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A B S T R A C T

Although GPUs have been indispensable in data centers, meeting the Quality of Service (QoS) under task
consolidation on GPU is extremely challenging. Previous works mostly rely on the static task or resource
scheduling and cannot handle the QoS violation during runtime. In addition, existing works fail to exploit the
computing characteristics of batch tasks, and thus waste the opportunities to reduce power consumption while
improving GPU utilization. To address the above problems, we propose a new runtime mechanism SMQoS that
can dynamically adjust the resource allocation during runtime to meet the QoS of latency-sensitive (LS) tasks
and determine the optimal resource allocation for batch tasks to improve GPU utilization and power efficiency.
We implement the proposed mechanism on both simulator (SMQoS) and real GPU hardware (RH-SMQoS). The
experimental results show that both SMQoS and RH-SMQoS can achieve better QoS for LS tasks and higher
throughput for batch tasks compared to the state-of-the-art works. With hardware extension, the SMQoS can
further reduce the power consumption by power gating idle computing resources.
1. Introduction

Graphics Processing Units (GPUs) have been widely adopted for
accelerating general-purpose computation such as web service, social
media, finance, and deep learning. GPUs utilize massive Thread Level
Parallelism (TLP) to provide high computing capability. Due to the
continuous improvement of GPU computing capability, it is difficult
for a single task to utilize all its resources [1–5]. Therefore, multiple
tasks are co-located on GPU to improve resource utilization. Based on
the requirement for Quality of Service (QoS), GPU tasks can be divided
into latency-sensitive (LS) tasks and batch tasks. For LS tasks, failure to
meet QoS can result in an unsatisfactory user experience, such as game
lag and dropped frames [6].

When multiple tasks are co-running on GPU, it is desirable to
maximize the throughput of batch tasks while meeting the QoS of LS
tasks. In addition, GPU tasks can generally be divided into memory-
intensive (MI) tasks and compute-intensive (CI) tasks according to
their performance sensitivity to computing resources. However, the
computing characteristics of the tasks are not only related to the hard-
ware architecture, but also the resource contention between co-running
tasks. Therefore, a runtime system is needed to dynamically determine
the computing resource requirements of tasks. When the batch task is
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MI, the runtime system can constrain its usage of computing resources
to reduce power consumption.

Task consolidation on GPUs has received wide attention from both
industry and academia. In the industry, Hyper-Q [7] in Nvidia Kepler
architecture supports concurrent execution of multiple kernels on a
single GPU with multiple independent queues. Multi-Process Server
(MPS) [8] is also provided to support concurrent execution of GPU
kernels from multiple applications on the same GPU. However, both
methods lack effective control of GPU resources, and whether the
kernels can execute concurrently depends on the resource status of
the GPU. The Volta architecture improves MPS at the hardware level
and provides QoS by limiting the number of available threads [9].
The Multi-Instance GPU (MIG) feature in the Ampere architecture
can divide a single GPU into multiple GPU instances to provide QoS
support [10]. Both of them are applied before kernel execution and
does not support dynamic resource adjustment.

Meanwhile, two primary mechanisms are proposed in academia to
share GPU resources among co-running GPU tasks, including Spatial
Multitasking (SMT) [11] and Simultaneous Multikernel (SMK) [12].
SMT divides the Streaming Multiprocessors (SMs) on GPU into several
disjoint subsets, each of which is assigned to one of the co-running
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tasks. SMK allows multiple tasks to co-run on a single SM simultane-
ously by switching them with time quota. For SMK and SMT, neither
is superior over the other because their performance varies depending
on the resource partitions and task mixes within each scheme [13].
Moreover, QoS for LS tasks cannot be supported in the original design
of the above two mechanisms.

To provide QoS on GPU, existing research works can be primarily
divided into two categories: (1) task and resource scheduling. The re-
earch works in this category propose new task scheduling and resource
artition methods in order to meet the QoS requirement [14–18]. These
ethods are generally applied before task running, and cannot handle
erformance interference during runtime. (2) runtime mechanism. The
epresentative research works in this category include Spart [19] and
ollover [6]. The drawback of Spart is that the linear prediction model

t adopts leads to frequent SMs swap in and out, and thus severe perfor-
ance degradation. Whereas for Rollover, the resource contention from

ntra-SM, such as load-store units and L1 cache, leads to performance
egradation. Both of them fail to exploit the computing characteristics
f batch tasks for reducing power consumption.

To address the drawbacks of existing works on GPU QoS support,
e propose a new runtime mechanism SMQoS, which can dynamically

adjust the resource allocation during runtime to meet the QoS, and
in the meanwhile improve GPU utilization and power efficiency. This
paper is an extension of our previous work [20]. Compared to [20],
we further implement SMQoS on the real GPU hardware as RH-SMQoS,
which supports the QoS of LS tasks, and achieves higher throughput for
batch tasks. The specific contributions are as follows, where all except
the fourth contribution require hardware extension.

• We propose a QoS management mechanism that monitors the
performance of LS tasks during runtime and dynamically adjusts
the SM allocation between LS and batch tasks to meet the QoS
target.

• We dynamically determine the optimal SM allocation for batch
tasks during runtime so that the idle SM resources can be used
for improving utilization or be power gated to reduce power
consumption.

• We implement a runtime system SMQoS by extending the CUDA
API and GPU architecture. The experiment results show that
SMQoS can effectively improve the throughput of batch tasks and
reduce system power consumption while satisfying the QoS of LS
tasks.

• We implement RH-SMQoS on real GPU hardware by proposing the
mechanisms of task remapping and kernel transformation. The
experiment results show that RH-SMQoS can effectively support
the QoS of LS tasks in addition to the higher throughput of batch
tasks.

The rest of this paper is organized as follows: Section 2 presents
the background, and Section 3 discusses the related work. Section 4
presents the details of SMQoS and RH-SMQoS methodologies, the for-
mer requires hardware extension and the latter applies to existing GPU
hardware. Section 5 and Section 6 present the evaluation results of
SMQoS and RH-SMQoS. Section 7 concludes this paper.

. Background

.1. GPU terminology and execution model

The GPU consists of multiple SMs. As shown in Fig. 1, each SM
ontains hundreds of computing cores and other resources such as
egisters, shared memory, and L1 cache. To execute on GPU, the task
s launched on the CPU host ( 1⃝) and the parallel portion of the task,
amely kernel is offloaded to the GPU through runtime API ( 2⃝). A
PU kernel is tagged with a Software Work Queue (SWQ) ID ( 3⃝),
2

nd pushed into Pending Kernel Pool located in Grid Management
Fig. 1. The GPU task execution model.

Unit (GMU) ( 4⃝). Kernels with the same SWQ ID are mapped into the
ame hardware work queue (HWQ). The thread blocks (TBs) from the
ead-of-the-line kernel in a chosen HWQ are dispatched to SMs by the
B scheduler ( 5⃝ 6⃝). According to the publicly available documents
rom NVIDIA [7], the number of HWQs is 32. Therefore, the maximum

number of kernels that can concurrently run on the GPU is 32. Note that
TB needs to wait in GMU if its required resources are not available

r the hardware limits are reached. The waiting delay depends on the
xecution time of currently running TBs.

.2. GPU task characterization

To better understand the computing characteristics of GPU tasks, we
erform a detailed analysis of representative benchmarks on NVIDIA
esla P100 with 56 SMs. We control the number of SMs assigned
o the task through cudaStream [3] and observe its performance. We
se Instruction Per Cycle (IPC) as the performance metric. Refer to
ection 5.1 for details of selected CUDA benchmarks.

The experiment results motivate us to classify the GPU tasks into
emory-intensive (MI) tasks and compute-intensive (CI) tasks depend-

ng on their performance sensitivity to the number of SMs allocated,
hich are shown in Fig. 2. For CI tasks, their performance increases

inearly with the number of SMs allocated (Fig. 2(a)). In this case,
llocating more SMs to CI tasks improves GPU utilization. For MI
asks, their performance saturates with an increasing number of SMs
llocated (Fig. 2(b)). In this case, with the number of SMs allocated
or MI tasks to reach the optimal performance, the remaining SMs can
e power gated to reduce GPU power consumption. Note that when
ultiple tasks are sharing GPUs, the optimal number of SMs needs to

e determined during runtime. Therefore, a runtime system is required
o dynamically analyze the computing characteristics of batch tasks and
etermine the optimal number of SMs to be allocated. Such a runtime
ystem can improve GPU utilization and reduce power consumption
hile meeting QoS requirement for LS tasks.

