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Abstract—Tensor completion is a prevailing method for pre-
dicting the unobserved or missing data in incomplete tensors.
In many real-world scenarios, incomplete tensors can grow in
multiple modes with streaming fashion. Such tensors are generally
transformed into a dynamically changing tensor sequence known
as Multi-Aspect Streaming Tensor (MAST) sequence. However,
existing optimization techniques for a single static tensor comple-
tion cannot scale well to large streaming tensor sequences with
dynamically growing properties. In this paper, we develop an
efficient streaming tensor completion library cuSTC on multiple
graphics processing units (GPUs). cuSTC adopts a novel TB-COO
storage format with tiling and bit mapping data structure. In
addition, cuSTC implements a two-level tensor partition scheme
to accelerate the prevalent dynamic alternating least squares
(ALS) algorithm for MAST sequence. Finally, cuSTC designs
a warp-level reduction scheme to reduce atomic operations in
tensor decomposition. We compare cuSTC with SPLATT tensor
completion library and achieve 48.69×, 24.22×, 4.54×, 3.58×,
12.26× performance speedup on five real-world datasets.

Index Terms—Streaming Tensor Completion, Multiple GPUs,
Performance Optimization

I. INTRODUCTION

Tensors can represent multi-way real-world data and are

widely applied in domains including telecommunications,

computer vision, and recommendation systems. Among those

applications, numerous primitive tensors are being partially

observed, and it is essential to utilize observed entries to

impute the missing ones, such as image in-painting and pref-

erence prediction. The growing demands on the performance

of the above applications drive the research on optimization

techniques for tensor completion.
Beyond the traditional tensor completion for a single static

tensor, due to the prosperity of online information systems,

real-world high-dimensional data often changes dynamically,

denoted as the tensor sequence. Tensor sequences can be

divided into two categories depending on whether there are de-

pendencies among the tensors in sequence. This paper focuses

on streaming tensor completion for Multi-Aspect Streaming

Tensor (MAST) sequence [1], where the tensors in sequence

grow in multiple modes with dependency. Furthermore, since

the tensor slices in MAST sequence share common data, a new

dynamic algorithm can leverage the former completion results

to improve the performance without deteriorating accuracy [2].
Due to the increasing demand for computational perfor-

mance from various fields, research works have been devoted

to accelerating decomposition-based tensor completion for

both static and dynamic tensors over the past few years. A

mode-agnostic sparse tensor bit encoding format for multicore

CPUs has been designed by Helal et al. [3]. Smith et al. [4]

extend static tensor decomposition algorithm to many-core

processors, such as Intel Knights Landing. Due to the massive

parallelism capability, Graphical Processing Units (GPUs) have

gained popularity in optimizing numerical algorithms and have

become a profitable candidate for improving the performance

of MAST completion algorithm, which the existing studies

have not explored. However, several challenges need to be

addressed to achieve efficient streaming tensor completion

for MAST sequence on multiple GPUs. Firstly, unpredictable

sparsity patterns in the tensor sequence when updating factor

matrices exacerbate cache thrashing and memory bandwidth

contention. Secondly, the expensive computational Matricized-

Tensor Times Khatri-Rao Product (MTTKRP) for sparse ten-

sors becomes a bottleneck for streaming tensor completion.

Finally, a sophisticated partition strategy is needed to mitigate

load imbalance when scaling to multiple GPUs.

To address the above challenges, we propose a library cuSTC
to exploit the performance potential of GPUs. And To our

knowledge, this is the first work to establish an efficient

streaming tensor completion library on multiple GPUs. Specif-

ically, This paper makes the following contributions:

• We improve the performance of widely applied algorithms

in tensor completion for multi-aspect streaming tensor

sequence, leveraging the advantage of TB-COO storage

format and unique characteristics of GPU.

• We design a partition mechanism for large tensor slices in

the tensor sequence on multiple GPUs and implement a

warp-level reduction scheme to reduce atomic operations

in tensor decomposition, which can effectively improve

the performance of streaming tensor completion.

• We develop the first streaming tensor completion li-

brary cuSTC on multiple GPUs and evaluate it on

real-world datasets. The experiment results demonstrate

cuSTC achieves performance speedup compared to the

SOTA libraries and good scalability on multiple GPUs.

