
CoGNN: Efficient Scheduling for Concurrent GNN
Training on GPUs

Qingxiao Sun∗, Yi Liu∗, Hailong Yang∗, Ruizhe Zhang∗, Ming Dun∗, Mingzhen Li∗, Xiaoyan Liu∗,
Wencong Xiao†, Yong Li†, Zhongzhi Luan∗, Depei Qian∗

Beihang University∗, Unaffiliated†, Beijing, China
{qingxiaosun,yi.liu,hailong.yang,19373568,dunming0301,lmzhhh,liuxiaoyan,zhongzhi.luan,depeiq}@buaa.edu.cn

{xiaowencong,relianceslee}@gmail.com

Abstract—Graph neural networks (GNNs) suffer from low
GPU utilization due to frequent memory accesses. Existing
concurrent training mechanisms cannot be directly adapted
to GNNs because they fail to consider the impact of input
irregularity. This requires pre-profiling the memory footprint of
concurrent tasks based on input dimensions to ensure successful
co-location on GPU. Moreover, massive training tasks generated
from scenarios such as hyper-parameter tuning require flexible
scheduling strategies. To address these problems, we propose
CoGNN that enables efficient management of GNN training tasks
on GPUs. Specifically, the CoGNN organizes the tasks in a queue
and estimates the memory consumption of each task based on cost
functions at operator basis. In addition, the CoGNN implements
scheduling policies to generate task groups, which are iteratively
submitted for execution. The experiment results show that the
CoGNN can achieve shorter completion and queuing time for
training tasks from diverse GNN models.

Index Terms—Graph Neural Networks, GPU, Concurrent
Training, Task Scheduling, Estimation Model

I. INTRODUCTION

Deep learning (DL) has received ubiquitous adoption in
many real-world application domains, ranging from object
detection [64] and image classification [26] to language pro-
cessing [5] and machine translation [46]. As a number of new
deep neural networks (DNNs) are being explored, developers
take advantage of hardware accelerators such as TPU [22]
and GPU to accelerate DL tasks. Especially, the GPUs have
become the dominating workhorse to provide computation
power in mainstream server infrastructure [56]. The reason
is that GPUs excel at handling highly parallelized matrix
operations heavily used in DNNs [9].

Graph neural networks (GNNs) emerge at the front-line for
graph-based prediction tasks [24], [49] due to the powerful
node representation. GNNs learn data relationships by com-
bining graph operations and neural computations. Due to the
irregularity of the graph structure, it is challenging for GNNs
to achieve high performance on GPUs. Many optimization
strategies based on node partitioning and coalesced caching
have been proposed to alleviate load imbalance and thread
divergence [19], [20], [28]. However, graph-related operators
implemented by GNN frameworks inevitably lead to GPU
under-utilization due to the limited memory bandwidth. Py-
Torch Geometric (PyG) [11] separately updates the node fea-
tures with message passing, and the frequent data movements
cause computation stalls. Deep Graph Library (DGL) [51]

applies SpMM-like kernels to achieve simultaneous updates,
whereas the sparse fetches reduce memory efficiency.

To ease the model training, the most common approach is
to set the minimum granularity of GPU allocation to the entire
GPU [21]. Whereas due to the improvement of computation
capability, it is difficult for a single DL task to fully utilize
the GPU resources [54]. Especially for memory-intensive tasks
such as GNNs, their performance becomes saturated with
increasing computation resources allocated [47], [48], [63].
Multiple training tasks can be co-located onto the same GPU
to improve resource utilization. In industry, Multi-Process
Server (MPS) [31] and Multi-Instance GPU (MIG) [33] enable
multiple CUDA processes to share one GPU by resource
partitioning, both of which have highly frequent tensor al-
locations and deallocations that deteriorate performance. In
academia, temporal sharing [3] reduces pipelining latency by
overlapping data preprocessing and computations, while spa-
tial sharing [27], [62] enables concurrent execution to provide
higher GPU throughput. However, the above mechanisms are
tailored towards DNNs with fixed-sized input and cannot be
directly adapted to GNNs. GNNs are input-sensitive, whose
memory consumption and computation complexity are closely
related to the graph dimensions [53].

