publishing, 2022.

[8] C. Lemke, “Pathways to solutions, fixed points, and equilibria (cb garcia
and wj zangwill),” SIAM Review, pp. 445–446, 1984.

[9] D. Niu, K. Sako, G. Hu, and Y. Inoue, “A globally convergent nonlinear
homotopy method for mos transistor circuits,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
vol. 95, no. 12, pp. 2251–2260, 2012.

[10] E. Yilmaz and M. M. Green, “Some standard spice dc algorithms
revisited: Why does spice still not converge?,” in 1999 IEEE International
Symposium on Circuits and Systems (ISCAS), vol. 6, pp. 286–289, IEEE,
1999.

[11] M. Bhattacharya and P. Mazumder, “Augmentation of spice for simula-
tion of circuits containing resonant tunneling diodes,”IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 20,
no. 1, pp. 39–50, 2001.

[12] E. J. W. ter Maten, T. G. Beelen, A. de Vries, and M. van Beurden, “Ro-
bust time-domain source stepping for dc-solution of circuit equations,” in
Scientific Computing in Electrical Engineering (SCEE 2012), September
11-14, 2012, Zurich, Switzerland, pp. 39–40, 2012.

[13] T. Najibi, “Continuation methods as applied to circuit simulation,” IEEE
Circuits and Devices Magazine, vol. 5, no. 5, pp. 48–49, 1989.

[14] L. T. Watson, “Globally convergent homotopy methods: a tutorial,”
Applied Mathematics and Computation, vol. 31, pp. 369–396, 1989.

[15] Y. INOUE, S. KUSANOBU, K. YAMAMURA, and M. ANDO, “An ini-
tial solution algorithm for globally convergent homotopy methods,” IEICE
TRANSACTIONS on Fundamentals of Electronics, Communications and
Computer Sciences, vol. 87, no. 4, pp. 780–786, 2004.

[16] R. Wilton, “Supplementary algorithms for dc convergence (circuit anal-
ysis),” in IEE Colloquium on SPICE: Surviving Problems in Circuit
Evaluation, pp. 3–1, IET, 1993.

[17] H. Yu, Y. Inoue, Y. Matsuya, and Z. Huang, “An effective pseudo-
transient algorithm for finding dc solutions of nonlinear circuits,” IEICE
transactions on fundamentals of electronics, communications and com-
puter sciences, vol. 89, no. 10, pp. 2724–2731, 2006.

[18] J. Deng, K. Batselier, Y. Zhang, and N. Wong, “An efficient two-
level dc operating points finder for transistor circuits,” in 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, IEEE,
2014.

[19] Z. Jin, T. Feng, Y. Duan, X. Wu, M. Cheng, Z. Zhou, and W. Liu,
“Palbbd: A parallel arclength method using bordered block diagonal form
for dc analysis,” in Proceedings of the 2021 on Great Lakes Symposium
on VLSI, pp. 327–332, 2021.

[20] F. N. Najm, Circuit simulation. John Wiley Sons, 2010.
[21] W. Weeks, A. Jimenez, G. Mahoney, D. Mehta, H. Qassemzadeh,

and T. Scott, “Algorithms for astap–a network-analysis program,” IEEE
Transactions on Circuit Theory, vol. 20, no. 6, pp. 628–634, 1973.

[22] L. Goldgeisser, E. Christen, M. Vlach, and J. Langenwalter, “Open ended
dynamic ramping simulation of multi-discipline systems,” in ISCAS 2001.
The 2001 IEEE International Symposium on Circuits and Systems(Cat.
No. 01CH37196), vol. 5, pp. 307–310, IEEE, 2001.

[23] X. Wu, Z. Jin, D. Niu, and Y. Inoue, “A pta method using numerical
integration algorithms with artificial damping for solving nonlinear dc
circuits,” Nonlinear Theory and Its Applications, IEICE, vol. 5, no. 4,
pp. 512–522, 2014.

[24] Z. Jin, X. Wu, D. Niu, X. Guan, and Y. Inoue, “Effective ramping
algorithm and restart algorithm in the spice3 implementation for dpta
method,” Nonlinear Theory and Its Applications, IEICE, vol. 6, no. 4,
pp. 499–511, 2015.