II. BACKGROUND

A. Notations and Preliminaries

First, we will introduce the preliminaries for the key sym-

bols to formulate the tensor completion, which are listed in
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Fig. 1: The illustration of dynamic tensor decomposition in MAST.

Table I. To preserve the clarity and brevity of this article, we

will concentrate on the three-dimensional tensor and mode-1

operations. After that, the scheme for higher dimensions and

other modes can be easily derived.

TABLE I: Key symbols and operations.

Notation Definition
X A multi-dimensional tensor

Xi,j,k An element at (i, j, k) of X
{X (T )} A sequence of multi-dimensional tensors X (1),...,X (T ),...

A A two-dimensional matrix

Ai,j An element at (i, j) of A
{A,B} Concatenate matrice A and B along the first dimension

� The symbol for Kronecker product

� The symbol for Hadamard product

�·� The symbol for Kruskal operator, e.g, X ≈ �A,B,C�
‖A‖∗ The symbol for nuclear norm of A

B. Multi-aspect Streaming Tensor Completion

Decomposition-based tensor completion utilizes Canonical

polyadic decomposition(CPD), a generalization of Singular

Value Decomposition and decomposes a tensor X with rank

F into the summation of F rank-one matrixes. Based on the

partitioning property of CPD algorithm, the completion of

the tensor sequence can utilize the factor matrices generated

previously. As illustrated in Figure 1, in the MAST sequence

{X (T )}, the tensor X (T ) at time T is the subset of the tensor

X (T+1) at time T + 1. The completion of X (T+1) can utilize

the factor matrices that approximate the preceding tensor X (T )

to reduce the computation. And then, the completion problem

on X (T+1) can be converted to impute the missing entries of

the relative complement of X (T ) within X (T+1).

Dynamic Low-Rank Tensor Completion (LRTC): The

MAST completion can be regarded as a dynamic LRTC

problem and transferred to a rank-minimization problem [2].

To solve this NP-hard rank minimization problem, tensor rank

can be relaxed by summing the nuclear norms of the factor

matrices, as described in Equation 1, where X indicates the

complete tensor, Ω is a binary tensor to mark which entries of

X are observed, and T indicates the observed entries of X [2].

The Gaussian loss function
∥∥∥X − X̂

∥∥∥ is denoted as L. Then,

the MAST completion problem can be modeled as Equation 2,

where X̂ (0) indicates the completed tensor previous step and

the factor matrix A = {A(0),A(1)}.

min
X ,A,B,C

∥∥∥X − X̂
∥∥∥+ α1 ‖A‖∗ + α2 ‖B‖∗ + α3 ‖C‖∗ ,

s.t. X � Ω = T , X̂ = �A,B,C�.
(1)

min
X ,A,B,C

∑

(i1,i2,i3)∈Θ

∥∥∥X − �A(i1), B(i2), C(i3)�
∥∥∥+ α1 ‖A‖∗

+α2 ‖B‖∗ + α3 ‖C‖∗ + λ(X̂ (0) − �A(0),B(0),C(0)�)

s.t. Θ = {0, 1}3 \ {0, 0, 0}.
(2)

Dynamic Alternating Least Squares (ALS): As illustrated

in Figure 1, the tensor X (T+1) ∈ R
(I1+d1)×(I2+d2)×(I3+d3)

is partitioned into eight sub-tensors, and X 0,0,0 = X (T ) ∈
R

I1×I2×I3 . With the partition property of CPD algorithm, the

sub-matrices of A, B, and C can be leveraged to approximate

the sub-tensors. Therefore, the loss
∥∥∥X − X̂

∥∥∥ can be rewritten

as the summation of loss of sub-tensors as Equation 2. Based

on new loss function, the factor matrices in ALS algorithm

are updated as Equation 3 and Equation 4, where Ã, B̃
and C̃ are the results of X (T ) and μ is the forgetting

factor. By replacing X (0,0,0) with the factor matrix updated

in previous step, the term X (0,0,0)(C0 � B0) is substituted

by μÃ(C̃TC � B̃TB) which leads to the reduction of time

complexity from O(RI1I2I3) to O(R2(I1 + I2 + I3)). After

updating the factor matrix of all tensor modes, the missing

value of observed tensor T can be completed as Equation 5.

