
StencilMART: Predicting Optimization Selection for
Stencil Computations across GPUs

Qingxiao Sun1,2, Yi Liu2, Hailong Yang1,2, Zhonghui Jiang2, Zhongzhi Luan2, Depei Qian2
State Key Laboratory of Software Development Environment1, Beijing, China, 100191

School of Computer Science and Engineering2, Beihang University, Beijing, China, 100191
{qingxiaosun,yi.liu,hailong.yang,jiangzhh,07680,depeiq}@buaa.edu.cn

Abstract—Stencil computations are widely used in high per-
formance computing (HPC) applications. Many HPC platforms
utilize the high computation capability of GPUs to accelerate
stencil computations. In recent years, stencils have become
more diverse in terms of stencil order, memory accesses and
computation patterns. To adapt diverse stencils to GPUs, a
variety of optimization techniques have been proposed such
as streaming and retiming. However, due to the diversity of
stencil patterns and GPU architectures, no single optimization
technique fits all stencils. Besides, it is challenging to choose
the most cost-efficient GPU for accelerating target stencils.
To address the above problems, we propose StencilMART, an
automatic optimization selection framework that predicts the
best optimization combination and execution time under a
certain parameter setting for stencils on GPUs. Specifically, the
StencilMART represents the stencil patterns as binary tensors
and neighboring features through tensor assignment and feature
extraction. In addition, the StencilMART implements various
machine learning methods such as classification and regression
that utilize stencil representation and hardware characteristics
for execution time prediction. The experiment results show that
the StencilMART can achieve accurate optimization selection and
performance prediction for various stencils across GPUs.

Index Terms—Stencil Computation, GPU, Optimization Strate-
gies, Performance Prediction, Machine Learning

I. INTRODUCTION

Stencil computation is one of the most adopted computation
patterns in scientific applications. Stencil computations appear
in many domains such as cellular automata [21], physical sim-
ulation [7] and image processing [16]. A stencil computation
sweeps a computation grid and processes the fixed neighbors
around each point to update its value, where the extent of the
neighbors along each dimension is referred to as the stencil
order. For instance, box-shape stencils are used to perform
smoothing and other neighbor-pixel-based computations in
image processing [17], [19].

In recent years, stencil computations have become more
diverse in terms of stencil order, data accesses and com-
puting patterns [10], [20]. The diverse stencils tend to have
abundant parallelism, which makes GPU a good candidate
for performance acceleration. However, due to the complexity
of GPU architecture, the programmers must ensure memory
coalescing, reduce thread divergence and trade off between
parallelism and resource utilization when optimizing stencils
on GPU. Many optimization techniques based on streaming
and tiling [9], [14] have been proposed to adapt to the high
computation capability and limited memory bandwidth of

GPU architecture. However, no single optimization technique
fits all stencils due to the diversity of stencil patterns.

Stencil domain-specific languages (DSLs) explore the au-
tomatic code generation with the integration of various opti-
mization techniques [12], [15], [17], [18]. Although the DSLs
are effective in improving stencil performance, it is difficult
to evaluate the performance impact of individual optimization
techniques within a particular optimization combination (OC).
In addition, stencil auto-tuning frameworks [8], [25] have
been proposed to determine the optimal parameter settings
for specific OCs. However, whether an OC can generate high
performant stencil code depends on the target stencil and
GPU architecture. Conducting a time-consuming parameter
search for sub-optimal OCs will significantly deteriorate the
effectiveness of auto-tuning mechanisms.

Performance prediction is often used to study the impact
of optimizations on stencil computation [6], [13]. Since no
actual execution is required, performance prediction can effi-
ciently reduce the search cost involved in stencil auto-tuning.
Furthermore, performance prediction across architectures can
help users decide the most cost-efficient GPU for accelerating
target stencils. The OC selection and performance prediction
can be naively considered machine learning problems such
as classification and regression. However, it is challenging to
extract the effective features representing stencil patterns and
GPU properties to solve the above problems. Even with the
features available, utilizing these features to accurately predict
stencil performance under OCs remains unresolved.

To address the above problems, we propose an automatic
optimization selection framework StencilMART, which can
predict the best OC for an input stencil running on a particular
GPU. Moreover, the StencilMART supports cross-architecture
performance prediction that obtains the execution time for
stencils without accessing the target GPU. The StencilMART
first generates random stencil programs that satisfy specific
stencil patterns with neighbor accesses. After that, the Sten-
cilMART transforms the stencil access patterns into binary
tensors and neighboring features. Finally, the StencilMART im-
plements the prediction model with various machine learning
methods, where the input includes stencil representation and
hardware characteristics. To the best of our knowledge, this is
the first work that targets the optimization selection and cross-
architecture performance prediction for stencil computation.

Specifically, this paper makes the following contributions:

875

2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPS53621.2022.00090

20
22

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 (I
PD

PS
) |

 9
78

-1
-6

65
4-

81
06

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
S5

36
21

.2
02

2.
00

09
0

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:05:22 UTC from IEEE Xplore. Restrictions apply.

• We comprehensively analyze the impact of optimization
selection on the stencil performance due to the diverse
access patterns and hardware characteristics. We also
discuss how cross-architecture performance prediction
can contribute to cost-efficient GPU selection.

• We propose a stencil transformation mechanism that
represents stencils as binary tensors and neighboring
features. In addition, we offer a random stencil generator
that outputs a variety of stencils that satisfy specific
stencil patterns with neighbor accesses.

• We design and implement machine learning-based clas-
sification and regression mechanisms for optimization
selection and performance prediction. The customized
mechanisms utilize stencil representation and GPU hard-
ware characteristics for accurate prediction.

• We develop an automatic optimization framework Sten-
cilMART that accurately predicts the best OC or the
performance under a specific parameter setting for sten-
cils across different GPUs. The experiment results show
that the StencilMART can achieve accurate optimization
selection and performance prediction for various stencils.

The rest of this paper is organized as follows: Section II and
Section III present the background and motivation. Section IV
presents the details of StencilMART design. Section V presents
the evaluation results of StencilMART. Section VI discusses
the related work, and Section VII concludes this paper.

II. BACKGROUND

A. GPU Architecture and Developing Trend

The NVIDIA GPU consists of dozens to hundreds of
Streaming Multiprocessors (SMs) depending on the GPU gen-
eration. The code executed on the GPU is called kernel. When
a kernel is launched on the CPU host, thousands of threads are
created on GPU and every 32 threads are grouped into a warp.
Multiple warps are further grouped into a thread block (TB),
and the size of a TB is determined by kernel configuration.
The TB scheduler dispatches TBs to SMs according to the
Round-Robin policy, which maximizes the GPU occupancy
under resource and hardware constraints.