.3. Existing GPU QoS mechanisms

To meet QoS, the current research mainly shares GPU resources
hrough three mechanisms. The first mechanism of sharing is imple-
ented through time multiplexing. To provide QoS, time multiplexing

upports resource preemption. When the high-priority task requires
xtra resources, it preempts the resources of the low-priority task.
owever, the preempted task can only be executed by re-launching the
hole kernel task. The latency of kernel preemption and re-dispatching

an significantly degrade the throughput of batch tasks.
The second mechanism is based on SMT, which divides SMs into

everal disjoint subsets, each is assigned to different tasks to co-run. For
ach subset, SMT adopts the default round-robin strategy to schedule
Bs until the resource or design limit is reached. The representa-
ive work of SMT-based QoS management is Spart [19]. In Spart, the

number of SMs required for each task is determined by estimating
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Fig. 2. The IPC of benchmark normalized to the performance with maximum SMs
llocated on the NVIDIA P100 GPU.

he performance of LS tasks with the linear prediction model. The
hird mechanism is based on SMK, which simultaneously co-executes
ultiple tasks on a single SM. The representative research work of

MK is Rollover [6]. It meets the QoS requirement by using a quota-
ased strategy to dictate the execution of LS tasks and allocating just
nough resource quota to LS tasks. However, both SMT and SMK
pproaches have drawbacks, such as performance instability and re-
ource contention. Moreover, none of them exploits the computing
haracteristics of batch tasks to power gate the idle SMs for reducing
ower consumption.

In the meanwhile, we notice the changes of computing resources
mong different NVIDIA GPU generations [9]. We observe that the
rchitecture development trend of GPUs is as follows: (1) The num-
er of SMs is growing rapidly. The latest Volta, Turing and Ampere
rchitectures are equipped with 80 SMs (Tesla V100), 72 SMs (Turing
U102) and 108 SMs (Tesla A100), respectively. (2) The intra-SM

resources remain almost constant. The intra-SM resources include register
file, shared memory, L1 cache, and GPU cores. In particular, the new
MIG feature in NVIDIA A100 supports spatial sharing of tasks through
resource partitioning. However, the resource partitioning in MIG is not
flexible. The NVIDIA driver APIs only provide five profiles to create
up to seven GPU instances. Specifically, the fractions of memory and
SMs that the users can specify are (1/8, 1/7), (2/8, 2/7), (4/8, 3/7),
(4/8, 4/7) and (full, 7/7) [21]. From the above observations, we believe
that the future GPU architecture is more inclined to treat SMs as
independent processing units and improve the computation capability
of a single SM under the constraint of limited resources. Therefore, the
SMT-based QoS mechanism is chosen as the baseline we compare with.

To address the drawbacks of existing SMT-based QoS management
approaches, this paper proposes a runtime QoS management mecha-
nism, which meets the QoS requirements of LS tasks by monitoring
the QoS changes of LS tasks and dynamically adjusting SM resources
allocated to LS tasks. Moreover, the mechanism can recognize the
computing characteristics of batch tasks, and thus manage the idle SM
resources more efficiently. Specifically, the idle SMs can be allocated
to batch tasks to improve system throughput or power gated to reduce
power consumption.

3. Related work

We classify the works related to this paper into GPU sharing mech-
anisms, QoS management on GPU, and GPU power-saving techniques.
The details are described below.
3

t

GPU Sharing Mechanisms. There is a large body of research works
focusing on executing multiple tasks on GPU to improve resource
utilization [2–5,11–13,22–27]. Lee et al. [25] enabled multiple kernels
to be allocated to the same core to maximize resource utilization. Spa-
tial Multitasking (SMT) [11] enabled concurrent applications to share
GPUs at SM granularity, whereas Simultaneous Multikernel (SMK) [12]
proposed fine-grained resource management than SMT, where multiple
applications share a single SM. Maestro [13] combined the advan-
tages of SMT and SMK to achieve better performance for multiple
tasks sharing GPU resources. FLEP [26] predicted the kernel duration
nd enabled preemption to explore different scheduling policies on
PU. EffiSha [27] transformed the program to enable preemption and

switched kernels with low overhead of data saving. CD-search [3]
improved GPU system throughput by classifying workloads using a
novel off-SM bandwidth mode. GPU Weaver [2] maximized the use of
sub-resources by adding a shared resource controller (SRC) between
neighboring SMs. Salus [5] proposed two primitives (e.g., fast job switch-
ing and memory sharing) to achieve fine-grained GPU sharing between
multiple deep learning applications. Slate [4] scheduled concurrent
kernels with complementary demands through workload-aware design
to alleviate resource contention. However, none of the above research
works is capable of supporting QoS on GPU.

QoS Management on GPU. Existing works providing QoS on GPU
can be mainly classified into two categories:

(1) Extending GPU task execution model [14–16,18,28,29]. Time-
Graph [15] provided fairness by re-ordering the commands in the
command queue of a GPU. Baymax [14] guaranteed QoS by predicting
the execution time of the kernel, and scheduling kernels to satisfy the
QoS of LS tasks. Prophet [28] utilized interference models to predict
the performance degradation of LS tasks and identified ‘‘safe’’ co-
locations to improve utilization. SMGuard [16] implemented resource
reservation on the SM and preempted batch tasks if the reserved
resources failed to meet the QoS. Laius [29] predicted the kernel
duration and allocated more resources to the unexecuted kernels if the
query runs slower than expected. The approaches in this category are
uniformly applied before task running, and cannot effectively handle
the performance interference during runtime.

(2) Hardware extensions to the GPU [6,19,30–32]. Spart [19] dy-
namically partitioned GPU resources between concurrently running
applications. Tanasic et al. [30] proposed an SM-draining technique
that improves the performance of high-priority processes by enabling
preemptive scheduling on GPU. Li et al. [32] proposed a priority-
based cache allocation (PCAL) mechanism to give preferential access
to the cache and other on-chip resources to high-priority threads. Park
et al. [31] proposed SM-flushing to immediately stop the execution
of a kernel and flush all intermediate results. Rollover [6] controlled
the kernel execution on cycle basis and the amount of thread-level
parallelism to meet QoS. However, all the above approaches fail to
exploit the computing characteristics of batch tasks for reducing power
consumption while providing QoS support on GPU.

GPU Power-saving Techniques. Existing research works mainly
ocus on managing the cache, DRAM and network-on-chip (NoC) of
PU to reduce power consumption [31,33–40]. Hong et al. [35] pro-
osed an empirical power model that relies on dynamic power events
o reduce runtime GPU energy consumption. Park et al. [31] proposed
M-flushing, which can immediately stop the execution of a kernel
nd flush all intermediate results. Aghilinasab et al. [38] improved the
dleness opportunity of the Warped Gates scheduler by static instruction
e-ordering. Tabbakh et al. [39] proposed a sharing-aware TB scheduler
hat assigns data sharing TBs to the same SM in order to reduce data
ovements. ITAP [40] efficiently reduced the static power consump-

ion of GPU execution units by exploiting their idleness. In contrast,
MQoS exploits the computing characteristics of batch tasks to power
ate idle SMs. The above power-saving approaches further consider the
nfluence of data locality or instruction dispatch, which are orthogonal

o this paper.
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Fig. 3. The design overview of SMQoS.

Table 1
The interface of runtime API proposed by SMQoS.

SMQoS API Parameters Description

𝑐𝑢𝑑𝑎𝑆𝑒𝑡𝑄𝑜𝑆
void ∗ 𝑘𝑒𝑟𝑛𝑒𝑙 Pass the kernel pointer to the GPU through

runtime API to identify the LS task.

double 𝐼𝑃𝐶𝑡𝑎𝑟𝑔𝑒𝑡 Set the QoS target of the LS task to 𝐼𝑃𝐶𝑡𝑎𝑟𝑔𝑒𝑡.

This paper focuses on task co-location and QoS management on
PU, and thus we compare our proposed mechanism with the most

elevant works in the following. Specifically, we compare SMQoS and
H-SMQoS with state-of-the-art works including Spart, Rollover, and
late in the above.