A(0) ←
μÃ(C̃TC0 � B̃TB0) +

∑
(j,k) �=(0,0)

X (0,j,k)
(1) (Ck �Bj)

(
∑1

k=0C
T
kCk)� (

∑1
k=0B

T
kBk)

(3)

A(1) ←
∑

∀(j,k) X
(1,j,k)
(1) (Ck �Bj)

(
∑1

k=0C
T
kCk)� (

∑1
k=0B

T
kBk)

(4)

X ← T +ΩC � �A, B, C� (5)

C. Sparse Tensor Storage Format

The sparse tensor storage formats can exploit sparse attribute

of tensors and play a role in optimizing tensor algorithms by

reducing memory consumption and random memory access.
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The sparse formats can be divided into two categories: COO-

based and CSF-based. As the recursive CPD algorithm with

the tree-like CSF format [5] does not fit in GPU architec-

ture [6], we only explain the COO-based formats. COO is the

most intuitive format where the indices and values are stored

straightly. However, when performing the ALS algorithm to

update A, the factor matrices of other modes are involved

in the calculation. To leverage the phenomenon described

above, F-COO [6] compressed the mode-1 indices of non-zero

elements to two flag arrays: the start flag (sf ) and bit flag

(bf ). However, retrieving the mode-1 indices from data in F-

COO format when updating the factor matrix of other modes

leads to performance degradation. In this paper, we utilize a

novel tensor storage format TB-COO (Section III-A) for tensor

completion on multiple GPUs.

III. METHODOLOGY

In this section, we begin with describing the data structure

and relevant operation of TB-COO sparse storage format.

Then, by exploiting TB-COO format, we develop the optimiza-

tion methodology with implementation details for dynamic

tensor completion algorithms of the MAST sequence.

A. TB-COO Sparse Storage Format

Figure 2 demonstrates the data structure of COO sparse

format and TB-COO sparse format. To optimize the memory

consumption and memory access on GPU architecture, TB-

COO leverages a bit encoding scheme and a tiling scheme.

There are two arrays in TB-COO, named directory and entry.

In TB-COO format, the non-zero values in COO format are

sorted by mode-1 indices and stored linearly in array entry. The

elements in entry are partitioned at length T. Meanwhile, to

retrieve the mode-1 indices efficiently, there are three elements

at the head of each entry, where the first element sp and

the second element lp record the index of data in directory
acting as pointers. The third element is the bitmap which

indicates the variance of mode-1 indices. If mode-1 index

of ith non-zero value is different from (i − 1)th non-zero

value, the ith bit in bitmap is 0, and vice versa. With the

bitmap, the pointer to mode-1 indices for non-zero elements

can be easily computed through bit operation, thereby reduc-

ing global memory access compared to the traditional COO

format. Considering a sparse tensor with m different mode-1

index and nnz non-zero values, the memory footprint in COO

format requires 4nnz number of memory. In contrast, TB-

COO format requires 3(nnz + nnz
T ) +m number of memory.

Since m � nnz, TB-COO can decrease memory storage

significantly. Compared to the tree-based CSF format, TB-

COO can better fit GPU architecture because TB-COO does

not rely on recursive algorithms for the MTTKRP routine, and

its tiles are more friendly for GPU threads.

B. Optimizing Multi-Aspect Streaming Tensor Completion

We optimize the dynamic ALS algorithm for multi-aspect

streaming tensor completion. There are several differences in

the dynamic ALS algorithm between MAST sequences and the

Fig. 2: A sparse tensor stored in COO and TB-COO formats.

static pattern for independent tensor sequences. First, only the

incremental part relative to the tensor in the previous time

step needs to be processed in the MTTKRP routine. After

that, an efficient filter is necessary to filter the incremental

elements and convert COO storage format to TB-COO format.

The processing logic of computing dynamic ALS algorithm for

the MAST sequence is illustrated in Algorithm 1.