In the meanwhile, we notice the changes in computing
resources among different NVIDIA GPU generations [26]. We
observe that the architecture development trend of GPUs is as
follows: 1) The number of SMs keeps growing. The latest Volta,
Turing and Ampere architectures are equipped with 80 SMs
(Volta V100), 72 SMs (Turing TU102) and 108 SMs (Ampere
A100), respectively. 2) The intra-SM resources remain almost
constant. The intra-SM resources include register file, shared
memory, L1 cache, and GPU cores. For memory-intensive
applications such as stencils, the GPU equipped with more
computing resources does not offer significant performance
benefits [25]. In this case, it is not worth purchasing or
renting the most powerful GPU available considering the cost
efficiency (i.e., performance per dollar).

B. Optimizations for Stencil Computation

Widespread attention has been attracted to accelerate stencil
computation on GPU due to its high computation capabil-
ity [9], [15], [19], [20]. We briefly discuss the optimizations
of stencil computation on GPUs (Table I).

TABLE I
THE OPTIMIZATIONS OF STENCIL COMPUTATION ON GPUS.

No. Optimzation Abbreviation Constraint

1 Streaming ST −
2 Block Merging BM Not valid when CM enabled.
3 Cyclic Merging CM Not valid when BM enabled.
4 Retiming RT Only valid when ST enabled.
5 Prefetching PR Only valid when ST enabled.
6 Temporal Blockling TB −

1) Streaming: Streaming is a commonly used optimization
that improves data reuse and reduces computation redun-
dancy along the streaming dimension. For 3-D input grids,
an effective implementation of streaming is 2.5-D spatial
blocking [15]. Specifically, the computation of 2-D tiles is
streamed over one dimension, and the data of each tile
is reused for updating the next tiles. However, given large
problem size, streaming increases computation granularity thus
limiting parallelism. To achieve better performance, concurrent
streaming [20] divides the streaming dimension into tiles,
where the TBs traverse the streaming dimension in parallel
at the granularity of tiles. Meanwhile, loop unrolling has been
applied to increase register-level data reuse.

2) Block/Cyclic Merging: Naively, each GPU thread works
on a single output point. Merging the computations of sev-
eral output points reduces the overhead of kernel launching
and eliminates duplicated memory accesses. Two strategies
have been proposed for merging computations such as block
merging and cyclic merging. For block merging, a number
of adjacent output points are merged. Whereas for cyclic
merging, every two points are merged with a fixed distance.
However, both strategies may increase the register pressure
and reduce the number of threads that resided on each SM,
thus hurting parallelism. Furthermore, block merging in the
innermost dimension of the global grid can disrupt memory
coalescing [8]. In general, the choice of merging strategy and
the number of points to merge can significantly impact the
stencil performance.

3) Prefetching: In streaming optimization, after updating
the output grid in the current iteration, the data located in
the shared memory is shifted to continue the computation for
the next iteration. Due to the concurrent execution of massive
threads on GPU, a synchronization barrier has to be performed
between adjacent iterations to ensure the correctness of the
results. The synchronization can cause serialization between
kernels and thereby deteriorate performance. Prefetching [20]
can hide the delay of synchronization by overlapping the
computation and data loading. Specifically, the data used for
the next iteration is loaded into registers simultaneously with

876

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:05:22 UTC from IEEE Xplore. Restrictions apply.

the computation of the current iteration. However, prefetching
may exhaust the registers that are quite limited on GPU.

4) Retiming: Retiming [22] improves data reuse by decom-
posing a stencil computation into a set of sub-computations
along with accumulations. Retiming can balance the resource
usage between memory and registers by homogenizing stencil
accesses [20]. In general, high-order stencils can benefit from
retiming optimizations due to the effective reuse of registers.
However, retiming may not improve the performance of sten-
cils with low register pressure.

5) Temporal Blocking: Even though stencil computation
has data dependency across time steps, the dependency range
of one point is limited by the stencil pattern and the number of
time steps elapsed since the point’s last update [15]. Temporal
blocking exploits the hidden temporal locality by fusing time
steps and avoiding global memory accesses. The dependency
along the time dimension is resolved by redundantly loading
from adjacent blocks. However, temporal blocking may incur
performance degradation for register-constrained stencils.

The above optimizations can be combined under certain
constraints (Table I) to improve performance further. However,
the optimization combination should be carefully selected to
suit the target stencil and hardware architecture.

C. Limitations of Stencil Auto-tuning Mechanisms

Due to the diversity of stencil patterns, any optimization
has to be fine-tuned to maximize its performance. Sten-
cil Domain-Specific Languages (DSLs) expose performance-
related parameters to auto-tuning mechanisms integrated into
their frameworks [17], [18], [20]. For instance, Halide [18]
applies stochastic search to find good pipeline schedules auto-
matically. Artemis [20] tunes the computation for high-impact
optimizations first and then selects a few high-performance
candidates. GoPipe [17] finds the best task granularity for
each stage of a pipelined box stencil (e.g., image convolu-
tion). Since the auto-tuning mechanisms are customized for
particular stencil DSLs, they have poor scalability to evaluate
more optimizations during parameter tuning.

To overcome the limitation, several works have considered
speeding up the auto-tuning performance of stencil compu-
tation [8], [25]. Garvey [8] groups optimization parameters
based on experience. After that, Garvey exhaustively searches
for the parameter settings of each group with random sam-
pling enabled. csTuner [25] leverages statistics and machine
learning methods to generate parameter groups and sampled
settings. Then, csTuner re-designs the genetic algorithm with
approximation to reduce the search time. As illustrated above,
the stencil auto-tuning mechanisms usually perform parameter
search for pre-specified optimizations or their combinations.
However, this does not indicate whether the optimization
combination is suitable for target stencils.

In addition to parameter auto-tuning, performance predic-
tion is utilized to study the impact of optimizations on stencil
computation [6], [13]. Martı́nez et al. [13] feeds the kernel
configurations and hardware counters to the support vector
machine (SVM) to predict the GFLOPS and execution time

of stencils. Cosenza et al. [6] utilized ordinal regression to
predict the performance ranking of stencil code variants and
the quality of the obtained ranking is evaluated by Kendall
coefficients. However, the above works are only implemented
on multi-core CPUs and do not take cross-architecture per-
formance predictions into account. Due to the high price of a
GPU, the users would ideally want to know its performance
on stencil computations before spending money to get access
to the GPU [27].