Moreover, there are complex scenarios dealing with batch
training tasks in practice. AI companies and cloud providers
manage GPU clusters in a multi-tenant fashion [8], where
co-locating multiple tasks on shared GPUs can accommodate
more computation demands to reduce the total cost of own-
ership (TCO) [57]. Hyper-parameter tuning generates a large
number of training tasks to explore different hyper-parameter
settings for one model [6], [41]. In such cases, it is necessary to
design flexible scheduling mechanisms to reduce the queuing
time and completion time [16]. Furthermore, the training tasks
can be enabled with spatial sharing to improve GPU utilization
and training throughput. The working set size of the training
task becomes critical for successful spatial sharing. If the
working set size of the training task exceeds the GPU memory
capacity, it will cause task crashes or significant performance
degradation with unified virtual memory (UVM) enabled [2].
Therefore, the memory consumption of training tasks needs
to be estimated in advance to ensure safe co-location with
spatial sharing enabled [12]. Likewise, the GNN-specific graph
operators and the impact of the irregular graph input on layer

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE

http://crossmark.crossref.org/dialog/?doi=10.5555%2F3571885.3571936&domain=pdf&date_stamp=2022-11-18

outputs need to be considered as well.
From the above analysis, fine-grained memory allocation

and task scheduling are required to improve the overall train-
ing throughput for concurrent training tasks. Moreover, the
scheduling for concurrent training of GNNs poses unique
challenges : 1) the runtime memory consumption of graph
operators is difficult to estimate, thus threatening the memory
safety under co-location; 2) the graph irregularity dominates
computation complexity, input agnostic task co-location may
significantly degrade training performance due to ineffective
resource allocation. To address the above challenges, we
propose a concurrent GNN training framework CoGNN, which
enables efficient scheduling and management of GNN training
tasks on GPUs. The CoGNN first packs the training tasks into
a queue and extracts information about task input and network
structure. After that, the CoGNN profiles the computation
graph of each GNN task and quantifies the impact of its
operators on GPU memory consumption. Finally, the CoGNN
exploits several scheduling strategies to group tasks and iter-
atively allocate memory for execution. We evaluate CoGNN
on various GNNs to prove its effectiveness in reducing the
completion time and queuing time of training tasks.

The CoGNN applies spatial sharing and temporal sharing
to intra and inter task groups, respectively. To the best of our
knowledge, this is the first work that targets the scheduling
optimization and memory management for concurrent GNN
training. This paper makes the following contributions:
• We comprehensively analyze the underlying causes of

GPU under-utilization for GNNs and illustrate the con-
current training opportunities to improve GPU utilization
and training throughput.

• We propose a task management mechanism that automat-
ically executes GNN training tasks through fine-grained
memory allocation and worker dispatch. Besides, the
scheduling policies for different optimization goals are
designed to generate task groups for concurrent training.

• We propose a memory estimation strategy, which defines
a memory cost function for each GNN-related operator,
and then traverses the computation graph of the training
process to estimate GPU memory consumption.

• We develop a concurrent GNN training framework
CoGNN that efficiently schedules and manages GNN
training tasks co-located on GPUs. The experiment results
show that the CoGNN can complete the training tasks
faster with low queuing delay.

The rest of this paper is organized as follows. Section II
and Section III present the background and motivation. Sec-
tion IV presents the details of CoGNN methodology. Section V
presents the evaluation results of CoGNN. Section VI discusses
the related work, and Section VII concludes this paper.

II. BACKGROUND

A. Graph Neural Networks
Recently, there has been an increasing interest in applying

deep learning to non-structured data such as graphs [55]. Un-
like dense objects (e.g., image and text) handled by traditional

deep learning models, graphs represent sparse and irregular
connected links. GNN takes graph-structured data as input,
where each node is associated with a feature vector. Edges
between nodes indicate the graph topology, quantized with
edge weights. GNN learns data relationships by combining
the graph structure and feature vectors. Here we take several
typical models to illustrate the common GNN operations.
Table I lists the notations used in this paper.

TABLE I
IMPORTANT GNN NOTATIONS.

Notation Definition

G A graph G = (V,E).
V , v The set of nodes in a graph, a node v ∈ V .
E, eij The set of edges in a graph, an edge eij ∈ E.
Dv The degree of a node v.
Nv The neighbor set of a node v.
hv The feature vector of a node v.
A The graph adjacency matrix.
X The feature matrix composed by feature vectors.

W , α, ε The learnable model parameters.

Graph convolutional network (GCN) [24] is one of the most
successful networks for graph learning, which alleviates the
problem of overfitting on local neighborhood structures for
graphs. It performs graph operation formulated as Equation 1:

hkv = σ

 ∑
u∈N(v)∪v

Wkhk−1
u /

√
Du ·Dv

 (1)

SAGE [15] further adopts sampling to obtain a fixed number
of neighbors for each node. Its graph operation is formulated
as Equation 2, where SN (v) is a random sample of the node
v’s neighbors. Graph attention network (GAT) [49] adopts
attention mechanisms to learn the relative weights between
two connected nodes. The graph operation according to GAT is
formulated as Equation 3. The attention weight αk

vu measures
the connective strength between the node v and its neighbor
u. Graph isomorphism network (GIN) [59] adjusts the weight
of the central node by a learnable parameter εk. Its graph
operation is formulated as Equation 4.

hkv = σ

 ∑
u∈N(v)∪v

Wk{hk−1
u ∀u ∈ SN (v)}

 (2)

hkv = σ

 ∑
u∈N(v)∪v

αk
vuW

khk−1
u

 (3)

hkv =MLP

(1 + εk)hk−1
v +

∑
u∈Nv

hk−1
u

 (4)

Based on the above analysis, the core computation of GNNs
can be abstracted as Equation 5, where Â is calculated from
A and varies across models:

Xk+1 = σ(ÂXkWk) (5)

Since A is ultra-large and sparse, the equation can be
naively viewed as chained SpMMs [25]. However, it is difficult
for SpMM-like operations to fully utilize GPU computation
resources due to the limited memory bandwidth.