. SMQoS methodology

.1. Design overview

SMQoS aims to meet the QoS of LS tasks by monitoring the per-
ormance of LS tasks and dynamically adjusting the SM allocation of
S tasks during runtime. The QoS metric can be IPC (evaluated in
imulator) or task duration (evaluated on the real hardware). Since
MQoS extends GPU hardware in simulator, we choose IPC as the QoS
etric. The design overview of SMQoS is shown in Fig. 3. The gray
odules are designed or extended by SMQoS. The GPU kernels from
ultiple applications are interpreted into co-running GPU tasks through

he Code Interpretation module ( 1⃝ 2⃝). Since the QoS requirement and
he input data scale remain almost constant for a particular application
cross runs [41], we add a new API call cudaSetQoS, which is used to
pecify the LS task and its QoS target by the user (Table 1). The kernel
unction pointers are used to identify the LS tasks when invoking cud-
SetQoS. 𝐼𝑃𝐶𝑡𝑎𝑟𝑔𝑒𝑡 is used as the QoS target for LS task by cudaSetQoS.
n SMQoS, 𝐼𝑃𝐶𝑡𝑎𝑟𝑔𝑒𝑡 is the average IPC that the LS task needs to achieve
uring runtime. Since this paper focuses on QoS management under
ask co-location, we assume that 𝐼𝑃𝐶𝑡𝑎𝑟𝑔𝑒𝑡 for a task can be achieved
hen run in isolation.

After cudaSetQoS is invoked ( 3⃝), the GPU tasks are offloaded to
PU and pushed into one of the two task pools according to their task

ypes ( 4⃝). The task pools are used to manage LS tasks and batch tasks.
he SM Manager manages the task pools through two sub-modules
5⃝), the Profiling Data Management (PDM) module and the Dynamic SM
djustment (DSMA) module. SMQoS determines whether to dynamically
djust SM allocation of LS tasks on an epoch-by-epoch basis. Note
hat the number of cycles per epoch is application-independent and
hould be specified regarding the GPU hardware. To collect the IPC
f each task during the epoch, we extend the TB Scheduler with the
ata Collector (DC) module. The DC module accumulates the number of
4

nstructions executed by the task and divides by the number of cycles
o obtain the average IPC of the task during each epoch. At the end
f each epoch, the DC module sends the IPC of each task to the PDM
odule in SM Manager. The PDM module records the IPC of each task

s well as current SM allocation, and then sends the information to the
SMA module. The DSMA module determines the SM allocation for the
ext epoch using our proposed SM allocation algorithm (Sections 4.2
nd 4.3). After that, the SM manager informs the TB scheduler to re-
llocate the SMs according to the decision from the DSMA module. If
he SMs need to be re-allocated, the TB scheduler swaps out/in the TBs
n the SMs. Note that we allow the SM to be swapped out only when
he TBs on it have completed normally, which avoids the overhead of
andling dirty data and TB re-launching.

Note that SMQoS does not require any offline analysis or charac-
erization of the tasks. During runtime, the DSMA module can deter-
ine the SM allocation dynamically through the corresponding algo-

ithms (Sections 4.2 and 4.3), which does not rely on the computation
haracteristics of a task.

.2. Maintaining QoS for LS tasks

In the case of concurrent execution, SMQoS gives priority to ensure
hat the QoS is met. SMQoS aims to dynamically adjust the number of
Ms occupied by the LS task so that the average performance during
xecution reaches the QoS target.

As shown in Fig. 3, the SM Manager requires the TB scheduler to
wap in the SM in time to meet the QoS of the LS task according
o the profiling result from the DSMA module. Note that we do not
eed to determine the computing characteristics of the LS task since
ts QoS requirement always needs to be met. When the LS task needs
ore resources by swapping in SMs, the idle SMs are selected first to

void swapping out SMs from the batch task. If there are no idle SMs
vailable, the batch task is selected to swap out SMs, which are then re-
llocated to the LS task. Algorithm 1 shows the SM allocation algorithm
or the LS task, where 𝐼𝑃𝐶𝑎𝑣𝑒 is the average IPC of the task, 𝑁𝑒𝑝𝑜𝑐ℎ is
he number of epochs elapsed for task execution, 𝑆𝑀𝑙𝑠 is the number
f SMs allocated to the LS task, and 𝐼𝑃𝐶𝑒𝑝𝑜𝑐ℎ is the average IPC of the

task during current epoch. 𝐿𝑆𝑡𝑜_𝑠𝑤𝑎𝑝𝑖𝑛 and 𝐿𝑆𝑡𝑜_𝑠𝑤𝑎𝑝𝑜𝑢𝑡 are two boolean
variables that specify the type of operation to be performed on the LS
task. Specifically, the 𝐿𝑆𝑡𝑜_𝑠𝑤𝑎𝑝𝑖𝑛 indicates the LS task to swap in an SM,
whereas the 𝐿𝑆𝑡𝑜_𝑠𝑤𝑎𝑝𝑜𝑢𝑡 indicates the LS task to swap out an SM.

Algorithm 1 Dynamic SM adjustment to maintain QoS.
1: Input: 𝑁𝑒𝑝𝑜𝑐ℎ, 𝐼𝑃𝐶𝑎𝑣𝑒, 𝐼𝑃𝐶𝑡𝑎𝑟𝑔𝑒𝑡, 𝐼𝑃𝐶𝑒𝑝𝑜𝑐ℎ, 𝑆𝑀𝑙𝑠
2: Output: 𝑆𝑀𝑙𝑠
3: if 𝐼𝑃𝐶𝑎𝑣𝑒 < 𝐼𝑃𝐶𝑡𝑎𝑟𝑔𝑒𝑡 or 𝐼𝑃𝐶𝑒𝑝𝑜𝑐ℎ < 𝐼𝑃𝐶𝑡𝑎𝑟𝑔𝑒𝑡 then
4: 𝐿𝑆𝑡𝑜_𝑠𝑤𝑎𝑝𝑖𝑛 ← 𝑡𝑟𝑢𝑒 // The LS task fails to meet the QoS target
5: else
6: if

𝐼𝑃𝐶𝑎𝑣𝑒×𝑁𝑒𝑝𝑜𝑐ℎ
𝑁𝑒𝑝𝑜𝑐ℎ+1

> 𝐼𝑃𝐶𝑡𝑎𝑟𝑔𝑒𝑡 and 𝐼𝑃𝐶𝑒𝑝𝑜𝑐ℎ > 𝐼𝑃𝐶𝑡𝑎𝑟𝑔𝑒𝑡 then

7: 𝐿𝑆𝑡𝑜_𝑠𝑤𝑎𝑝𝑜𝑢𝑡 ← 𝑡𝑟𝑢𝑒 // The LS task will meet the QoS target in the next epoch
8: end if
9: end if
10: // The LS task requires swapping operation
11: if 𝐿𝑆𝑡𝑜_𝑠𝑤𝑎𝑝𝑖𝑛 == 𝑡𝑟𝑢𝑒 then
12: 𝑆𝑀𝑙𝑠 ← 𝑆𝑀𝑙𝑠 + 1 // The LS task swaps in an SM
13: else
14: if 𝐿𝑆𝑡𝑜_𝑠𝑤𝑎𝑝𝑜𝑢𝑡 == 𝑡𝑟𝑢𝑒 then
15: 𝑆𝑀𝑙𝑠 ← 𝑆𝑀𝑙𝑠 − 1 // The LS task swaps out an SM
16: end if
17: end if

As illustrated in Algorithm 1, when the LS task fails to meet its QoS
target (𝐼𝑃𝐶𝑎𝑣𝑒 or 𝐼𝑃𝐶𝑒𝑝𝑜𝑐ℎ is less than 𝐼𝑃𝐶𝑡𝑎𝑟𝑔𝑒𝑡, Line 3), it immediately
requires an SM to swap in (Line 4). To avoid the QoS oscillation, only
one SM is swapped for the LS task at a time. To meet the QoS of the LS
task, the conditions for swapping out are more restricted (both 𝐼𝑃𝐶𝑎𝑣𝑒
and 𝐼𝑃𝐶𝑒𝑝𝑜𝑐ℎ are greater than 𝐼𝑃𝐶𝑡𝑎𝑟𝑔𝑒𝑡, Line 6). The SM swapped out
by the LS task (Line 7) can be allocated to the batch task to increase
GPU utilization, or power gated to reduce power consumption. If the
SMs need to be re-allocated, the TB scheduler swap in/out the TBs on
the SM (Line 11–17). The optimal SM allocation for the batch tasks is
determined by the computing characteristics of the batch task identified
by SMQoS during runtime (Section 4.3).