III. MOTIVATION

We make four main observations by comparing the per-
formance of optimization combinations (OCs), where any
combination of optimizations under the constraints (Table I) is
taken into consideration. The representative stencils we select
cover a variety of shapes (star, box and cross), orders (1-4)
and dimensions (2-D and 3-D). The input grids of 2-D and
3-D stencils are 81922 and 5123, respectively. We conduct
experiments on different NVIDIA GPU generations, including
2080 Ti, P100, V100 and A100 (Table III). For each OC, the
parameter setting with the shortest execution time is selected
to ensure the fairness of performance comparison.

A. Performance Gap among OCs

Since the insights on different GPU architectures are similar,
we only explain the performance results on V100. Figure 1
shows the performance gap between the worst OC and the
best OC for each stencil. Note that there are some cases where
OC crashes under certain stencils, which are not reflected in
the figure. For example, temporal blocking fails to be applied
for 3-D order-4 stencils without streaming enabled. This is
because streaming can effectively avoid intra-SM resource
spilling that may be caused by temporal blocking. As seen,
the performance gap among OCs is significant, where the best
OC achieves an average speedup of 9.95× over the worst
OC. In addition, for stencils of the same shape, a higher
dimension or order usually means a larger performance gap.
Therefore, the OC should be carefully selected to ensure
successful execution while improving performance, especially
for complex stencils. However, manual determining the high-
performance OCs requires considerable engineering efforts.
This motivates the mechanism for automatically selecting the
high-performance OCs for stencil computations.

B. Distribution of Best OCs for Stencils

Figure 2 shows the distribution of best OCs for stencils on
GPUs. The missing bars indicate that the OC does not achieve
the best performance for any stencil, such as temporal blocking
without streaming (i.e., TB, TB CM and TB BM) under
all architectures. As seen, the OCs with streaming perform
better for most stencils. This is because streaming improves
data reuse and reduces computation redundancy. Besides,
more optimizations are valid with streaming enabled such as
prefetching and retiming, which brings more opportunities for
performance improvement. It can also be observed that the
distribution of the best OCs is relatively even. This indicates

877

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:05:22 UTC from IEEE Xplore. Restrictions apply.

0

5

10

15

20

25

30

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Worst OC Best OC

Fig. 1. The performance of the best OC of each stencil normalized to its
worst OC on V100.

that the best OC changes across stencils, there is no single
OC fits for all. The reason is that the computation pattern
of stencils has a significant impact on the effectiveness of
optimizations. The above observation motivates us to predict
the best OC for stencils through machine learning methods.

0

2

4

6

8

10

of

 S
te

nc
ils

2080 Ti P100 V100 A100 Total

Fig. 2. Comparison of the number of stencils that each OC achieves the best
performance on GPUs.

C. Pairwise Correlation of OCs

We define that high correlation corresponds to the small
difference in performance achieved by pairwise OCs under the
same stencil. Further, this indicates that the effect of pairwise
OCs on stencil computation is similar. We use the Pearson
correlation coefficient (PCC) [4] to quantify the correlation
between pairwise OCs. The closer to 1 the absolute value of
PCC is, the stronger the correlation of the OC pair is. Figure 3
shows the value distribution of top-100 PCCs achieved by
pairwise OCs on GPUs. As seen, the value distribution of top-
100 PCCs is close, and the intersection of pairwise OCs under
all architectures accounts for 28% of the total. This indicates
that the influence of certain OCs on stencil computation is
general among architectures. Therefore, if the selection of the
best OC is analogous to a classification problem, the OC pairs
in the intersection can be grouped to reduce the classes to be
predicted. After that, we can select the OC that obtains the
best performance under more cases (Figure 2) from each OC
group as the prediction target.

D. Performance Comparison across Architectures

Figure 4 shows the performance comparison of various
GPU architectures normalized to 2080 Ti. The performance
of each stencil is taken from the best OC obtained on the
target architecture. As seen, the performance of stencils is not
proportional to the number of computing cores. For example,
the performance of cross2d1r on the desktop-class GPU
(2080 Ti) is even better than that on V100. In addition,
the most “powerful” GPU (A100) is not always the best
for stencil computations. For example, box3d3r and box3d4r
achieve the best performance on V100 instead of A100. More
importantly, cost-efficiency leads to selecting a different GPU
for stencil computation. Therefore, it is necessary to know
the performance of stencils on the destination GPU before
spending money to get access. This motivates us to scale the
execution time of stencil computations measured on one GPU
(origin GPU) to another (destination GPU).

IV. STENCILMART METHODOLOGY

A. Design Overview

In this section, we propose an automatic stencil optimization
selection framework StencilMART that can predict the best
optimization combination (OC) for stencil computation on
GPUs. Moreover, the StencilMART supports cross-architecture
performance prediction, which can obtain the execution time
for stencil computation without accessing the target GPU. As
shown in Figure 5, the StencilMART consists of four im-
portant components including random stencil generator (Sec-
tion IV-B), stencil representation (Section IV-C), classification
mechanisms for OC selection (Section IV-D) and regression
mechanisms for performance prediction (Section IV-E). The
random stencil generator outputs a variety of stencil programs
for training data collection. The stencil representation trans-
forms the access patterns of stencils into assigned tensors and
neighboring features. Machine learning-based classification
and regression mechanisms effectively determine the best OC
and predict the cross-architecture performance.

Figure 5 illustrates the holistic pipeline of StencilMART.
The access pattern of each generated stencil is transformed
into the sparse tensor and neighboring features through tensor
assignment and feature extraction. In addition, the performance
of each stencil input is profiled with different OCs on the
target GPU, and the OC with the best performance is labeled.
Specifically, the StencilMART randomly searches the parame-
ter settings under each OC and selects the shortest execution
time for performance comparison. Each parameter setting
and its corresponding execution time are also stored in the
stencil dataset for cross-architecture performance prediction.
The profiled dataset is used to train the classification or
regression model for OC selection or performance prediction
on the target GPU, respectively.