B. Computational Patterns of GNN

Figure 1 illustrates the computation flow of GNNs in one
training iteration. A GNN layer typically consists of two
phases that combine graph operations and neural computa-
tions. The Aggregate phase retrieves a feature vector from each
neighbor of a node and aggregates these vectors into a new fea-
ture vector. The Update phase performs neural computations
such as multi-layer perceptron (MLP) to transform the feature
vector of each node. Popular GNN frameworks process graph
operations according to the graph structure, where an edge
indicates data transfer. DGL employs node-wise parallelization
with a central-neighbor pattern. It fetches data from the
feature matrix and then performs reduction with SpMM-like
operations to update the node features simultaneously. PyG
employs edge-wise parallelization with the MessagePassing
abstraction. It explicitly generates messages on all edges via
MessagePassing and then performs separate reductions.

𝑅𝑒𝐿𝑈_1…

𝐺𝑁𝑁𝐶𝑜𝑛𝑣_𝑁
𝑅𝑒𝐿𝑈_𝑁
𝑆𝑜𝑓𝑡𝑚𝑎𝑥

Class Probabilities

𝐺𝑁𝑁𝐶𝑜𝑛𝑣_1
A

B

C

D

E
F

G
Node FeaturesGraph Structure

B C
D E A

Feature Vector

C D B

Feature Vector

C E
F G

Feature Vector

Aggregate

GNN Layer

A B
G C

Feature Vector

ℎேିଵ
A

Feature
Vector

ℎே

B
Feature
Vector

C
Feature
Vector

G
Feature
Vector

Update

Fig. 1. The computation workflow of GNNs.

Both DGL and PyG are limited by insufficient utilization of
GPU computation resources. DGL applies SpMM-like kernels
to achieve simultaneous update of node features, but memory
accesses dominate its performance due to the irregularity
of the graph structure. PyG improves memory efficiency by
implementing separate updates of nodes through aggregation
kernels, but the time-consuming data movements cause com-
putation stalls. To overcome this limitation, the co-location
mechanism of GNN training tasks can be exploited to maxi-
mize GPU throughput. However, the memory consumption of
training tasks shall be known in advance to avoid memory
oversubscription. Unlike fixed-sized input neural networks,
the output dimensions of GNN layers are strongly related to
graph dimensions and feature length. Besides, the memory
consumption of graph propagation also needs to be taken into
account for accurate estimation.

C. GPU Sharing for Deep Learning

In industry, the mainstream practice is to set the minimum
granularity of GPU allocation to the entire GPU [57]. While
such a setup simplifies cluster resource management, it results
in inefficient utilization of GPU resources. Therefore, GPU
sharing is becoming a fundamental technique to co-locate
more training tasks on GPU. For example, hyper-parameter
tuning involves a large search space, where hyper-parameters
are high-level properties exposed, such as learning rate and
momentum. Popular tuning tools (e.g., Hyperdriver [41])
generate a large number of training tasks that explore different
hyper-parameter settings for one model. For such scenarios,
training tasks can be co-located into the same GPU to reduce
queuing delay and improve GPU utilization.

Existing works propose mechanisms based on temporal or
spatial sharing to achieve co-location of deep learning tasks on
GPUs [3], [27], [56], [62]. Temporal sharing is highly flexible,
dedicating GPU memory and cores to a single execution of a
specific duration. Gandiva [56] improves the efficiency of deep
learning tasks through coarse-grained time slicing and static
memory partitioning. PipeSwitch [3] utilizes pipelined model
transfers and active-standby workers to minimize switching
overhead, thereby satisfying strict Service Level Objective
(SLO) requirements for inference tasks. Although temporal
sharing reduces latency by overlapping data preprocessing and
computations, it can hardly improve the training throughout
on GPU. For example, when processing language models
composed of recurrent neural networks (RNNs), computation
resources on GPU tend to be idle for a long time [38].

In contrast, spatial sharing can provide higher training
throughput on GPU. One limitation of applying spatial sharing
is the working set size of concurrent tasks. If the working set
size exceeds the GPU memory, the system has to swap the
data to the host, overshadowing spatial sharing performance
benefits. Salus [62] designs scheduling strategies via two GPU
sharing primitives, including fast job switching and memory
sharing. However, Salus requires data of all processes to be
preloaded into the GPU memory, thus restricting temporal
sharing opportunities. Zico [27] overlaps the execution of
concurrent tasks according to the cyclic patterns, thereby
reducing the peak memory footprint. However, Zico only
supports pairwise co-location and cannot handle massive tasks.