Algorithm 1: Dynamic ALS algorithm

Input: Previous factor matrix Ã B̃ C̃, Previous tensor mode

pmode, Tensor X , Tile size T , Rank R, Warp size W

Output: Updated factor matrix A B C

1 Xinc = filte and convert(X , pmode);

2 repeat
3 for i = 1 to n do

/* Randomly select a mode from modes

which not updated(example mode-1) */

4 H = (CTC) � (BTB);

5 M = MTTKRP (Xinc,B,C, T, R,W );

6 T = Ã�(C̃TC0) � (B̃TB0)�;

7 Solve Â = {T,M} H†

8 update A0 via Equation 3;

9 update A1 via Equation 4;

10 A = {A0, A1};

11 until convergence or reaching maximum number of iterations;

12 Function MTTKRP(X , B, C, T,R,W):
13 for each thread do
14 laneid = threadid mod W ;

15 warpid = threadid / W ;

16 mask = get warpmask(warpid);

17 sp, lp, bitmap = get tile attr(X , warpid, laneid);

18 i = get i index(X .directory, sp, lp, bitmap, laneid)

19 j, k, v = get data(X .entry, T, warpid, laneid);

20 for m = 0 to R do
21 buffer�m� = C�c ∗R+m� ∗ C�b ∗R+m�;

22 for n = 0 to R do
23 tmp = v ∗ buffer�m�;

24 warp reduce(M, i, laneid, tmp, bitmap,mask);

25 return M ;

Before performing multiple-GPU dynamic ALS to decom-

pose the latest tensor in tensor sequence, the tensor modes in

the previous step are exploited to extract the elements that do
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not appear in the original tensor (line 1). After the incremental

part Xinc relative to the previous tensor is filtered, it is split

and the storage format is converted. The sparse part in COO

format is divided evenly into segments, and the elements in

each segment are stored in TB-COO format. Then, each GPU

updates the factor matrices with its assigned segment according

to the dynamic ALS algorithm. The host device records a range

of tensor segments on each GPU and controls the reduction

of factor matrices via the AllReduce primitive provided by

NVIDIA Collective Communications Library (NCCL).

When processing the separate segments on the GPUs, we

perform the second level of the splitting scheme with TB-COO

format. One entry in TB-COO storage is a tile assigned to the

warp and the entry length T is no more than the warp size.

If the number of non-zero elements in the separate segment is

indivisible by T, some idle threads in the last warp are ignored

by the warpmask stored in shared memory. The tiling scheme

increases data reuse and reduces global memory accesses in

the Hadamard routine (line 4) and MTTKRP routine (line

5). In MAST, dynamic ALS can utilize the hardmard and

matrix multiple results of the factor matrix to substitute the

computation of MTTKRP(line 6) for mode-N sparse tensor,

which reduces the time complexity from O(NR(nnz(X )))
to O(R2(I1 + ... + IN )) and (I1 + ... + IN ) � nnz(X ).
Further, we leverage the warp shuffle mechanism to optimize

the reduction operation in MTTKRP and Hadamard routines.

Each thread first generates the mask for active threads in warp

(line 16) and then obtains indices and values from sparse tensor

stored in TB-COO (line 17∼19). The intermediate results of

MTTKRP are calculated and stored in the shared memory(line

20∼21). After the active threads complete the calculation of

intermediate results, they conduct the warp-level reduction via

warp reduce (line 24) and write result to global memory,

which reduces the atomic operations.

Fig. 3: The illustration of warp-level reduction for optimizing

result reduction in MTTKRP and Hadamard routines on GPU.

The warp-level reduction scheme is illustrated in Figure 3.

We generate signal variable sign via the bit operation on

bitmap to take control of two-stage warp-level reduction. In

each stage, the thread with laneid i receives the intermediate

data from the thread with laneid i + 1. The original data in

laneid i is discarded if the sign in laneid i is 1. The received

data in laneid i is accumulated if the sign in laneid i+1 is 1.

After two stages, the summation in the thread with sign = 1
is accumulated to the final result in the global memory.

An iteration of the dynamic ALS algorithm generally up-

dates the factor matrices corresponding to each mode in

sequence order (1, 2, 3, ...), where the optimization process

is settled after the factor matrices are initialized. To avoid

this situation, we adopt the randomization scheme proposed

in [7] accelerate convergence. Therefore, at each step of the

iterative loop, we randomly select an unmodified factor matrix

and conduct the update operation.