The StencilMART implements various mechanisms based
on both traditional machine learning (e.g., GBDT) and deep
learning (e.g., ConvMLP), where the users can select the best-
performing mechanism according to their own needs. Note

878

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:05:22 UTC from IEEE Xplore. Restrictions apply.

of OC

0
5

10
15

20

o
f O

C

0

5

10

15

20

0.994

0.995

0.996

0.997

0.998

0.999

1.000

2080 Ti

0.994

0.995

0.996

0.997

0.998

0.999

ab
s(

PC
C)

of OC

0
5

10
15

20

o
f O

C

0

5

10

15

20

0.990

0.992

0.994

0.996

0.998

1.000

P100

0.990

0.992

0.994

0.996

0.998

ab
s(

PC
C)

of OC

0
5

10
15

20

o
f O

C

0

5

10

15

20

0.9800
0.9825
0.9850
0.9875
0.9900
0.9925
0.9950
0.9975

V100

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

ab
s(

PC
C)

of OC

0
5

10
15

20

o
f O

C

0

5

10

15

20

0.990

0.992

0.994

0.996

0.998

1.000

A100

0.990

0.992

0.994

0.996

0.998

ab
s(

PC
C)

Fig. 3. The value distribution of top-100 PCCs achieved by pairwise OCs on GPUs.

0

2

4

6

8

10

12

14

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

2080 Ti P100 V100 A100

Fig. 4. The best performance of stencils under each GPU architecture
normalized to 2080 Ti.

that prediction of the best OC and the performance across
architectures exhibits as two different tasks, which do not
affect the accuracy of each other.

B. Random Stencil Generation

Inspired by [6], we represent the access pattern of a stencil
with any dimension or shape as a binary sparse tensor. Figure 6
shows an example of transforming a 2-D stencil with a
maximum order of 4 into a sparse tensor with a size of
9×9, where the neighbor points accessed and the central point
are assigned a value of 1. The higher dimensional stencils
can be analogized in the same way. From the above, we
consider sampling access points in the tensor space to generate
random stencils for model training. In this regard, the most
straightforward solution is to sample within the index range
of a fixed-sized tensor randomly. However, this solution does
not conform to the computation characteristic of stencils that
processes the neighbors of each point to update its value.

Algorithm 1 illustrates the process of random stencil genera-
tor that meets the computation pattern with neighbor accesses,
where the input is the stencil order and the output is a
list of neighbor points accessed by a stencil. Specifically,
we iteratively sample access points from low-order neighbors
to high-order neighbors. During each iteration, we randomly
sample the higher-order neighbors of the selected points in the
previous iteration (Lines 8-14). After that, we store the non-
redundant neighbor points in the list and advance to the next
iteration (Lines 16-17). The random stencils generated in this
way cover the popular stencil shapes (Figure 6) and conform
to the neighbor access patterns of stencil computation.

Algorithm 1 Stencil generator that meets neighbor patterns.
1: Input: stencil order (N)
2: Output: The list of neighbor points accessed (npList)
3: for order in range [1, N] do
4: if order == 1 then
5: // randomly sample neighbors of the central point
6: selectedorder = central.neighbors.random()
7: else
8: // randomly sample neighbors of low-order selected points
9: selectedorder = selectedorder−1.neighbors.random()

10: // delete the sampled low-order neighbor points
11: selectedorder.delete(neighbororder−1)
12: if order > 2 then
13: selectedorder.delete(neighbororder−2)
14: end if
15: end if
16: // store non-redundant neighbor points to the list
17: npList.append(set(selectedorder))
18: end for

C. Stencil Representation

As shown in Figure 6, we convert the offset of the accessed
neighbor points from the central point into the location of the
non-zero elements of a tensor. The representation of a sparse
tensor captures the distribution of neighbors accessed and the
Euclidean distance among each other. This type of information
largely dominates the latency of memory operations, which
in turn significantly impacts the performance of stencil com-
putation under certain optimizations. After that, we can feed
the assigned tensor of a fixed size to the convolutional neural
network (CNN) to predict the best OC of a stencil on the target
GPU. The CNN can effectively process the local variation of
a tensor with non-linear patterns to achieve high accuracy of
classification tasks.

However, this straightforward method is not always the
most effective, especially for regression tasks. Regression
algorithms are usually combined with feature engineering to
achieve better fitting results [28]. As shown in Table II, we
extract the candidate feature set according to the computation
patterns of stencils. Different from [23], the candidate features
extracted by StencilMART focus on the distance between
neighbor points and the central point instead of the sparsity
distribution in the entire tensor space. For example, the feature
set includes the number and ratio of non-zero points in
neighbors of each order. In principle, both the feature set

879

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:05:22 UTC from IEEE Xplore. Restrictions apply.

Stencil Options
 stencil dimension
 maximum order

Feature Extraction
 number of non-zeros
 neighboring features

Random Stencil
Generator

Random
Stencils

Tensor Assignment
 binary offset points

Training Data Collection
 optimization combinations (OCs)
 random parameter search

Stencil
Dataset

Classification Mechanisms
 ConvNet, FcNet, GBDT

Regression Mechanisms
 ConvMLP, MLP, GBRegressor

Trained Model Selected OCs

Stencil Optimizations
 streaming, block/cyclic

merging, prefetching, retiming,
temporal blocking

Hardware Characteristics
 memory bandwidth
 peak FLOPS
 …

Input Stencil
Feature Extraction

Tensor Assignment

Trained Model

Execution Details
 parameter setting
 hardware characteristics

Predicted Performance

generating

sampling

training

predicting

predicting

training

Fig. 5. The design overview of StencilMART.

1
1 1 1

1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1
1 1

1 1
1

1 1
1 1

1 1

Order-1 Star Order-2 Box Order-3 Cross Any-order any-shape Stencils

1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

Order-4 No-corner

Order-4 neighbors

Order-2 neighbors

Order-1 neighbors

Order-3 neighbors

Fig. 6. An example of transforming the access patterns of 2-D stencils into sparse tensors.

and the assigned tensor represent the access pattern of a
stencil somehow. For users, which representation is more
suitable depends on the performance comparison of different
mechanisms in specific scenarios.

TABLE II
THE CANDIDATE FEATURE SET OF A STENCIL.

No. Feature Meaning

1 order The maximum extent of non-zeros.
2 nnz The number of non-zeros in the tensor.
3 sparsity The density of non-zeros in the tensor.
4 nnzorder−n The number of non-zeros of order-n neighbors.
5 nnzRatioorder−n The ratio of non-zeros of order-n neighbors.

D. Classification Mechanisms for OC Selection

As described in section III-C, we can merge OCs through
the Pearson correlation coefficient (PCC) to reduce the classes
to be predicted. By doing so, the StencilMART avoids jumping
among OCs with similar performance, which slows down
convergence and interferes with prediction results. In addition,
each class must contain sufficient data objects so that its under-
lying features can be efficiently captured during training. The
StencilMART implements several classification mechanisms
for OC selection of stencil computation. Among machine
learning algorithms, we adopt gradient boosted decision tree
(GBDT), where the input is the stencil feature set (Table II).
The GBDT is widely used to solve data science problems due
to its simplicity and effectiveness [5].