The above mechanisms target traditional neural networks
with fixed-sized input, thus failing to consider the impact
of irregular graphs on memory consumption. In addition,
to support the co-location of massive training tasks, it is
necessary to combine temporal sharing and spatial sharing to
achieve more efficient scheduling strategies on GPUs.

III. MOTIVATION

We make three key observations on the characteristics of
GNN training on GPUs. These observations are consistent with
existing GNN characterization [4], [60]. The experiment setup
can be referred to Section V-A.

8

10

12

14

16

PR DD AM TW SB

lo
g2

PM
C

(M
B)

GCN SAGE GAT GIN

Fig. 2. Peak memory consumption of GNN
training with different datasets on GPU.

2

4

6

8

10

PR DD AM TW SB

lo
g2

Ti
m

e
(m

s)

GCN SAGE GAT GIN

Fig. 3. Per-epoch execution time of GNN training
with different datasets on GPU.

40%

50%

60%

70%

80%

90%

100%

PR DD AM TW SB

A
ch

ie
ve

d
O

cc
up

an
cy

GCN SAGE GAT GIN

Fig. 4. Achieved occupancy of GNN training
with different datasets on GPU.

A. Performance Impact of Graph Input

Figure 2 and Figure 3 show the peak memory consumption
(PMC) and per-epoch time of GNN training with different
datasets, respectively. The PMC of GNN training does not
depend solely on the network design. Even with the same
model structure, there is a large discrepancy in PMCs for
GNN training with different datasets. This is because the
graph dimensions and feature length dominate the memory
usage of graph propagation and layer outputs. In addition,
the irregularities of a graph may exponentially increase the
per-epoch training time. For example, node degree is one of
the graph irregularities that may lead to cache contention and
load imbalance [17], [20], thus affecting the GNN training
performance. From the above analysis, GNN training can
be regarded as input-sensitive, whose working set size and
execution time are closely related to the graph input. To enable
successful co-location on GPUs with limited memory, graph
information and network design shall be obtained in advance
to estimate the PMCs of GNN training tasks.

B. Low GPU Utilization for GNN Training

Figure 4 shows the achieved occupancy1 of GNN training
with different datasets on GPU. The achieved occupancy is
below 70% for most GNN training tasks. Specifically, the aver-
age achieved occupancies of GCN, SAGE, GAT, and GIN are
68.6%, 61.9%, 79.0%, and 63.3%, respectively. The relatively
high achieved occupancy of GAT is due to the introduction of
fully connected layers to compute the attention coefficients,
which elevates the low utilization of graph operations. Note
that both PyG and DGL have their limitations in fully utilizing
GPU, such as low access efficiency and computation stalls.
Except for optimizing a single GNN task for improved GPU
utilization [19], [53], concurrently training multiple GNN tasks
on a single GPU is also a promising direction to improve
GPU utilization. This is well suited for scenarios such as
hyper-parameter tuning, where massive training tasks can be
submitted in a queue.

C. Opportunity for Concurrent Training

Figure 5 shows the GNN training performance of MPS
normalized to that of default mode (Default) on GPU. The
kernels are executed sequentially under Default, which means
that only one kernel can occupy the GPU at a time. The UVM

1Achieved occupancy [35] is an effective metric to diagnose performance
issues on GPU. It indicates how many warps can be active at once per SMs.

is enabled under MPS to avoid task crashes due to memory
oversubscription. As seen, the MPS outperforms Default in
most cases. Specifically, the MPS achieves average speedups
of 1.92×, 1.06×, and 1.09× for GCN, SAGE, and GIN,
respectively. The higher speedup of GCN is due to its highly
memory-intensive nature, where the layer outputs are mainly
computed by sparse operations. However, the MPS has highly
frequent tensor allocations and deallocations, thus deteriorat-
ing the training performance. On the other hand, the MPS
might suffer from GPU memory oversubscription due to the
UVM overhead. For example, DD-AM, AM-TW, and TW-SB
combinations of GAT obtain an average of 9.87× slowdown.
Therefore, estimating the PMCs in advance is necessary for
enabling concurrent training tasks. Besides, training tasks in
the queue can be scheduled out of order to achieve better
memory efficiency.

IV. COGNN METHODOLOGY

A. Design Overview

In this section, we propose a concurrent GNN training
framework CoGNN that organizes GNN training tasks into
a queue and enables efficient scheduling and management
under GPU co-location. The queue structure facilitates CoGNN
to group training tasks and execute them with out-of-order
scheduling. As shown in Figure 6, the gray modules are
designed or extended by CoGNN. The CoGNN consists of four
important components, including memory manager, PMC pro-
filer, task scheduler, and worker dispatcher. The memory man-
ager maintains a unified memory pool and allocates memory
on demand. The PMC profiler extracts runtime information to
estimate the memory consumption of training tasks. The task
scheduler determines the grouping and task execution order
according to the scheduling policies. The worker dispatcher
binds the training tasks to the specific workers and returns the
results after execution. Note that a worker refers to a process
responsible for task execution, which executes training tasks
sequentially across different groups.