IV. EVALUATION

A. Experiment Setup

1) Datasets: For a comprehensive evaluation, we work with

publicly available real-world datasets, including YELP [8],

MovieLens [9], DARPA [10], Nell-1 and Nell-2 [11]. Table III

shows the dataset details in terms of total dimensions, initial

dimensions, increasing step, and sparsity. Initial dimensions

indicate the size of the first tensor in the tensor sequence.

Increasing step is set to simulate the scenario where real-world

tensors grow and generate tensor sequences of five tensors for

each dataset. Sparsity is calculated as
nnz(X )

Total Dimensions .

2) Streaming Tensor Completion Libraries: To our knowl-

edge, no public streaming tensor completion libraries are

implemented on GPU. Moreover, we only found one public

framework named SIITA [1] implemented in MATLAB. For

a comprehensive comparison, we extend the state-of-the-art

CSF-based library SPLATT [7] by separating the streaming

process into several static tensor completion epochs. We also

implement a COO-based streaming tensor completion library

COO-GPU with the optimization that adopts the tiling strategy

with shared memory. The execution time is taken from the

average runtime of each iteration loop in seconds, and The

convergence of tensor decomposition is measured by Root

Mean Square Error (RMSE).

3) Hardware and Software Platforms: We conduct the ex-

periments on a Linux server with two sockets, Intel Xeon Gold

6230R CPUs and two Nvidia Tesla V100 GPUs. The hardware

and software specifications are presented in Table IV. The

Intel MKL and OpenMP are utilized to parallelize all tensor

completion libraries on CPUs, whereas the Nvidia cuSOLVER

executes linear algebra routines on GPUs. To further evaluate

the scalability of cuSTC, we conduct more experiments on

another server with Intel Gold 6240R CPUs and eight Nvidia

V100 GPUs connected via NVLink.

B. Performance Analysis

The performance comparison of cuSTC, SIITA and COO-
GPU is shown in Table II, where SPLATT is selected as the

baseline. The symbol ∅ indicates failing to converge within 10

hours, symbol − indicates the invalid speedup due to failing

to converge, and symbol ∞ indicates failing to converge with

RMSE metric. For the tensor corresponding to each epoch in

the tensor sequence, cuSTC achieves performance acceleration

for whole datasets on both single GPU and multiple GPUs. The
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TABLE II: The performance comparison of cuSTC, SPLATT, SIITA and COO-GPU.

1-
Dataset

2-
epoch

SPLATT SIITA COO-GPU cuSTC Single GPU cuSTC Multiple GPUs
3-

Time
4-

Speedup
5-

RMSE
6-

Time
7-

Speedup
8-

RMSE
9-

Time
10-

Speedup
11-

RMSE
12-

Time
13-

Speedup
14-

RMSE
15-

Time
16-

Speedup
17-

RMSE

YELP

1 0.074 1.00 3.95 192.68 7.27E-4 6.00E+04 0.0050 14.80 4.00 0.0025 29.60 4.00 0.0018 41.11 4.00
2 0.13 1.00 3.93 1132.60 1.94E-4 ∞ 0.0090 14.00 4.00 0.0025 50.40 4.00 0.0025 50.40 4.00
3 0.17 1.00 3.96 2799.69 9.64E-4 ∞ 0.012 13.83 4.01 0.0031 53.55 4.01 0.0026 63.85 4.01
4 0.21 1.00 3.95 ∅ − ∞ 0.015 13.80 4.03 0.0037 55.95 4.03 0.0036 57.50 4.03
5 0.23 1.00 3.95 ∅ − ∞ 0.017 13.65 4.03 0.0043 53.95 4.03 0.0037 62.70 4.03

Movie
Lens

1 0.046 1.00 3.74 263.44 1.10E-3 1.00E+05 0.09 0.51 3.68 0.017 2.71 3.68 0.0086 5.35 3.72
2 0.087 1.00 3.72 2123.38 1.93E-4 ∞ 0.12 0.76 3.65 0.0047 18.51 3.71 0.0033 26.36 3.66
3 0.11 1.00 3.74 ∅ − ∞ 0.017 0.64 3.67 0.0049 22.24 3.67 0.0036 30.28 3.67
4 0.14 1.00 3.72 ∅ − ∞ 0.19 0.74 3.68 0.0039 36.41 3.68 0.0039 36.41 3.68
5 0.16 1.00 3.70 ∅ − ∞ 0.23 0.71 3.69 0.004 41.25 3.7 0.0038 43.42 3.72