We have also implemented two deep neural networks
(DNNs) including ConvNet and FcNet, where the input is the
assigned tensor and feature set for stencils. Take 2-D stencils
with the maximum order of 4 as an example, Figure 7 shows
the ConvNet design using tensor representation. The ConvNet
digs the hidden features of the tensor input through multiple
convolutional layers and fully connected layers, and then

outputs the probability of the stencil belonging to each OC.
For a particular stencil, the OC with the highest probability is
predicted to be the best. The ConvNet can handle higher-order
stencils simply by varying the input size without modifying
the network structure. In addition, we adapt ConvNet to 3-
D stencils by increasing the dimensionality of convolutional
operations. The FcNet does not contain any convolutional
layers but contains more fully connected layers. The prediction
accuracy of FcNet is sensitive to the number of layers. For
example, FcNet with too few layers may fail to learn efficient
features, while too many layers lead to overfitting.

tensor repr.

9×9×1 4×4×16
Probability

conv & relu

2×2×32

conv & relu flatten & FC

128×1 32×1

FC &
dropout

FC

Fig. 7. The design of ConvNet using tensor representation.

E. Cross-architecture Performance Prediction

The StencilMART uses pre-trained machine learning models
to make performance predictions. We treat this prediction task
as a regression problem: given a series of input features and a
target GPU, predict the execution time of stencil computation
on that GPU. The input features include three parts: candidate
feature set (or assigned tensor) of a stencil, parameter setting
under a specific OC and GPU hardware characteristics. The
parameter space of OCs includes parameters of numeric type
(e.g., merging factor), Boolean type (e.g., shared memory
usage) and enumeration type (e.g., streaming dimension) [25].
For the numerical parameters, we restrict their values to
power of two inconsistent with existing works [15], [20]. We
parameterize the range of the Boolean type as {0, 1}. We
start from 1 with unit stride to represent the parameters of

880

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:05:22 UTC from IEEE Xplore. Restrictions apply.

enumeration type. Note that when converted to input features,
the StencilMART performs log2 operation on the numerical
parameters to ensure the stability of network training.

Inspired by [27], we attach GPU features closely related to
memory efficiency and computation performance to the input
feature vector. We attach the GPU’s 1) memory capacity and
bandwidth; 2) number of streaming multiprocessors (SMs); 3)
peak FLOPS specified by the manufacturer. After collecting
data on the GPUs, we add the execution time of each instance
and its corresponding input features on a particular GPU to the
training set. The StencilMART implements several regression
mechanisms including GBRegressor, MLP and ConvMLP for
performance prediction. For MLP and ConvMLP, we normal-
ize the inputs to the range of [0, 1] by dividing by the maxinum
value of each input feature. The GBRegressor utilizes gradient
boosting for regression tasks, which produces a prediction
model in the form of an ensemble of decision trees [5].

The multilayer perceptron (MLP) comprises an input layer,
multiple hidden layers and an output layer that produces the
predicted execution time for stencil computation. The number
of hidden layers and the number of units per hidden layer can
be adjusted to balance prediction performance and inference
overhead. Figure 8 shows the ConvMLP design using tensor
representation. Unlike MLP, the ConvMLP uses assigned ten-
sors instead of candidate feature sets as the representation of
stencils. Specifically, the ConvMLP combines CNN and MLP,
where the inputs of CNN and MLP are the assigned tensor
and the feature vector containing the parameter setting and
hardware characteristics, respectively. After that, the outputs of
CNN and MLP are merged as joint features and flow into the
fully connected layer. Similarly, the ConvMLP can be easily
adapted to 3-D stencils by increasing the dimensionality of
convolutional filters.

tensor repr.

9×9×1 4×4×16 64×1 16×1

conv & relu

2×2×32

conv & relu flatten & FC

FC &
dropout

4×1

feature
vector

4×1

MLP layers

hi
dd

en
 u

ni
ts

FC & relu

+ output

FC & linear

FC & relu

Fig. 8. The design of ConvMLP using tensor representation.

V. EVALUATION

A. Experiment Setup

1) Hardware and Software Platforms: As shown in Ta-
ble III, we evaluate the effectiveness of StencilMART on
different GPU generations. The rental cost of GPUs is taken
from Google Cloud1. The machines equipped with GPUs
are listed in Table IV. The experiments are conducted on

1Google Cloud pricing in us-central1, as of October 2021.

Ubuntu 16.04 with CUDA v10.0 and cuDNN v7. The neural
networks involved in StencilMART (e.g., ConvNet and MLP)
are built using TensorFlow release v1.15 [1], whereas GBDT
and GBRegressor are built using XGBoost release v1.4.2 [5].

TABLE III
THE GPUS USED FOR EVALUATION.

GPU Generation Mem. Mem. BW SMs TFLOPS Rental

P100 Pascal 16 GB 720 GB/s 56 5.3 $1.46/hr
V100 Volta 32 GB 900 GB/s 80 7.8 $2.48/hr

2080Ti Turing 11 GB 616 GB/s 68 0.41 −
A100 Ampere 40 GB 1,555 GB/s 108 9.7 $2.93/hr

TABLE IV
THE MACHINES USED FOR EVALUATION.

CPU Frequency Cores Main Mem. GPU

Xeon Silver 4110 2.1 GHz 16 192 GB 2080 Ti
Xeon E5-2680 v4 2.4 GHz 28 252 GB P100, V100, A100

2) Stencil Programs and Datasets: We randomly generate
500 2-D and 500 3-D double-precision stencil programs using
StencilMART, where the maximum stencil order is set to 4.
In consistent with existing works [15], [20], we set the input
grids of 2-D and 3-D stencils to 81922 and 5123. We leave the
extension of StencilMART to consider the grid size as one of
its model input for future work. We merge the OCs through
PCCs and reduce the number of predicted OCs to 5. For each
stencil program, we randomly select parameter settings from
OCs and make measurements on four different GPUs. After
that, we obtain 64,927 2-D and 76,240 3-D stencil instances
on each GPU to form the stencil dataset. Note that the shortest
execution time of each OC under different parameter settings
is used for OC selection. The stencil dataset is further divided
during cross validation.