Figure 6 illustrates the design overview of CoGNN. The
CoGNN integrates the CUDA allocator plugin into the DL
backend for explicit GPU memory management. The CoGNN
packs the training tasks implemented with the GNN framework
into a task queue, where the PMC profiler extracts the details
of model input and network structure. The PMC profiler
represents the computation graph of a GNN model as a
directed acyclic graph (DAG) and uses formulas to quantify

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Sp
ee
du
p

Default MPS

GCN

0.8

0.9

1.0

1.1

1.2

1.3

Sp
ee
du
p

Default MPS

SAGE

0.8

0.9

1.0

1.1

1.2

1.3

Sp
ee
du
p

Default MPS

GAT

0.8

0.9

1.0

1.1

1.2

1.3

Sp
ee
du
p

Default MPS

GIN

Fig. 5. GNN training performance of MPS normalized to that of default mode on GPU.

DL Backend

GNN Framework

Training Task Queue𝑇ଶ 𝑇ଷ 𝑇ସ𝑇଴ 𝑇ଵ Task Scheduler

Unified Memory Pool

Para. Comp. Reserved

PMC Profiler
Scheduling Policies
 Base, LMCF, BMC

extract information
send PMC data

manage

Worker Dispatcher

GPU

CUDA Allocator Memory Manager

schedule

𝑊଴𝑊ଵ𝑊ଶexecute

Fig. 6. The design overview of CoGNN.

the impact of each operator on memory consumption. After
that, The PMC profiler sends the PMC information to the
task scheduler, which uses a specific policy to group and
rearrange training tasks. The task scheduler iteratively pops
task groups from the queue. In each iteration, the memory
manager and worker dispatcher receive signals to allocate
shared GPU memory and execute training tasks.

The CoGNN combines spatial sharing and temporal shar-
ing for more flexible task management. On the other hand,
the CoGNN designs various scheduling policies to reduce
makespan, job completion time (JCT) [16] or queuing time.
In addition to GNNs, the CoGNN can support more general
neural networks due to the versatility of its components.

B. Task Management Mechanism

The key to spatial sharing of concurrent tasks lies in the
fine-grained management of GPU memory. We extend the
unified memory pool of the DL backend (i.e., PyTorch) so
that the CoGNN can insert task-occupied buffers into specific
memory locations. In view of the characteristics of DL tasks,
we partition the memory pool into reserved memory and
allocated memory. The reserved memory stores framework-
internal data such as CUDA context and model workspace,
typically pre-allocated before task execution. The CoGNN
inserts parameter buffers and computation buffers from both
ends of the allocated memory to ensure full occupancy (Fig-
ure 6). The parameter buffer stores persistent tensors such as
weights and biases, whose dimensions are known after loading
the model. The Computation buffer stores tensors produced at
task runtime, such as layer outputs. For the allocated memory,

the CoGNN handles internal tensor fragmentation by padding
extra memory according to the alignment requirements.

Figure 7 shows the overall workflow of task management in
CoGNN. The task scheduler iteratively executes training tasks
at the granularity of task groups. In such a way, it avoids
memory fragmentation from batch tasks, which may reduce
concurrent training opportunities while complicating memory
maintenance. In each iteration, the CoGNN creates two pro-
cesses that handle computation-related and parameter-related
operations, respectively. Specifically, one process inserts the
computation buffers into the allocated memory and dispatches
workers for subsequent computations. Another process inserts
the parameter buffers from the opposite end and conducts
the Host-To-Device (H2D) parameter transmission. Note that
the CoGNN overlaps the processes to improve pipelining
efficiency and synchronize them afterward. The CoGNN then
launches the workers to perform training tasks in a spatial-
sharing manner. After the results are returned, the CoGNN
clears all buffers and advances to the next group.

Task Queue

Clear buffersReturn results

group

overlap

synchronize

Execute tasks

advance to next group

Insert comp. buffers Dispatch workers Transmit para.Insert para. buffers

Fig. 7. The overall workflow of task management in CoGNN.

From the above analysis, the flexible management mecha-
nism of CoGNN can support arbitrary grouping and out-of-
order scheduling of tasks. This is necessary for improving the
memory efficiency of input-sensitive GNNs, whose PMCs vary
drastically with graph dimensions.