DARPA

1 0.58 1.00 1.20 ∅ − ∞ 0.46 1.25 1.20 0.21 5.27 1.2 0.13 4.46 1.20
2 1.30 1.00 1.16 ∅ − ∞ 1.10 1.18 1.16 0.41 3.71 1.16 0.32 4.06 1.16
3 1.82 1.00 1.13 ∅ − ∞ 3.29 0.66 1.13 0.49 5.71 1.13 0.43 5.05 1.13
4 2.63 1.00 1.13 ∅ − ∞ 8.48 0.31 1.12 0.69 3.81 1.13 0.55 4.78 1.13
5 3.44 1.00 1.12 ∅ − ∞ 13.53 0.24 1.12 0.77 4.21 1.12 0.85 3.81 1.12

Nell-1

1 1.34 1.00 22.27 ∅ − ∞ 1.49 0.90 35.30 0.43 4.47 35.30 0.29 7.05 35.30
2 1.73 1.00 15.27 ∅ − ∞ 3.83 0.45 10.40 0.56 3.09 10.40 0.37 4.68 10.40
3 2.60 1.00 14.68 ∅ − ∞ 7.97 0.33 14.60 0.79 3.29 14.50 0.53 4.91 14.60
4 3.52 1.00 13.06 ∅ − ∞ 12.38 0.28 15.10 1.01 3.49 15.10 0.68 5.18 15.10
5 4.49 1.00 15.17 ∅ − ∞ 15.42 0.29 14.90 1.27 3.54 14.90 0.79 5.68 14.90

Nell-2

1 0.11 1.00 29.45 132.38 8.48E-4 ∞ 0.15 0.74 87.70 0.019 5.79 87.40 0.011 10.00 87.60
2 0.21 1.00 73.02 2346.33 8.77E-5 ∞ 0.59 0.36 73.40 0.021 10.00 73.40 0.014 15.00 73.40
3 0.32 1.00 68.18 ∅ − ∞ 1.27 0.25 49.40 0.024 13.33 49.40 0.018 17.78 49.60
4 0.45 1.00 58.53 ∅ − ∞ 2.30 0.20 83.29 0.033 13.64 83.20 0.021 21.43 83.20
5 0.63 1.00 76.34 ∅ − ∞ 3.97 0.16 65.00 0.034 18.53 65.00 0.023 27.39 65.10

(a) YELP (b) MovieLens (c) DARPA (d) Nell-1 (e) Nell-2

Fig. 4: The variations rate of time consumption for cuSTC, SPLATT and COO-GPU. This figure represents the variation of the

time consumption in the current epoch tensor relative to the time consumption of completing the previous epoch tensor.

TABLE III: Tensor datasets used for evaluation.

Datasets Total
Dimensions

Initial
Dimensions

Increasing
Step Sparity

YELP 71K×16K×108 11K×4K×104 15K, 3K, 4 2.72E-6

MovieLens 72K×11K×157 32K×3K×154 10K, 2K, 3 8.04E-5

DARPA 22K×22K×24M 2K×22K×4M 5K, 13, 5M 2.41E-9

Nell-1 3M×2M×25M 3M×400K×5M 1, 400K, 4M 9.6E-13

Nell-2 12K×9K×29K 2K×9K×9K 2K, 1, 5K 2.46E-5

TABLE IV: Hardware and software specifications.

Intel Xeon Gold 6230R Nvidia Tesla V100

Microarchitecture Broadwell Volta

Frequency 2.1GHz 1.23GHz

Memory Size 384 GB 32 GB

FP64 Performance 873.6 GFLOPS 7.066 TFLOPS

Compiler Intel Compiler 21.1.1 CUDA 10.2

highest speedup evaluated in each tensor dataset is bolded in

Table II. Overall, cuSTC achieves the best performance among

all tensor completion libraries while achieving similar or even

better RMSE over the baseline.