Parallel Computing 113 (2022) 102958Q. Sun et al.

1
1
1
1
1
1
1
1
1
1
2

i
S
i
S
o
a
t
t

4.3. Determining optimal resource allocation for batch tasks

SMQoS gives priority to increase the throughput of the batch task on
the premise of meeting the QoS requirements of the LS task. However,
when the throughput of the batch task converges as the number of
SMs increases, SMQoS considers power gating idle SMs to reduce power
consumption.

When the LS task swaps out an SM, whether to allocate the idle
SM to the batch task depends on its computing characteristics. The
challenge is how to determine the optimal number of SMs (i.e., 𝑜𝑝𝑡𝑘)
allocated to the batch task during runtime. SMQoS introduces 𝑢𝑝𝑝𝑒𝑟𝑘,
𝑙𝑜𝑤𝑒𝑟𝑘 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to determine 𝑜𝑝𝑡𝑘, where 𝑢𝑝𝑝𝑒𝑟𝑘 and 𝑙𝑜𝑤𝑒𝑟𝑘 are
boolean types. The 𝑢𝑝𝑝𝑒𝑟𝑘 and 𝑙𝑜𝑤𝑒𝑟𝑘 indicate whether the SM al-
location reaches the upper bound and lower bound of the optimal
allocation, respectively. 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 controls the sensitivity to the QoS
changes. We choose the optimal 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 based on empirical studies.
When the batch task performs the swapping operation, SMQoS records
the settings of 𝑆𝑀𝑏𝑎𝑡𝑐ℎ, 𝑜𝑝𝑡𝑘, 𝑢𝑝𝑝𝑒𝑟𝑘 and 𝑙𝑜𝑤𝑒𝑟𝑘 as history information
to determine 𝑜𝑝𝑡𝑘 of batch task for next epoch, where 𝑆𝑀𝑏𝑎𝑡𝑐ℎ is the
number of SMs allocated to the batch task. The history information also
includes 𝑆𝑀𝑙𝑎𝑠𝑡 and 𝐼𝑃𝐶𝑙𝑎𝑠𝑡, which are the number of SMs occupied
and the average IPC in the previous epoch respectively. An example to
illustrate the procedure for determining 𝑜𝑝𝑡𝑘 is shown in Algorithm 2.
SMQoS restricts that the GPU task can only swap in/out one SM at a
time. Therefore, when both 𝑢𝑝𝑝𝑒𝑟𝑘 and 𝑙𝑜𝑤𝑒𝑟𝑘 are true, the value of 𝑜𝑝𝑡𝑘
is uniquely determined. To avoid frequent SM swapping of the batch
task, 𝑜𝑝𝑡𝑘 remains unchanged during the rest of the execution.
Algorithm 2 Determine 𝑜𝑝𝑡𝑘 for corresponding batch task.
1: Input: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝐼𝑃𝐶𝑙𝑎𝑠𝑡, 𝐼𝑃𝐶𝑒𝑝𝑜𝑐ℎ, 𝑆𝑀𝑙𝑎𝑠𝑡, 𝑆𝑀𝑏𝑎𝑡𝑐ℎ
2: Output: 𝑙𝑜𝑤𝑒𝑟𝑘, 𝑢𝑝𝑝𝑒𝑟𝑘, 𝑜𝑝𝑡𝑘
3: Precondition 1: Batch task swaps in an SM in the previous epoch
4: if 𝑆𝑀𝑙𝑎𝑠𝑡 == 𝑜𝑝𝑡𝑘 then
5: if 𝐼𝑃𝐶𝑒𝑝𝑜𝑐ℎ > 𝐼𝑃𝐶𝑙𝑎𝑠𝑡 × (1 + 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) then
6: 𝑙𝑜𝑤𝑒𝑟𝑘 ← 𝑡𝑟𝑢𝑒 // 𝑜𝑝𝑡𝑘 reaches the lower bound
7: 𝑜𝑝𝑡𝑘 ← 𝑆𝑀𝑏𝑎𝑡𝑐ℎ
8: else
9: 𝑢𝑝𝑝𝑒𝑟𝑘 ← 𝑡𝑟𝑢𝑒 // 𝑜𝑝𝑡𝑘 reaches the upper bound
0: end if
1: end if
2: Precondition 2: Batch task swaps out an SM in the previous epoch
3: if 𝑆𝑀𝑙𝑎𝑠𝑡 == 𝑜𝑝𝑡𝑘 then
4: if 𝐼𝑃𝐶𝑒𝑝𝑜𝑐ℎ < 𝐼𝑃𝐶𝑙𝑎𝑠𝑡 × (1 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) then
5: 𝑙𝑜𝑤𝑒𝑟𝑘 ← 𝑡𝑟𝑢𝑒 // 𝑜𝑝𝑡𝑘 reaches the lower bound
6: else
7: 𝑢𝑝𝑝𝑒𝑟𝑘 ← 𝑡𝑟𝑢𝑒 // 𝑜𝑝𝑡𝑘 reaches the upper bound
8: 𝑜𝑝𝑡𝑘 ← 𝑆𝑀𝑏𝑎𝑡𝑐ℎ
9: end if
0: end if

The detailed SM allocation strategy for the batch task is illustrated
n Algorithm 3, where 𝑆𝑀𝑡𝑜𝑡𝑎𝑙 and 𝑆𝑀𝑎𝑐𝑡𝑖𝑣𝑒 are the total number of
Ms and the number of active SMs, respectively. For Precondition 1,
f all SMs on the GPU are active (occupied by batch task) (Line 5),
MQoS requires that the batch task swap out an SM to meet the QoS
f the LS task (Line 6). Otherwise, the LS task will be allocated with
n idle SM. For Precondition 2, when the number of SMs allocated to
he batch task is less than 𝑜𝑝𝑡𝑘 (Line 10), the idle SM is allocated to
he batch task (Line 11). Otherwise, SMQoS determines whether the

upper bound is reached (Line 13). If not, the idle SM is still allocated
to the batch task (Line 14); otherwise, SMQoS determines whether the
lower bound is reached (Line 16). If not, the batch task swaps out an
SM (Line 17). If the batch task swaps in the SM (Line 22), then the
TB scheduler schedules the TBs on the SM (Line 23). Otherwise, the
SM is power-gated to reduce power consumption (Line 25–30). Finally,
SMQoS updates the details of active SMs occupied by the tasks (Line
32). In general, if the batch task is CI, there is no upper bound for 𝑜𝑝𝑡𝑘.
Therefore, the SM swapped out by the LS task is immediately swapped
in by the batch task to increase utilization. If the batch task is MI, when
the number of SMs allocated reaches 𝑜𝑝𝑡𝑘, the idle SM is power gated
to reduce power consumption.
5