3) Cross Validation: We use the 5-fold cross validation
method [23] to evaluate the accuracy of the models. Specif-
ically, we randomly divide the stencil dataset into five folds.
In each round, a single fold is selected as the test set, and the
other four folds are used as the training set [24]. For ConvNet
and FcNet, we select the Adam stochastic optimizer with
0.0001 learning rate and a batch size of 50. For ConvMLP and
MLP, we set the learning rate to 0.0005 and the batch size to
256. The convolution filter size is set to 3×3 for both ConvNet
and ConvMLP. We have fine-tuned the number of layers and
the layer size of all neural networks. We also carefully tune
the hyperparameters of GBDT and GBRegressor. For OC
selection, we compare the predicted best OC with state-of-the-
art stencil frameworks including Artemis [20] and AN5D [15],
where the number of randomly selected parameter settings
remains the same to ensure a fair comparison. For performance
prediction, we use the mean absolute percentage error (MAPE)
as the comparison metric.

B. Results for OC Selection

1) Prediction Accuracy: Figure 9 shows the prediction
accuracy of ConvNet, FcNet and GBDT on GPUs. As seen, the

881

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:05:22 UTC from IEEE Xplore. Restrictions apply.

ConvNet achieves the highest prediction accuracy in general.
The average prediction accuracy of ConvNet for 2-D and
3-D stencils is 84.4% and 83.0%, respectively. This proves
the practicality of representing the stencil patterns as tensor
distribution. Moreover, the local variations of stencil patterns
can be effectively captured by convolution operations for
classification tasks. The GBDT performs slightly worse than
ConvNet, achieving an average accuracy of 81.7% and 80.8%
for 2-D and 3-D stencils. This indicates that the features ex-
tracted by StencilMART fully reflect the computation patterns
with neighbor accesses in stencils. The results show that the
StencilMART quickly learns the stencil features and maintains
convergence on all GPU generations. Due to the poor perfor-
mance of FcNet, we will only present the evaluation results
of ConvNet and GBDT in Section V-B2.

40%

50%

60%

70%

80%

90%

100%

2080Ti P100 V100 A100 2080Ti P100 V100 A100

A
cc
ur
ac
y

ConvNet FcNet GBDT

2-D 3-D

Fig. 9. Prediction accuracy of different classification mechanisms of Stencil-
MART on GPUs.

2) Performance Speedup: The performance speedup of
stencil computations using the OC predicted by StencilMART
is presented in Figure 10 and Figure 11. The performance of
Artemis and AN5D are chosen as the baseline. We can observe
that both ConvNet and GBDT achieve higher performance than
Artemis and AN5D on all GPU generations. The ConvNet
achieves a slightly higher speedup than GBDT due to its
higher prediction accuracy. Specifically, the ConvNet achieves
an average speedup of 1.30× and 1.32× over Artemis for 2-
D and 3-D stencils. The ConvNet also achieves 1.33× and
1.09× over AN5D, respectively. The results show that no
single OC fits all stencil programs. This further demonstrates
that selecting the right OC is critical to achieving the high
performance of stencil computations. The stable performance
speedup of StencilMART proves its high scalability for various
stencil shapes and GPU architectures.

C. Results for Performance Prediction

1) Percentage Error: Figure 12 shows the test error
(MAPE) of ConvMLP, MLP and GBRegressor on GPUs. As
seen, all three mechanisms accurately predict the execution
time of stencil computations. The prediction results indicate
that the StencilMART effectively extracts the features of stencil
instances and GPU architectures that contribute to execution
time. We can observe that MLP clearly outperforms ConvMLP
and GBRegressor in most cases. The average test error of MLP
for 2-D and 3-D stencils is 6.2% and 5.3%, respectively. In

0.0

0.5

1.0

1.5

2.0

2080Ti P100 V100 A100 2080Ti P100 V100 A100

Sp
ee
du
p

ConvNet GBDT Artemis

2-D 3-D

Fig. 10. Speedup of ConvNet and GBDT over Artemis on GPUs.

0.0

0.5

1.0

1.5

2.0

2080Ti P100 V100 A100 2080Ti P100 V100 A100

Sp
ee
du
p

ConvNet GBDT AN5D

2-D 3-D

Fig. 11. Speedup of ConvNet and GBDT over AN5D on GPUs.

comparison, ConvMLP achieves an average error of 13.4% and
11.6%, whereas GBRegressor achieves 9.5% and 6.3%. This
indicates the fully connected model architecture of MLP can
better encode the stencil and GPU features to achieve better
prediction results. To conclude, the StencilMART is general
since it supports different types of stencil instances across
GPU generations. We will only present the evaluation results
of MLP in the following due to its superior performance.

0.00

0.05

0.10

0.15

0.20

2080Ti P100 V100 A100 2080Ti P100 V100 A100

Te
st

Er
ro

r

ConvMLP MLP GBRegressor

2-D 3-D

Fig. 12. Test error of different regression mechanisms of StencilMART on
GPUs.

2) MLP Designs: To better understand how the network
design affects MLP’s prediction accuracy, we conduct a sensi-
tivity study where we vary the number of hidden layers (4
to 10) along with their size. Figure 13 shows the average
test error for MLP across GPUs after being trained for 100
epochs. The x-axis represents the layer size ranging from 24

to 210 with a stride of ×2. As seen, the MLP for 2-D and 3-D
stencils appear to follow a similar test error trend. Specifically,
increasing the number of layers and their sizes leads to lower
test errors. In addition, increasing the number of layers beyond

882

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:05:22 UTC from IEEE Xplore. Restrictions apply.

seven leads to diminishing returns on stencil computations.
Therefore, we can conclude that using seven layers for MLP
is a reasonable choice. The StencilMART provides an easy-
to-use interface for modifying network parameters to evaluate
the impact of network designs on prediction accuracy.

0.06

0.08

0.10

0.12

0.14

4 5 6 7 8 9 10

Te
st

Er
ro

r

log2(Layer Size)

4 5

6 7

8 9

10

(a) 2-D

0.04

0.06

0.08

0.10

0.12

4 5 6 7 8 9 10
log2(Layer Size)

4 5

6 7

8 9

10

(b) 3-D

Fig. 13. Test error of MLP as we vary the number of hidden layers and layer
size. The x-axis is in a logarithmic scale.

D. Case Study: To Rent or Not To Rent a Cloud GPU

One scenario the researchers may face is deciding whether
to rent GPUs in the cloud for stencil computations or to stick
with a local GPU. With StencilMART, they can use their local
GPU to make predictions about the performance of each cloud
GPU so as to make this decision in an informed way. Next,
we analyze the prediction accuracy of StencilMART according
to the pure performance and cost efficiency.