C. Memory Consumption Estimation

Inspired by [12], we formulate the computation graph (CG)
of GNN training as a DAG (Equation 6), where each node
opi is an operator representing a mathematical invocation, and
each edge edj specifies the execution dependency. With TO =
〈ed1, ed2, ..., edm〉 being the topological order dictated by the
DAG, it can be pre-generated by referencing the topological
order implementation within a framework [39]. The CoGNN
utilizes TO to traverse the computation graph and update the
PMC according to the allocation and deallocation of tensors.

CG = 〈{opi}ni=1, {edj = (opx, opy)}mj=1〉 (6)

Figure 8 shows the DAG example for training a two-
layer SAGE model. The SAGE layer (SAGEConv) consists
of both graph and neural operators including Propagate and
Linear. The activation functions (e.g., ReLU) are not shown
in the figure due to their zero memory cost. For forward
propagation, input graph data (Data X) is fed through the
neural network and manipulated by the above operators. The
resulting outputs and input labels (Data Y) are then back-
propagated to compute the weight gradients. DL frameworks
automatically insert auxiliary operators into the computation
graph. For example, SAGEConv BP operators compute output
gradients to update the SAGEConv weights.

𝑂௠ଵ𝐿𝑖𝑛𝑒𝑎𝑟
𝐿𝑖𝑛𝑒𝑎𝑟𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑂௠଴

𝐷𝑎𝑡𝑎_𝑋

𝑂௠ଶ

𝑊௠଴

𝑊௠ଵ
𝑎𝑑𝑑𝑂௠ଷ

𝑂௠ହ𝐿𝑖𝑛𝑒𝑎𝑟
𝐿𝑖𝑛𝑒𝑎𝑟𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑂௠ସ

𝑊௠ଶ

𝑊௠ଷ
𝑂௠଺ 𝑂௠଻𝑎𝑑𝑑 𝐷𝑎𝑡𝑎_𝑌

𝑆𝐴𝐺𝐸𝐶𝑜𝑛𝑣_𝐵𝑃ଵ 𝑆𝐴𝐺𝐸𝐶𝑜𝑛𝑣_𝐵𝑃ଶ

𝐿𝑜𝑠𝑠_𝐵𝑃𝑂௚଴
𝑊௚଴

𝑂௚ଵ
𝑆𝐴𝐺𝐸𝐶𝑜𝑛𝑣_𝐵𝑃ଵ 𝑆𝐴𝐺𝐸𝐶𝑜𝑛𝑣_𝐵𝑃ଶ

𝑂௚ଶ

𝑊௚ଵ

𝑊௚ଷ
𝑊௚ଶ𝑆𝐴𝐺𝐸𝐶

𝑜𝑛𝑣

Forward Propagation Backward Propagation𝑇𝑒𝑛𝑠𝑜𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟

A

B

C

D

A

B

C

D

Node Features

Edge Features

expand

𝑂 → 𝑜𝑢𝑡𝑝𝑢𝑡𝑊 → 𝑤𝑒𝑖𝑔ℎ𝑡𝑚 → 𝑚𝑎𝑡𝑟𝑖𝑥𝑔 → 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

Fig. 8. Computation graph for training a two-layer SAGE model.

Estimating GPU memory consumption can be formalized
as the memory required for each operator on the computation
graph according to the topological traversal. We define a
framework-independent memory cost function for each op-
erator. The memory cost function (MCF) returns a set of
allocated tensors with category and shape, which can be
deduced by the input dimension and shape inference. The
MCF of the operator op can be formulated as Equation 7,
where W , O, G, and E are the sets of weight, output, gradient,
and ephemeral tensors, respectively.

MCF (op) =W (op) ∪O(op) ∪G(op) ∪ E(op) (7)

The liveness of a tensor mainly depends on whether it will
be used by the subsequent operators (i.e., an edge exists on the
computation graph). However, weight tensors are exceptions
because they are persistent in GPU memory for later updates.
In addition, ephemeral tensors are only temporarily allocated
inside an operator and released after the operator completes.
Therefore, we can obtain the PMC of the GNN training
task at the end of the graph traversal. The CoGNN currently
requires the computation graph to be deterministic across
training epoches. We will support dynamic GNNs [7] with
graph evolution in future work.

Table II illustrates the tensors and tensor sizes of common
operators in GNNs, where NE and NN denote the number
of nodes and edges of the graph structure. Besides, FLi

in and

TABLE II
ALLOCATED TENSORS AND THEIR SIZES.