Algorithm 3 Adaptive resource allocation for batch task.
1: Input: 𝑆𝑀𝑡𝑜𝑡𝑎𝑙 , 𝑆𝑀𝑎𝑐𝑡𝑖𝑣𝑒, 𝑆𝑀𝑙𝑠, 𝑆𝑀𝑏𝑎𝑡𝑐ℎ, 𝑜𝑝𝑡𝑘, 𝑢𝑝𝑝𝑒𝑟𝑘, 𝑙𝑜𝑤𝑒𝑟𝑘
2: Output: 𝑆𝑀𝑎𝑐𝑡𝑖𝑣𝑒, 𝑆𝑀𝑏𝑎𝑡𝑐ℎ
3: Precondition 1: LS task requires to swap in an SM
4: // Determine whether the batch task needs to swap out an SM
5: if 𝑆𝑀𝑎𝑐𝑡𝑖𝑣𝑒 == 𝑆𝑀𝑡𝑜𝑡𝑎𝑙 then
6: 𝐵𝑎𝑡𝑐ℎ𝑡𝑜_𝑠𝑤𝑎𝑝𝑜𝑢𝑡 ← 𝑡𝑟𝑢𝑒
7: end if
8: Precondition 2: LS task swaps out an SM
9: // Determine whether the batch task needs to swap in an SM
10: if 𝑆𝑀𝑏𝑎𝑡𝑐ℎ < 𝑜𝑝𝑡𝑘 then
11: 𝐵𝑎𝑡𝑐ℎ𝑡𝑜_𝑠𝑤𝑎𝑝𝑖𝑛 ← 𝑡𝑟𝑢𝑒 // The number of SMs allocated is less than 𝑜𝑝𝑡𝑘
12: else
13: if 𝑢𝑝𝑝𝑒𝑟𝑘 == 𝑓𝑎𝑙𝑠𝑒 then
14: 𝐵𝑎𝑡𝑐ℎ𝑡𝑜_𝑠𝑤𝑎𝑝𝑖𝑛 ← 𝑡𝑟𝑢𝑒 // 𝑜𝑝𝑡𝑘 does not reach the upper bound
15: else
16: if 𝑙𝑜𝑤𝑒𝑟𝑘 == 𝑓𝑎𝑙𝑠𝑒 then
17: 𝐵𝑎𝑡𝑐ℎ𝑡𝑜_𝑠𝑤𝑎𝑝𝑜𝑢𝑡 ← 𝑡𝑟𝑢𝑒 // 𝑜𝑝𝑡𝑘 does not reach the lower bound
18: end if
19: end if
20: end if
21: // The batch task requires swapping operation
22: if 𝐵𝑎𝑡𝑐ℎ𝑡𝑜_𝑠𝑤𝑎𝑝𝑖𝑛 == 𝑡𝑟𝑢𝑒 then
23: 𝑆𝑀𝑏𝑎𝑡𝑐ℎ ← 𝑆𝑀𝑏𝑎𝑡𝑐ℎ + 1 // The batch task swaps in the SM
24: else
25: if 𝐵𝑎𝑡𝑐ℎ𝑡𝑜_𝑠𝑤𝑎𝑝𝑜𝑢𝑡 == 𝑡𝑟𝑢𝑒 then
26: 𝑆𝑀𝑏𝑎𝑡𝑐ℎ ← 𝑆𝑀𝑏𝑎𝑡𝑐ℎ − 1 // The batch task swaps out an SM
27: Power gate the SMs
28: else
29: Power gate the SM
30: end if
31: end if
32: 𝑆𝑀𝑎𝑐𝑡𝑖𝑣𝑒 ← 𝑆𝑀𝑙𝑠 + 𝑆𝑀𝑏𝑎𝑡𝑐ℎ // Update the number of active SMs

4.4. Applying to real GPU hardware

We discuss the implementation of SMQoS on the real GPU hardware
(namely RH-SMQoS), where the task duration is used as the QoS metric.
Since the task cannot be explicitly assigned to the specified SMs on
the real hardware, the main challenge of RH-SMQoS implementation is
how to support SMT without incurring significant overhead. To achieve
above goal, RH-SMQoS needs to change the default execution model of
the GPU task through code transformation and explicitly manage the
mapping of GPU kernel to the specified SMs.

The previous works that manage resource allocation on commodity
GPU include SMGuard [16] and Slate [4], which are closely related
to SMQoS. Both SMGuard and Slate rely on persistent thread [42] to
control GPU resource allocation among tasks. SMGuard implemented
resource reservation and dynamic scheduling on GPU through multiple
workers. When the LS task starts on GPU, QoS can be satisfied by
reserved resources or by preempting the resources occupied by batch
tasks. Moreover, the block-tasks that are not completed due to eviction
will be remapped to remaining workers to avoid unnecessary kernel re-
launch. Slate implemented the idea of SMT by adding arguments to the
kernel function and launching the task to a designated range of SMs.
When a new task starts on GPU, the previous task has to exit and re-
launch to the adjusted range of SMs if needed. Note that when adjusted,
the tasks will be re-launched multiple times; for each time, partial TBs
will be placed within the specified range of SMs until all TBs have been
scheduled.

In general, the design of SMGuard is similar to the idea of Simultane-
ous Multikernel (SMK), which is different from the design philosophy of
SMQoS. In addition, although SMGuard reduces the performance degra-
dation of the batch task through online task remapping, it still leads to
workload imbalance. In contrast to SMGuard, the design philosophy of
Slate is similar to SMQoS that adopts the idea of Spatial Multitasking
(SMT). However, Slate causes the task to be re-launched for multiple
times, which results in considerable performance overhead. In addition,
Slate does not support QoS management on GPU.

To address the above drawbacks, we propose RH-SMQoS, which

implements SMQoS on the real GPU hardware. RH-SMQoS is used to
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Fig. 4. The design overview of RH-SMQoS task remapping.

evaluate the feasibility of SMQoS on real hardware, which does not
ely on any hardware extensions. Considering that RH-SMQoS should
ot incur additional overhead such as kernel re-launch [4] and work-
oad imbalance [16], it does not support dynamic resource allocation.
nstead, RH-SMQoS utilizes the persistent thread mechanism and offline
ode transformation to schedule each co-located task to a designated
ange of SMs. In such a way, RH-SMQoS achieves explicit SMT-based
M allocation (the fundamental idea of SMQoS) on real GPU hardware.
owever, RH-SMQoS does not realize the algorithms in SMQoS, which

equires hardware support for resource adjustment and data collection
t runtime. The detailed implementation of RH-SMQoS is described
elow.
Persistent Worker. When the task launches on GPU, Vanilla CUDA

r MPS assigns the TBs to the SMs using Round-Robin (RR) policy. The
anilla CUDA does not support concurrent task scheduling due to the
ifferent contexts from multiple tasks. Prior to Volta architecture, MPS
an combine multiple contexts into one context, enabling concurrent
cheduling of multiple tasks. However, only the GPU resources left by
he current task execution can be utilized to launch a new task. The
olta MPS (referred to as Volta-MPS) provides hardware support for
oncurrent execution of tasks, which enables MPS clients to submit
asks directly to the work queues within the GPU [9]. Moreover, Volta-
PS can provide QoS support by limiting the number of available

hreads on GPU. Note that when adjusting the limiting factor of avail-
ble threads during runtime, only the tasks created afterward obey the
ew constraint, whereas the tasks already existed are not affected.

As shown in Fig. 4, unlike Vanilla CUDA or MPS, RH-SMQoS imple-
ents the idea of SMT by abstracting CUDA grids to persistent workers.

n the worker, multiple TBs are executed in order. The number of
orkers is the same as the number of SMs they occupy so that workers

an be mapped to SMs correspondingly. After that, we can specify the
umber of workers and SM range to manage QoS with the software
pproach. Note that RH-SMQoS is implemented based on the CUDA
tream, which can be applied to broader GPU architectures. In contrast,
olta-MPS can only be applied to GPUs with Volta architecture and
eyond.
Kernel Transformation. Fig. 5 shows the strategy of kernel trans-

ormation and worker scheduling proposed in RH-SMQoS. RH-SMQoS
transforms a 1D, 2D or 3D grid to a 1D grid, without modifying the
internal structure of TBs. After transformation, the threads in each TB
remain the same. Fig. 5 shows an example of the transformation of a 2D
grid. The attributes of the original kernel include gridDim and blockDim,
which specify the size of the grid and TB respectively. Since it is a 2D
grid, the position of each TB is specified by two coordinates: blockIdx.x
6

and blockIdx.y. RH-SMQoS flattens the original grid into a 1D queue.
Fig. 5. The kernel transformation and worker scheduling in RH-SMQoS.

Fig. 6. An example of transformed GPU program for 2D grids with RH-SMQoS.

n order to track the queue status, RH-SMQoS introduces taskIdx to
ndex the tasks, which ranges from 0 to taskMax. The taskIdx can be
alculated based on original kernel parameters.

After the grid transformation, RH-SMQoS creates a set of workers to
hich the tasks in the queue are scheduled, and introduces workerIdx

o index the workers. Since the values of gridDim and blockIdx no
onger represent the grid dimensions, to maintain the original kernel
emantics, RH-SMQoS replaces gridDim and blockIdx with workerDim
nd workerIdx respectively. The workerDim is the number of workers
pecified by the transformed kernel, and the workerIdx can be cal-
ulated based on taskIdx and workerDim. Finally, the workers can be
apped to the specific SM range through customized worker scheduling

trategy, which can control the SM occupancy of the kernel.
Worker-SM Mapping. RH-SMQoS maps a kernel to a range of SMs

nd ensures that the kernel only runs on these SMs. However, it cannot
uarantee one-to-one mapping between workers and SMs. Although
e can obtain the SM ID occupied by the kernel using the software
pproach [3], when the kernels are executed concurrently, the SM ID
ccupied by the same task index is not always the same. This indicates
he TB scheduling on GPU does not follow a strict RR policy.