1) Pure Performance: Figure 15 shows the ground truth on
stencil instances considering pure performance. The prediction
accuracy for each GPU is also presented. As seen, more
“powerful” GPUs do not always achieve better performance
for stencil computations. Specifically, the 2080Ti, P100, V100,
and A100 account for 20.2%, 17.8%, 40.2% and 21.8% of
2-D stencil instances with the best performance, whereas
20.1%, 16.6%, 26.4% and 36.9% of 3-D stencil instances.
This indicates the necessity of cross-architecture performance
prediction for the decision to rent cloud GPUs. Another
observation can be drawn that despite any prediction errors,
the StencilMART still correctly predicts the best GPU for most
stencil instances. The average accuracy of StencilMART for 2-
D and 3-D stencil instances is 96.7% and 97.3%, respectively.
The prediction results therefore allow users to make correct
decisions based on pure performance.

2) Cost Efficiency: Since Google Cloud does not have the
2080Ti for rental, we only compare the cost efficiency of
the other three GPUs. Figure 15 shows the ground truth on
stencil instances considering cost efficiency. The prediction
accuracy for each GPU is also presented. We can discover
that the P100 is the most cost-efficient to rent for most stencil
instances. Specifically, the P100, V100 and A100 account for
61.0%, 22.7% and 16.3% for 2-D stencil instances with the
best cost efficiency, whereas 56.7%, 20.6% and 22.7% for 3-
D stencil instances. Therefore, if the users are not critically

5

10

15

20

25

30

2080Ti P100 V100 A100 2080Ti P100 V100 A100

of

 In
sta

nc
es

 (k
)

Measured Predicted
2-D 3-D

Fig. 14. The ground truth on stencil instances considering pure performance.
The prediction accuracy is shown above each bar.

constrained by time and want to optimize for the cost, they
would more likely rent the P100 instead of V100 or A100 with
higher performance. Nevertheless, the StencilMART achieves
an average accuracy of 97.3% and 96.1% for 2-D and 3-D
stencil instances. The results indicate that the StencilMART
can correctly predict the most cost-efficient GPU, which in
turn allows users to make the right decision for rental.

10

20

30

40

50

P100 V100 A100 P100 V100 A100

of

 In
sta

nc
es

 (k
)

Measured Predicted
2-D 3-D

Fig. 15. The ground truth on stencil instances considering cost efficiency.
The prediction accuracy is shown above each bar.

VI. RELATED WORK

Stencil DSLs and Optimizations. Based on the regular
patterns of stencil computation, existing research works exploit
the integration of optimization schemes into DSLs to achieve
automatic code transformation and optimization [9], [10],
[12], [14], [15], [17]–[20]. Physis [14] translated user-written
stencil code into scalable implementation for GPU-equipped
cluster. Forma [19] proposed a DSL for image processing
application with stencil operations. Grosser et al. [9] presented
a novel hybrid tiling method that combined hexagonal tiling
and wavefront tiling on GPUs. Hagedorn et al. [10] explored
how to use LIFT primitives to implement stencil codes and
optimizations such as tiling. Matsumura et al. [15] proposed a
C-based stencil framework named AN5D, which implemented
high-degree temporal blocking and spatial blocking. AN5D
also adopted low-level optimizations to reduce the usage
of shared memory and registers. GOPipe [17] automatically
pipelined and dynamically scheduled stencil execution on
GPUs. However, none of the above works support the opti-
mization selection for stencil computation. The StencilMART

883

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:05:22 UTC from IEEE Xplore. Restrictions apply.

can be integrated into these DSLs and quickly determine the
best optimization combination for target stencils.
Performance Prediction on GPUs. Since it’s non-trivial
to characterize the execution behavior of GPU kernels for
efficient task scheduling, a large amount of research works
focus on performance prediction on GPUs [2], [3], [11],
[27], [29]. Ardalani et al. [3] built an ensemble model using
forward selection to estimate the GPU execution time with
only single-threaded CPU implementation. Konstantinidis et
al. [11] proposed a quantitative performance model based on
the roofline approach, which utilized microbenchmarking to
investigate GPU performance on operation intensity values.
PPT-GPU [2] added models for different memory hierarchies
to Performance Prediction Toolkit (PPT) and predicted the
GPU performance based on PTX ISA and GPU configurations.
Daydream [29] constructed a kernel-level dependency graph
and introduced a set of graph-transformation rules to simulate
the overall runtime for DNNs. Yu et al. [27] scaled the
execution time of each operation in a training iteration from
one GPU to another using either wave scaling or multilayer
perceptrons. To the best of our knowledge, this is the first work
that targets the cross-architecture performance prediction for
stencil computation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose an automatic optimization se-
lection framework StencilMART, which effectively predicts
the best optimization combination for a stencil running on a
particular GPU. Furthermore, the StencilMART supports cross-
architecture performance prediction for stencils. Specifically,
the StencilMART represents the stencil patterns as binary
tensors and neighboring features through tensor assignment
and feature extraction. After that, the StencilMART imple-
ments the prediction model using various machine learning
mechanisms such as classification and regression. The exper-
iment results show that the StencilMART can achieve high
prediction accuracy for optimization selection. In addition,
the StencilMART can accurately predict the execution time
of stencil computations across GPUs, thus allowing users to
make informed decisions for GPU selection.

For future work, we would like to extend StencilMART to
support stencil kernels with boundary conditions. To achieve
that, we need to quantify the impact of boundary conditions
on performance and further parameterize them as model input.
Then, other components of StencilMART can be reused for
optimization selection or performance prediction.

ACKNOWLEDGEMENTS

This work was supported by National Key Research and
Development Program of China (No. 2020YFB1506703), Na-
tional Natural Science Foundation of China (No. 62072018)
and State Key Laboratory of Software Development Envi-
ronment (No. SKLSDE-2021ZX-06). Hailong Yang is the
corresponding author.