Compared to SPLATT, cuSTC achieves the speedups of

48.69×, 24.22×, 4.54×, 3.58×, 12.26× on YELP, Movie-

Lens, DARPA, Nell-1, Nell-2 datasets, respectively. Column

13 shows the detailed speedups of each epoch. Meanwhile,

COO-GPU with a single GPU achieves 14.01×, 0.67×, 0.73×,

0.45×, 0.34× speedups over SPLATT. SPLATT with CSF

format gains notable performance on CPU platform, even

outperforming COO-GPU with COO format on most tensors.

cuSTC outperforms COO-GPU and SPLATT benefiting from

the two-level tensor partition scheme and GPU warp reduction

optimization. The tensor partition scheme cooperates with the

TB-COO format, generating bitmaps for warp reduction opti-

mization. When handling large-size tensors, the performance

of SIITA lags behind other libraries by several orders of

magnitude. In addition, SIITA fails to converge after the same

order of iterations. Therefore, we only compare cuSTC with

COO-GPU and SPLATT in the following.

The time consumption variation comparison for tensor com-

pletion libraries is shown in Figure 4. It can be observed

that the variation rate of cuSTC is less than SPLATT and

COO-GPU during the almost whole completion process for all

datasets. The reason is that cuSTC utilizes the factor matrices

generated in the previous epoch to substitute the MTTKRP

calculation on the tensor subset in processing. In addition,

there are negative values of variation rate at the first time of

cuSTC. This is because cuSTC conducts MTTKRP calculation
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for the whole tensor at the first time and conducts dynamic

ALS algorithm in the subsequent time steps. The variation

of SPLATT and COO-GPU decreases due to the higher base

time consumption as the tensor dimension increases. However,

SPLATT and COO-GPU still obtain higher time consumption

than cuSTC in the current epoch (deduced by Table II).

C. Scalability Analysis

We evaluate cuSTC on a Linux server with eight Nvidia

V100 to demonstrate its strong scalability. Execution times

are recorded at the last epoch to measure speed changes

with increasing GPUs. We select the Nell-1 dataset and a

large dataset Yahoo [12] that contains 257 million non-zero

values. Meanwhile, we have experimented with other large

sparse tensor datasets, such as Amazon-T and Patents-T, but

their runtime data storage is unsuitable for eight GPUs. The

initial size setting for Yahoo dataset is 45K×113×61 and

the increasing step is 40K×5×10. As seen in Figure 5, The

speedup trend of Nell-1 slows down slightly as the number

of GPUs increases. This is due to the higher data transfer

cost and synchronization among GPUs. Despite this, cuSTC
achieves good scalability on both Nell-1 and Yahoo datasets.

Fig. 5: Strong scalability on Nell-1 and Yahoo dataset.

V. RELATED WORK

To accelerate Canonical Polyadic tensor decomposition

(CPD), various optimization techniques has been proposed.

Helal et al. [3] proposed a mode-agnostic compressed for-

mat called ALTO for storing tensors. This approach offers

better load balancing and locality while performing a sin-

gle MTTKRP on CPU. These studies proposed for tensor

decomposition have affected and promoted the advance of

tensor completion. Kurt et al [13] proposed a data movement-

aware MTTKRP algorithm for load-balanced parallel compu-

tation on multiprocessors CPU. Generalized from matrix cases,

various research have been proposed for optimizing tensor

completion. Smith et al. [7] implemented several optimization

algorithms for tensor completion on shared- and distributed-

memory architectures. However, these three algorithms are

only optimized for multicore CPUs. Song et al. [2] proposed

the first MAST completion framework, which can deal with the

all-mode-change tensor dynamics while imputing the missing

entries. Nimishakavi et al. [1] proposed an inductive frame-

work for incorporating side information along multiple modes

for tensor completion in multi-aspect streaming settings.

VI. CONCLUSION

In this paper, we develop the first streaming tensor comple-

tion library cuSTC on multiple GPUs with dynamic alternating

least squares optimization algorithm. cuSTC utilizes a novel

sparse tensor format TB-COO with tiling and bitmap data

structure. Besides, cuSTC designs a streaming tensor partition

scheme for improving load balance when scaling to multiple

GPUs. Based on TB-COO format, cuSTC implements a warp-

level reduction scheme to reduce atomic operations. The exper-

iment results demonstrate that cuSTC achieves up to 48.69×
speedup compared to the state-of-the-art tensor completion.

cuSTC also achieves good scalability when scaling to eight

Nvidia V100 GPUs on real-world datasets.
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