To address the above problem, we consider using the SM ID to
pecify the task index in the queue. Similar to SMGuard, we use
ibTooling and LibASTMatchers [43] to achieve source-to-source code
ransformation as shown in Fig. 6. Fig. 6(b) shows the transformed GPU
rogram for 2D grids by RH-SMQoS, and Fig. 6(a) shows the original
ode. Before launching the kernel, RH-SMQoS introduces the variable
imWorker with the size of NUM_TOTAL_WORKER, which is the total
umber of SMs in the GPU (e.g., 80 in Volta). The dimGrid is replaced by
imWorker when launching the kernel. In addition, the original dimGrid
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Table 2
GPGPU-Sim configurations.

Number of SMs 24

Core configuration 32 SIMT lanes, 1.4 GHz, GTO Warp Scheduler

SM configuration 16 KB L1 D-cache, 4-way assoc, 128B block
48 KB Shared Memory, 32678 Registers

L2 unified cache 768 KB total, 128 KB/channel
8-way assoc, 128B block

Instruction cache 2 KB, 4-way assoc, 128B block

Texture cache 12 KB, 24-way assoc, 128B block, LRU

Constant cache 8 KB, 2-way assoc, 64B block

Interconnection configuration 2D mesh, 1.4 GHz, 32B channel width

is added to the kernel parameters. In the kernel function, the worker-
SM mapping is materialized with code injection. If the provisioned SM
does not fall into the designated range, the worker exits.

The NUM_KERNEL_WORKER is the number of workers assigned to
he kernel by the user. If the worker is assigned to the specified SM
ange, the worker executes the tasks sequentially according to the
askIdx. Unlike existing works, we use the SM ID to specify taskIdx, thus

avoiding multiple re-launches of the kernel. When the taskIdx reaches
taskMax, which means there are no more tasks to be scheduled. The
workers exit after completing all tasks.

5. Evaluation on simulator

5.1. Experimental setup

To evaluate SMQoS, we use GPGPU-Sim v3.2.2 [44] with the sim-
ulation configuration same as [3] (Table 2). Meanwhile, we rely on
GPUWattch [45] to measure power consumption. GPUWattch is a GPU
power model integrated into GPGPU-Sim. We select 12 benchmarks
from Rodinia [46], Parboil [47], NVIDIA SDK [48], ISPASS-2009 [44]
and PolyBench [49], including six CI tasks and six MI tasks (Table 3).
We select two tasks to co-run as a task mix, which consists of one
LS task and one batch task. We divide the task co-running into four
categories based on the computing characteristics of the task mixes: CI–
CI, CI–MI, MI–CI, and MI–MI. For instance, CI–MI indicates that the LS
task is CI, and the batch task is MI. Note that the task classification such
as CI and MI is only used to guide representative task mixes, which is
not required by SMQoS. Since the simulation results are accurate when
running longer than 1𝑀 cycles [11], we run 2𝑀 cycles for each task
mix. The length of one epoch is set to 10𝐾 cycles according to [6]. If
one task ends before 2𝑀 cycles, it is re-executed. If one task is executed
multiple times, we use the total number of instructions and cycles to
calculate its IPC. Initially, the SMs are evenly partitioned between the
LS task and the batch task.

To evaluate meeting QoS requirement, we use the percentage of
7

QoS targets that are reached (𝑄𝑜𝑆𝑟𝑒𝑎𝑐ℎ) for comparison. We use IPC as
Fig. 8. The percentage of QoS violation under different QoS policies.

the QoS metric and compare with Spart and Rollover. The 𝑄𝑜𝑆𝑟𝑒𝑎𝑐ℎ is
efined as #𝑜𝑓 𝑆𝑢𝑐𝑒𝑠𝑠𝐶𝑎𝑠𝑒𝑠

#𝑜𝑓 𝑇 𝑜𝑡𝑎𝑙 𝐶𝑎𝑠𝑒𝑠 . Consistent with existing works [6,19], the QoS
target (𝐼𝑃𝐶𝑡𝑎𝑟𝑔𝑒𝑡) is defined as the percentage (i.e., QoS policy) of IPC
when running isolated (𝐼𝑃𝐶𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑). The QoS policy ranges from 80% to
95%, with a stride of 5%. We compare the throughput of the batch task
and power consumption using different QoS approaches. Due to the
page limit, we only present the experimental results not included in our
previous work [20]. The readers can refer to [20] for the throughput
and power consumption results of SMQoS.

5.2. Overall performance comparison

In this section, we evaluate the efficiency of SMQoS to meet QoS
target. Fig. 7 shows the IPC of LS tasks normalized to their QoS targets
when the QoS policy is 95%. Although higher results mean better QoS,
the goal is to achieve the QoS target just enough so that more resources
can be used by batch tasks for higher utilization or power gated for less
power consumption. As shown in Fig. 7, SMQoS reaches the QoS target
just enough in most cases, whereas Spart and Rollover often end up
with two extreme cases: (1) fail to reach the QoS target; (2) exceed
the QoS target too much. The throughput of the batch task degrades
significantly in case (2).

For SMQoS, the runtime QoS monitoring and feedback control are
more effective for SM re-allocation, which achieve stable QoS for LS
tasks. To further understand the QoS results, Fig. 8 presents how much
the QoS is violated within the percentage of QoS violations across
different QoS policies. The percentage of QoS violations is defined as
the number of co-runnings that suffer from QoS violations divided by
the total number of co-runnings. For all QoS policies, SMQoS violates
the QoS target by less than 8%, whereas Spart and Rollover violate the
QoS target by more than 10% and 8% in the worst cases, respectively.
Especially for 95% QoS policy, only 3% and 17.4% of the violations is
less than 8% with Spart and Rollover, respectively. This demonstrates
SMQoS is effective even when the QoS policy is tight for the LS task.

Fig. 9 presents the change in the number of SM_active (𝑆𝑀𝑎𝑐𝑡𝑖𝑣𝑒) and
SM_optimal (𝑜𝑝𝑡𝑘) as epoch increases at 95% QoS policy. We randomly
select four benchmarks from Table 3, including two CI tasks (BINO
and CP) and two MI tasks (BICG and LBM). Furthermore, we randomly
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Table 3
Benchmarks used for evaluation.
Benchmark Kernel Domain Source Type

BINO binomialOptionsKernel Finance CUDA SDK [48]

CI

MERGE mergeSortSharedKernel Sorting Algorithms

CP cuda_cutoff_potential Biomolecular Simulation Parboil [47]TPACF gen_hists Astronomy

HS calculate_temp Physics Simulation Rodinia [46]PF dynproc_kernel Grid Traversal

ATAX atax_kernel Linear Algebra
PolyBench [49]

MI

BICG bicg_kernel Optoelectronic Engineering
GESUMMV gesummv_kernel Linear Algebra

LIB Pathcalc_Portfolio_Kernel Market Model ISPASS-2009 [44]

LBM performStreamCollide_kernel Fluid Dynamics Parboil [47]MRI-G binning_kernel Image Processing
Fig. 9. When setting the QoS policy to 95%, the number of active SMs (SM_active)
and the optimal number of SMs (SM_optimal) for the batch task during the dynamic
adjustment of SMQoS.

form four different types of task mixes, such as CI–CI (BINO-CP), CI–
MI (BINO-LBM), MI–CI (BICG-CP), and MI–MI (BICG-LBM). When the
batch task is CI, 𝑙𝑜𝑤𝑒𝑟𝑘 is quickly set to 𝑡𝑟𝑢𝑒, and 𝑢𝑝𝑝𝑒𝑟𝑘 keeps 𝑓𝑎𝑙𝑠𝑒
until the end of the program execution. This is because the performance
of CI tasks increases linearly with the number of SMs. In contrast, when
the batch task is MI, both 𝑢𝑝𝑝𝑒𝑟𝑘 and 𝑙𝑜𝑤𝑒𝑟𝑘 are quickly set to 𝑡𝑟𝑢𝑒,
which means that 𝑜𝑝𝑡𝑘 has been uniquely determined. This is because
the performance of MI tasks saturates with an increasing number of
SMs allocated.