REFERENCES

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system
for large-scale machine learning. In: 12th {USENIX} symposium on
operating systems design and implementation ({OSDI} 16). pp. 265–
283 (2016)

[2] Arafa, Y., Badawy, A.H.A., Chennupati, G., Santhi, N., Eidenbenz, S.:
Ppt-gpu: Scalable gpu performance modeling. IEEE Computer Archi-
tecture Letters 18(1), 55–58 (2019)

[3] Ardalani, N., Lestourgeon, C., Sankaralingam, K., Zhu, X.: Cross-
architecture performance prediction (xapp) using cpu code to predict
gpu performance. In: Proceedings of the 48th International Symposium
on Microarchitecture. pp. 725–737 (2015)

[4] Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coeffi-
cient. In: Noise reduction in speech processing, pp. 1–4. Springer (2009)

[5] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system.
In: Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining. pp. 785–794 (2016)

[6] Cosenza, B., Durillo, J.J., Ermon, S., Juurlink, B.: Autotuning stencil
computations with structural ordinal regression learning. In: 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
pp. 287–296. IEEE (2017)

[7] Gamell, M., Teranishi, K., Heroux, M.A., Mayo, J., Kolla, H., Chen, J.,
Parashar, M.: Local recovery and failure masking for stencil-based ap-
plications at extreme scales. In: SC’15: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. pp. 1–12. IEEE (2015)

[8] Garvey, J.D., Abdelrahman, T.S.: Automatic performance tuning of
stencil computations on gpus. In: 2015 44th International Conference
on Parallel Processing. pp. 300–309. IEEE (2015)

[9] Grosser, T., Cohen, A., Holewinski, J., Sadayappan, P., Verdoolaege, S.:
Hybrid hexagonal/classical tiling for gpus. In: Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Opti-
mization. pp. 66–75 (2014)

[10] Hagedorn, B., Stoltzfus, L., Steuwer, M., Gorlatch, S., Dubach, C.: High
performance stencil code generation with lift. In: Proceedings of the
2018 International Symposium on Code Generation and Optimization.
pp. 100–112 (2018)

[11] Konstantinidis, E., Cotronis, Y.: A quantitative roofline model for gpu
kernel performance estimation using micro-benchmarks and hardware
metric profiling. Journal of Parallel and Distributed Computing 107,
37–56 (2017)

[12] Li, M., Liu, Y., Hu, Y., Sun, Q., Chen, B., You, X., Liu, X., Luan,
Z., Qian, D.: Automatic code generation and optimization of large-scale
stencil computation on many-core processors. In: Proceedings of the
50th International Conference on Parallel Processing. pp. 1–12 (2021)

[13] Martı́nez, V., Dupros, F., Castro, M., Navaux, P.: Performance im-
provement of stencil computations for multi-core architectures based
on machine learning. Procedia Computer Science 108, 305–314 (2017)

[14] Maruyama, N., Nomura, T., Sato, K., Matsuoka, S.: Physis: an implicitly
parallel programming model for stencil computations on large-scale
gpu-accelerated supercomputers. In: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis. pp. 1–12 (2011)

[15] Matsumura, K., Zohouri, H.R., Wahib, M., Endo, T., Matsuoka, S.:
An5d: automated stencil framework for high-degree temporal blocking
on gpus. In: Proceedings of the 18th ACM/IEEE International Sympo-
sium on Code Generation and Optimization. pp. 199–211 (2020)

[16] Mullapudi, R.T., Vasista, V., Bondhugula, U.: Polymage: Automatic
optimization for image processing pipelines. ACM SIGARCH Computer
Architecture News 43(1), 429–443 (2015)

[17] Oh, C., Zheng, Z., Shen, X., Zhai, J., Yi, Y.: Gopipe: a granularity-
oblivious programming framework for pipelined stencil executions on
gpu. In: Proceedings of the ACM International Conference on Parallel
Architectures and Compilation Techniques. pp. 43–54 (2020)

[18] Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amaras-
inghe, S.: Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. Acm Sigplan
Notices 48(6), 519–530 (2013)

[19] Ravishankar, M., Holewinski, J., Grover, V.: Forma: A dsl for image
processing applications to target gpus and multi-core cpus. In: Proceed-
ings of the 8th Workshop on General Purpose Processing using GPUs.
pp. 109–120 (2015)

884

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:05:22 UTC from IEEE Xplore. Restrictions apply.

[20] Rawat, P.S., Vaidya, M., Sukumaran-Rajam, A., Rountev, A., Pouchet,
L.N., Sadayappan, P.: On optimizing complex stencils on gpus. In:
2019 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). pp. 641–652. IEEE (2019)

[21] Sano, K., Hatsuda, Y., Yamamoto, S.: Multi-fpga accelerator for scalable
stencil computation with constant memory bandwidth. IEEE Transac-
tions on Parallel and Distributed Systems 25(3), 695–705 (2013)

[22] Stock, K., Kong, M., Grosser, T., Pouchet, L.N., Rastello, F., Ramanu-
jam, J., Sadayappan, P.: A framework for enhancing data reuse via
associative reordering. In: Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp.
65–76 (2014)

[23] Sun, Q., Liu, Y., Dun, M., Yang, H., Luan, Z., Gan, L., Yang, G., Qian,
D.: Sptfs: sparse tensor format selection for mttkrp via deep learning.
In: SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. pp. 1–14. IEEE (2020)

[24] Sun, Q., Liu, Y., Yang, H., Dun, M., Luan, Z., Gan, L., Yang, G., Qian,
D.: Input-aware sparse tensor storage format selection for optimizing
mttkrp. IEEE Transactions on Computers (2021)

[25] Sun, Q., Liu, Y., Yang, H., Jiang, Z., Liu, X., Dun, M., Luan, Z.,
Qian, D.: cstuner: Scalable auto-tuning framework for complex stencil
computation on gpus. In: 2021 IEEE International Conference on Cluster
Computing (CLUSTER). pp. 1–12. IEEE (2021)

[26] Sun, Q., Liu, Y., Yang, H., Luan, Z., Qian, D.: Smqos: Improving
utilization and energy efficiency with qos awareness on gpus. In: 2019
IEEE International Conference on Cluster Computing (CLUSTER).
pp. 1–5. IEEE (2019)

[27] Yu, G.X., Gao, Y., Golikov, P., Pekhimenko, G.: A runtime-based
computational performance predictor for deep neural network training.
arXiv preprint arXiv:2102.00527 (2021)

[28] Zheng, A., Casari, A.: Feature engineering for machine learning: prin-
ciples and techniques for data scientists. ” O’Reilly Media, Inc.” (2018)

[29] Zhu, H., Phanishayee, A., Pekhimenko, G.: Daydream: Accurately
estimating the efficacy of optimizations for {DNN} training. In: 2020
{USENIX} Annual Technical Conference ({USENIX}{ATC} 20). pp.
337–352 (2020)

885

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:05:22 UTC from IEEE Xplore. Restrictions apply.