[25] H. Yu, Y. Inoue, K. Sako, X. Hu, and Z. Huang, “An effective spice3
implementation of the compound element pseudo-transient algorithm,”
IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, vol. 90, no. 10, pp. 2124–2131, 2007.

[26] F. Dhiabi, M. L. Megherbi, A. Saadoune, R. Carotenuto, and F. Pezzi-
menti, “Pyams: A new software for modeling analog elements and circuit
simulations,” INTERNATIONAL JOURNAL, vol. 10, no. 4, pp. 233–242,
2021.

[27] S.-H. Manual, “Release 1999.2,” Avanti Corporation, 1999.
[28] K. S. Kundert and P. C. Gray, “The designer’s guide to spice and

spectre,” 1995.
[29] H. R. Pota, “Inside spice,” 2010.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3251731

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: China University of Petroleum. Downloaded on April 17,2023 at 07:14:19 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 2022 13

[30] Z. Jin, H. Pei, Y. Dong, X. Jin, X. Wu, W. W. Xing, and D. Niu, “Ac-
celerating nonlinear dc circuit simulation with reinforcement learning,”
in Proceedings of the 59th ACM/IEEE Design Automation Conference,
pp. 619–624, 2022.

[31] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[32] V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J.
Pineau, “An introduction to deep reinforcement learning,” arXiv preprint
arXiv:1811.12560, 2018.

[33] A. Hosny, S. Hashemi, M. Shalan, and S. Reda, “Drills: Deep reinforce-
ment learning for logic synthesis,” in 2020 25th Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 581–586, IEEE, 2020.

[34] H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, H.-S. Lee, and S. Han,
“Gcn-rl circuit designer: Transferable transistor sizing with graph neural
networks and reinforcement learning,” in 2020 57th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6, IEEE, 2020

[35] J. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Exponential recency
weighted average branching heuristic for sat solvers,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 30, 2016.

[36] R. Bellman, “A markovian decision process,” Journal of mathematics
and mechanics, pp. 679–684, 1957.

[37] C.-W. Ho, A. Ruehli, and P. Brennan, “The modified nodal approach to
network analysis,” IEEE Transactions on circuits and systems, vol. 22,
no. 6, pp. 504–509, 1975.

[38] D. Niu, X. Wu, Z. Jin, and Y. Inoue, “An effective and globally conver-
gent newton fixed-point homotopy method for mos transistor circuits,”
IEICE TRANSACTIONS on Fundamentals of Electronics, Communica-
tions and Computer Sciences, vol. 96, no. 9, pp. 1848–1856, 2013.

[39] X. Wu, Z. Jin, D. Niu, and Y. Inoue, “An adaptive time-step control
method in damped pseudo-transient analysis for solving nonlinear dc
circuit equations,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. 100, no. 2, pp. 619–628,
2017.

[40] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V.
Kumar, H. Zhu, A. Gupta, P. Abbeel, et al., “Soft actor-critic algorithms
and applications,” arXiv preprint arXiv:1812.05905, 2018.

[41] M. E. Harmon, L. Baird, and A. H. Klopf, “Advantage updating
applied to a differential game,” Advances in neural information processing
systems, vol. 7, 1994.

[42] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[43] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et
al., “Human-level control through deep reinforcement learning,” nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[44] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Computer Science, 2014.

[45] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” 2015. cite arxiv:1511.05952, Comment: Published at ICLR 2016.

[46] J. Barby and R. Guindi, “Circuitsim93: A circuit simulator benchmark-
ing methodology case study,” in Sixth Annual IEEE International ASIC
Conference and Exhibit, pp. 531–535, IEEE, 1993.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3251731

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: China University of Petroleum. Downloaded on April 17,2023 at 07:14:19 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Preliminary
	PTA Method
	Time-Step Control Methods

	Proposed Online Stochastic Stepping policy
	Overview
	Our RL stepping settings
	Proposed Valuation Splitting Architecture
	Online Adaptive and momental step scaling
	Public Sample Buffer and Priority Sampling

	Experiments and results
	Experimental Environment and Offline Pre-training
	Simulation Efficiency Comparisons
	PTA Convergence Comparisons
	Performance Comparisons at Different Pseudo Capacitors
	Ablation Experiments

	Conclusions
	References