SMQoS can effectively improve the throughput of batch tasks while
meeting QoS requirements of LS tasks [20]. We also implement the
SMQoS without dynamic adjustment algorithms (namely Static-SMQoS),
which statically sets the SM allocation ratio of the LS task as QoS policy.
The 𝑄𝑜𝑆𝑟𝑒𝑎𝑐ℎ of SMQoS and Static-SMQoS under 95% QoS policy are
88.6% and 58.3%, respectively. Furthermore, Static-SMQoS reduces the
throughput of batch tasks by an average of 32.5% compared to SMQoS.
The results indicate that dynamic adjustment algorithms are necessary
to avoid QoS violations and GPU under-utilization.

5.3. Threshold sensitivity analysis

In Section 4.3, SMQoS introduced threshold to determine the 𝑜𝑝𝑡𝑘
of batch tasks. To understand the sensitivity of threshold, we measure
the throughput of batch tasks under different settings of threshold
when co-running with the LS task LBM at 95% QoS policy. Other
task mixes exhibit similar tendency, which are omitted for conciseness.
The throughput of each batch task is normalized to isolated execution.
As shown in Fig. 10, the throughput of each batch task remains the
8

Fig. 10. The threshold sensitivity analysis when the LS task is LBM with 95% QoS
policy. The 𝑦-axis indicates the throughput of batch tasks normalized to isolated
execution.

Fig. 11. The IPC of SMQoS and Offline normalized to QoS targets of LS tasks.

same until the threshold exceeds a certain value. Beyond that value,
the throughput decreases significantly across all batch tasks. This is
because when the threshold is small (e.g., 0.01–0.05), 𝑜𝑝𝑡_𝑘 can hardly
reach by the upper limit set by the threshold, since there are few
SMs allocated to the batch task during runtime in order to satisfy the
QoS of LS task. When the threshold is large enough (e.g., 0.06–0.1),
it forces 𝑜𝑝𝑡𝑘 converge quickly bounded by the upper limit, which
leaves the value of 𝑜𝑝𝑡_𝑘 smaller than its optimal setting, and thus
deteriorates the throughput of batch tasks. In our experiments, setting
the threshold to 0.01 gives us the best results across all task mixes.
However, the threshold can be optimized when adopting SMQoS to
customized hardware configurations.

5.4. Overhead analysis

SMQoS may introduce runtime overhead (e.g., SM swapping and
data profiling) when re-allocating the number of SMs occupied by each
task. To quantify the runtime overhead, we compare SMQoS against
the optimal SM allocation determined through offline analysis (Offline).
The optimum SM allocation satisfies: (1) the LS task occupies just
enough SMs to meet its QoS, and (2) the remaining SMs are assigned
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Fig. 12. The throughput of SMQoS and Offline normalized to isolated execution of
batch tasks.

Fig. 13. The power consumption of SMQoS normalized to Offline.

to batch tasks for better throughput. Fig. 11 shows the IPC of SMQoS
nd Offline normalized to the QoS targets of LS tasks. SMQoS is closer
han Offline to the QoS target under all co-runnings. This is due to
he dynamic adjustment of SMQoS during runtime. Fig. 12 shows the
hroughput of SMQoS and Offline normalized to the isolated execution
f batch tasks. SMQoS achieves lower throughput than Offline by 7.07%
n average. This is because SMQoS performs swapping operations that
ecreases the throughput. Fig. 13 shows that the power consumption
f SMQoS is 0.6% higher than Offline on average.

Future generation of GPUs may be equipped with more SMs. In
hat case, the SM manager needs to record more SM status information
i.e., idle or busy). However, this can be achieved through 1-bit regis-
ers, and the hardware overhead is negligible. For runtime overhead,
he strategy of only swapping in or out one SM at a time avoids
he scheduling latency. Besides, the complexity of related algorithms
emains unchanged as the number of SMs increases. In sum, we believe
he overhead of SMQoS is acceptable for future GPUs.

.5. Beyond pairwise

To demonstrate that SMQoS can be applied beyond pairwise co-
unning tasks, we select three CI tasks and three MI tasks from Table 3.
e evaluate the co-running with three tasks: one task as the LS task and

he remaining two as the batch tasks. The experiments end up with
ix kinds of task mixes, where (1) the LS task is CI or MI, and (2)
he batch task mix is CI–CI, CI–MI or MI–MI. Under each QoS target,
×𝐶4

5 = 60 task co-runnings are evaluated. Fig. 14 shows the IPC of LS
asks normalized to their QoS targets in the co-running. In general, the
S tasks meet their QoS requirements under all QoS targets. In most
ases, SMQoS only exceeds the QoS targets by less than 2%. Especially
hen the LS task is LBM and the QoS target is set to 90%, SMQoS only

xceeds the QoS target by 0.32%. This is because SMQoS enables the LS
ask to achieve the QoS target just enough, and thus more computing
esources can be allocated to batch tasks for higher utilization or power
9

ated for less power consumption.
Fig. 14. The IPC of the LS task normalized to the QoS target in the co-running of
three tasks. The 𝑥-axis indicates the LS task.

Table 4
Hardware and software specifications.

Hardware Software

CPU: Intel(R) Xeon(R) CPU E5-2680 v4 @2.40 GHz OS: Linux version 3.10.0
GPU: NVIDIA Tesla V100 GPU driver: 410.79

6. Evaluation on real GPU hardware

6.1. Experimental setup

The hardware and software specifications are presented in Table 4.
We randomly select eight benchmarks from Table 3, including four
CI tasks and four MI tasks. Among the selected tasks, two CI tasks
(HS and MERGE) and two MI tasks (LIB and LBM) are chosen as
LS tasks, whereas the rest tasks (PF, BINO, GESUMMV and ATAX)
are left as batch tasks. CUDA MPS is used to enable concurrent task
execution on GPU for the Volta-MPS method. In addition, we extend
Slate to support QoS (named as SlateQoS). SlateQoS achieves the TB-SM
mapping by re-launching the kernel multiple times. Since RH-SMQoS
and SlateQoS map workers to SMs sequentially to support SMT, each
SM can only be occupied by one TB (1,024 threads). For Volta-MPS
nd Baseline (isolated execution), we control the TB size to 1,024 and
eep the thread utilization consistent with RH-SMQoS to provide a fair
omparison.

For RH-SMQoS and SlateQoS, the SM allocation ratio for the LS task
s equal to the QoS policy. Likewise, the thread limit ratio of Volta-MPS
s set according to the QoS policy. We still use the percentage of task
o-locations with QoS target reached (𝑄𝑜𝑆𝑟𝑒𝑎𝑐ℎ) to evaluate the effec-
iveness of different approaches for meeting QoS requirement. We use
he normalized performance (𝑁𝑃𝑀) to measure the performance of LS
asks. 𝑁𝑃𝑀 is defined as 𝑇 𝑠

𝑖
𝛼𝑇 𝑐

𝑖
, where 𝛼 is the QoS policy, 𝑇 𝑐

𝑖 is the task
uration when the task is executed under co-location, and 𝑇 𝑠

𝑖 is the task
uration when the task is executed alone (Baseline). 𝑁𝑃𝑀 greater than
ne indicates that the QoS target is reached. We use the normalized
hroughput (𝑁𝑇𝑃 ) defined as 𝑇 𝑠

𝑖
𝑇 𝑐
𝑖

to measure the throughput of batch
tasks. To make the evaluation statistically significant, each task co-
location is executed ten times and the average result is reported. Note
that we do not include the evaluation results on power consumption
since it is infeasible to control the power gating of the SM on real GPU
hardware.

6.2. Results for achieving QoS

Fig. 15 presents the normalized performance of LS tasks under
different QoS policies. In general, the 𝑄𝑜𝑆𝑟𝑒𝑎𝑐ℎ of RH-SMQoS under all
cases is 93.8%, whereas SlateQoS and Volta-MPS are 84.4% and 76.6%,
respectively. Especially when the QoS policy is tight such as 95%, the
𝑄𝑜𝑆𝑟𝑒𝑎𝑐ℎ of RH-SMQoS is 100%, whereas SlateQoS and Volta-MPS are
75% and 68.8%. This indicates RH-SMQoS is able to guarantee the QoS
of LS tasks even at stringent QoS target.