Operator Cate. Operator Tensor Cate. Tensor Size

Graph Propagate
Ephemeral NE × FLi

in

Output NN × FLi
in

Matrix
Matmul

Weight FLi
in × FLi

out

Output NN × FLi
out

Matmul BP
Weight Gradient FLi

in × FLi
out

Output Gradient NN × FLi−1
out

Neural
Linear

Weight FLi
in × FLi

out

Output NN × FLi
out

Linear BP
Weight Gradient FLi

in × FLi
out

Output Gradient NN × FLi−1
out

FLi
out denote the input and output feature lengths of the i-

th GNN layer, respectively. The Matmul is the core operator
of GCN with sum-reduction, and its forward process can be
abstracted as chained SpMMs. There are also customization
details for GNNs that need to be considered. For example,
GCN supplements self-loops so that the aggregated repre-
sentation of the central node includes its own features. GAT
involves Leaky ReLU [29] and Softmax operators to generate
coefficient messages. Even so, we still fail to take into account
the temporary tensors inevitably created in GNN frameworks.
Therefore, the CoGNN multiplies the estimated PMC by a
fixed threshold to guarantee that the inserted buffers are
sufficient to meet the memory demands.

The above abstraction and formalization are general for es-
timating the PMCs of various GNN frameworks. The CoGNN
can also be adapted to other GNNs by modifying the compu-
tation graph or memory cost functions.

D. Scheduling Policies

The CoGNN opens up a large design space for schedul-
ing policies due to its flexible management mechanism. In
this paper, we implement three scheduling policies including
Base policy, lowest-memory-consumption-first (LMCF) policy
and balanced-memory-consumption (BMC) policy to improve
memory efficiency. All policies work with “safety” condition
to ensure that the memory usage of concurrent tasks does not
exceed the GPU memory capacity. Fortunately, the CoGNN
can estimate the PMCs of training tasks and accumulate them
to keep each task group under “safety” condition. Moreover,
the maximum size of a task group equals the number of work-
ers. Next, we present the details of the scheduling policies.

1) Base policy: This policy is an extension of the first-
in-first-out (FIFO) algorithm. Specifically, it follows in-order
scheduling and greedily packs more tasks into the same group.
However, packing too many tasks exceeding the GPU memory
capacity will either crash the tasks or incur costly paging over-
head with UVM enabled. Therefore, task packaging needs to
accumulate PMC estimation results to meet “safety” condition.

2) LMCF policy: The Base policy might cause short-
term tasks to suffer long queuing latencies while waiting for
large ongoing tasks to complete. The shortest-job-first (SJF)

and shortest-remaining-time-first (SRTF) algorithms [13], [14]
have been proposed to reduce the queuing time with and
without preemption. However, the task duration or remaining
time needs to be profiled offline, which affects usability and
operation cost [16]. To address this issue, we propose the
LMCF policy, given that the graph dimensions are positively
correlated with computation complexity for GNN training.
This policy adopts the non-preemptive mechanism based on
out-of-order scheduling. Specifically, it sorts the task indices
in the queue in ascending order of PMCs, and then traverses
the sorting to generate task groups. Likewise, the size of a
single task group cannot exceed the number of workers.

3) BMC policy: Although the LMCF policy alleviates the
queuing latency of short-term tasks, grouping together training
tasks with high PMCs may lead to increased resource conflicts.
Therefore, we propose the BMC policy to balance makespan
and queuing time. The principle is to group tasks with high and
low computation complexity into a group, thereby reducing the
performance interference of concurrent execution. Algorithm 1
illustrates the task grouping with BMC policy. We push the
GNN tasks into a double-ended queue (Deque) [23] based on
the ascending order of PMCs. We iteratively pop tasks from
the right and left ends of the Deque and accumulate the PMCs
(Line 6-11). If the group PMC reaches the allocated memory
or the group size equals the number of workers, advance to
the next group and initialize the counters (Line 12-17). The
former steps are repeated until Deque is empty, and the policy
obtains the final task groups.

Algorithm 1 Task grouping with BMC scheduling policy.
1: Input: ascending queue Deque, number of workers nWorker,

memory allocated MA
2: Output: task group list taskGroup
3: queSize← Deque.size // original stack size
4: // initialize group PMC, group counter, and element counter
5: gPMC, gCounter, eCounter ← 0, −1, nWorker
6: for i in range [0, queSize) do
7: if i%2 == 1 then
8: task ← Deque.pop() // pop a task from the right side
9: else

10: task ← Deque.popleft() // pop from the left side
11: end if
12: gPMC ← gPMC + task.PMC // accumulate PMCs
13: if gPMC >= MA or eCounter == nWorker then
14: taskGroup.append([]) // advance to next group
15: gPMC, eCounter ← task.PMC, 0
16: gCounter ← gCounter + 1
17: end if
18: taskGroup[gCounter].append(task)
19: eCounter ← eCounter + 1
20: end for

E. Implementation Details

We have implemented a system prototype of CoGNN in C++
and Python codes, and built it on top of PyG and PyTorch [36].
However, the ideas behind CoGNN are general to be adapted
to other GNN frameworks or DL backends, and we leave such
engineering efforts for future work.