Moreover, we observe significant performance improvement for LS
tasks under various task co-locations with RH-SMQoS. The overhead

of re-launching and atomic operations leads to the inefficiency of
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Fig. 15. The normalized performance of LS tasks under different QoS policies. The 𝑁𝑃𝑀 greater than one means the QoS target is satisfied.
Fig. 16. The normalized throughput of batch tasks under different QoS policies.
Fig. 17. The performance of each benchmark with RH-SMQoS normalized to Baseline.

lateQoS. Both RH-SMQoS and SlateQoS achieve the most significant
performance speedup when the LS task is HS. The reason is that HS
is particularly sensitive to intra-SM resource contention, which can be
effectively mitigated by SMT. Volta-MPS achieves the best performance
when the LS task is LIB. This is because LIB is heavily memory-
ntensive and insensitive to intra-SM resource contention. All three
pproaches perform worst when the LS task is MERGE. This is because
ERGE exhibits a large number of thread synchronization operations,
hich dominates the execution time. The performance gap between
H-SMQoS and Volta-MPS becomes larger as the QoS policy becomes

ighter.

.3. Results for improving throughput

Fig. 16 shows the normalized throughput of batch tasks under dif-
erent QoS policies. Note that we only select the task co-locations that
ll three approaches meet QoS. Overall, RH-SMQoS achieves the highest
hroughput in all task co-locations. In general, the average normalized
hroughput of RH-SMQoS is 41.2%, whereas SlateQoS and Volta-MPS
re 37.3% and 23.9%, respectively. The results demonstrate that RH-
MQoS achieves the highest throughput of batch tasks while meeting
he QoS requirement of LS tasks. The reason for the inefficiency of
lateQoS compared to RH-SMQoS is the overhead of re-launching and
ynchronization operations. Moreover, we observe that all three ap-
10

roaches achieve high throughput when the batch task is GESUMMV
Fig. 18. The L1 cache/texture hit rate of each benchmark with RH-SMQoS and Baseline.
The missing bar indicates the accesses never hit in the L1 cache/texture.

Fig. 19. The normalized performance of the LS task in the co-running of three tasks.
The 𝑥-axis indicates the QoS policy.

or ATAX. This is because both GESUMMV and ATAX are memory-
intensive, which are insensitive to thread allocation. Even with these
two batch tasks, RH-SMQoS achieves the highest throughput due to our
proposed techniques such as persistent worker, kernel transformation
and worker-SM mapping.

6.4. Overhead analysis

The overhead introduced in RH-SMQoS includes: (1) using persis-
tent workers to execute TBs in order; (2) obtaining the SM ID through
the software approach; (3) adding extra judgment logic to implement
SMT. To evaluate the overhead, we compare the performance of each
benchmark in the original and transformed implementation. We use the
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Fig. 20. The normalized performance of LS tasks under 67% and 50% QoS policy on A100 GPU.
Fig. 21. The throughput of batch tasks normalized for isolated execution on a single A100 GPU.
nvprof tool with event collection [50] to collect performance metrics.
This performance profiling is non-intrusive to task execution.

Fig. 17 presents the performance of each benchmark with RH-
MQoS normalized to Baseline. Besides, we have also added the task
uration of RH-SMQoS in the figure. Note that NPM in this subsection is
efined as 𝑇 𝑜

𝑖
𝑇 𝑝
𝑖

, where 𝑇 𝑜
𝑖 is the task duration of original implementation

Baseline), and 𝑇 𝑝
𝑖 is the task duration of transformed implementation

ith RH-SMQoS. Overall, RH-SMQoS achieves higher performance than
Baseline for all tasks. Particularly for tasks sensitive to intra-SM re-
source contention (e.g., HS and LBM), RH-SMQoS achieves significant
performance improvement. This is because the implementation of SMT
avoids intra-SM resource contention among different tasks. Whereas
for memory-intensive tasks (e.g., LIB and GESUMMV ), the performance
with RH-SMQoS is still slightly improved. The L1 cache/texture hit rate
of each task with RH-SMQoS and Baseline is shown in Fig. 18. RH-
SMQoS achieves higher L1 cache/texture hit rate than Baseline for most
of the tasks. This is due to the technique of persistent worker adopted
in RH-SMQoS, which achieves better locality of L1 cache.

For future GPU generations (with more SMs available), RH-SMQoS
can launch more persistent workers to perform calculations in tasks.
Besides, for the default TB scheduling method, a larger number of SMs
cannot reduce intra-SM resource contention during runtime. Therefore,
we believe RH-SMQoS could achieve higher performance improvement
with future GPU architectures.

6.5. Beyond pairwise

To demonstrate RH-SMQoS can be applied beyond pairwise, we
randomly select PF and GESUMMV as co-running batch tasks. Fig. 19
presents the normalized performance of the LS task under the co-
running of these three tasks. We can observe that the results in Fig. 19
are similar to that in Fig. 15. This indicates that RH-SMQoS can meet
QoS in the case of co-location of multiple tasks regardless of the
number and characteristics of batch tasks. The reason is that RH-SMQoS
implements strict spatial multitasking, which avoids intra-SM resource
contention during concurrent execution. When the number of SMs is
larger, RH-SMQoS can allocate more SMs to batch tasks to improve their
throughput. Therefore, RH-SMQoS can be well adopted for future GPUs.
11
6.6. Comparison with MIG on NVIDIA A100 GPU

The MIG feature allows multiple GPU instances to run in parallel
on a single physical A100 GPU. Since MIG supports limited profiles
to create GPU instances, it cannot provide the stringent QoS policies
(80%–95%) as the previous experiments. Instead, we select two re-
source allocation schemes for evaluation: the resource ratio of the LS
task to the batch task is set to two (67% QoS policy) and one (50% QoS
policy).

Fig. 20 presents the normalized performance of LS tasks under two
QoS policies on A100 GPU. In general, the 𝑄𝑜𝑆𝑟𝑒𝑎𝑐ℎ of RH-SMQoS
and MIG are 50% and 34.3%, respectively. This indicates that it is
increasingly difficult to guarantee QoS with static partitioning schemes
for advanced GPU architectures (e.g., Ampere [10]). Therefore, the
dynamic resource scheduling strategy of SMQoS is necessary for current
and future GPU generations. Fig. 21 presents the throughput of batch
tasks normalized for isolated execution on a single A100 GPU. Overall,
RH-SMQoS achieves higher throughput in most task co-locations. The
reason mainly boils down to the fine-grained resource scheduling of
RH-SMQoS based on the multi-stream and persistent thread [51]. In
addition, RH-SMQoS does not require physical partitioning of the GPU
so that tasks with different characteristics can fully utilize the memory
bandwidth.

Note that the CUDA stream and MPS can still be applied with GPU
instances. Therefore, RH-SMQoS can be integrated with MIG to support
complex QoS requirements under task co-locations. For instance, when
there are multiple LS tasks, they can be distributed to different GPU
instances without interference. On each GPU instance, RH-SMQoS can
be applied to perform fine-grained SM allocation. In sum, RH-SMQoS
is still effective to support QoS of LS tasks on the latest Ampere GPUs.

7. Conclusion and future work

In this paper, we propose a new runtime mechanism SMQoS to meet
the QoS requirement for task consolidation on GPU with improved
utilization and power efficiency. During runtime, SMQoS monitors the
performance of LS tasks and dynamically adjusts the SM allocation in
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order to meet the QoS target. In the meanwhile, based on the mixes
of the co-running tasks, SMQoS can either allocate more SMs to the
batch tasks for higher throughput, or power gate idle SMs to reduce
power consumption. Furthermore, we implement RH-SMQoS on real
GPU hardware, which is based on the idea of SMQoS, to provide QoS
for the LS task while improving GPU utilization. The experiment results
show that SMQoS is more efficient than the state-of-the-art approaches
to improve GPU utilization and reduce power consumption, in addition
to meeting the QoS of LS tasks. Moreover, RH-SMQoS can meet the QoS
of LS tasks with a higher throughput of batch tasks than Volta-MPS
and SlateQoS. For the future work, we would like to extend SMQoS
to support the QoS of complex GPU tasks that contain non-identical
kernels with dependencies.
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