We extend the PyTorch allocator module with CUDA IPC
API to enable explicit management of GPU memory pool.
We then add functions to insert buffers with specific CUDA
streams and clear buffers from the memory pool. The buffer
insertion function can be invoked multiple times to achieve
spatial sharing of GNN training tasks. After the task group
completes execution, the buffer clearing function will be
invoked to clear memory allocations. Note that the actual size
of memory allocated for tensors should meet certain alignment
requirements. To address this issue for PyTorch, we leverage
padding to align to multiples of 512 bytes.

The CoGNN consists of the scheduler process and worker
process responsible for queue management and task execution,
respectively. The scheduler process listens for task requests
sent from the client through the TCP port. The requested
tasks need to be in the list registered to the scheduler process
so that the CoGNN can load the GNN models from disk
to CPU memory. After receiving the requests, the scheduler
process packs the tasks into a queue and loads the model
structures. Next, the scheduler process profiles the PMCs
through computation graph traversal to generate task groups.
At each group iteration, the scheduler process sends the hash
indices of the tasks to the worker process. The two processes
are then overlapped to reduce pipelining latency.

The scheduler process inserts parameter buffers and trans-
fers the model parameters to GPU memory with synchro-
nization through CUDA events. The worker process identifies
tasks according to the hash indices and dispatches them to
worker threads. Each worker thread loads the corresponding
GNN model and attaches it to the CUDA stream. In addition,
each worker thread adds hooks to wait for the scheduler to
transfer the parameters needed for model execution. After the
results return, the worker thread will send a “finish” signal
to the scheduler process through PyTorch Pipe API. When the
number of received signals equals the group size, the scheduler
process iterates to the execution of the next group.

V. EVALUATION

A. Experiment Setup

1) Hardware and Software Configurations: The hardware
specifications are presented in Table III. The experiments
are conducted on Ubuntu 20.04 with GCC v9.3 and NVCC
v11.1. The CoGNN is built on PyG v1.7 and PyTorch v1.8.
In addition, PyTorch is modified to support explicit task co-
location and memory management for CoGNN.

TABLE III
HARDWARE SPECIFICATIONS.

CPU GPU

Model Intel Xeon E5-2680 v4 CPU NVIDIA Tesla V100
Frequency 2.4GHz 1.5GHz
Cores 28 13440 (80 SMs)
Cache 32KB L1, 256KB L2, 35MB L3 6MB L2
Memory 378GB DDR4 32GB HBM2
Bandwidth 76.8GB/s 900GB/s

2) Graph Datasets and Task Queues: The graph datasets
used for experiments are presented in Table IV. As seen,
the graph datasets have diverse graph dimensions and fea-
ture lengths. Such diversity indicates significant differences
in memory usage and computation complexity. We set the
number of hidden units in each GNN layer to 64. The
frameworks adjust the fan-outs of sampling-based GNNs by
sampling ratios [11], [51]. Adopting PyG default settings, the
sampling ratios of SAGE and GAT are set to 0.5 and 0.6,
respectively. We set the number of layers in the range of [4, 10]
and train for 200 epoches. The layer number and graph dataset
are combined to generate a task queue consisting of 20 models
for each GNN. Furthermore, we sample 20 models from the
combinations to obtain a task queue with distinct GNNs. To
conclude, we perform experiments based on five task queues,
including four queues with identical GNNs (i.e., GCN, SAGE,
GAT, and GIN) and one queue with distinct GNNs (i.e., Mix).
This variety of task organizations provides a comprehensive
evaluation of the effectiveness of CoGNN.

TABLE IV
GRAPH DATASETS USED FOR EVALUATION.

Dataset #Vertex #Edge #Feature #Class

cora (CR) 2,708 10,858 1,433 7
citeseer (CT) 3,327 9,464 3,703 6
pubmed (PB) 19,717 88,676 500 3

PROTEINS (PR) 43,471 162,088 29 2
artist (AT) 50,515 1,638,396 100 12

soc-Blog (SB) 88,784 2,093,195 128 39
DD (DD) 334,925 1,686,092 98 2

amazon0601 (AM) 410,236 4,878,875 96 22
TWITTER (TW) 580,768 1,435,116 1,323 2

Yeast (YS) 1,714,644 3,636,546 74 2
OVCAR-8H (OV) 1,890,931 3,946,402 66 2

3) Comparison Methods and Metrics: We compare CoGNN
with three scheduling policies (i.e., Base, LMCF, and BMC)
against Default, MPS, MIG, and PipeSwitch. Note that MIG
only supports Ampere and later GPU architectures (e.g.,
NVIDIA A100 in Section V-E). The PipeSwitch is aimed
at fast preemptive switching of tasks that cannot be directly
comparable. We extend PipeSwitch to execute GNN tasks in
a temporal-sharing manner. The MPS and MIG execute GNN
tasks in a spatial-sharing manner. For a fair comparison, the
number of spatial-sharing tasks and CoGNN workers is both
set to 2. For MIG, the fraction of memory and SMs are
set to (4/8, 4/8) and (3/7, 4/7) [33]. The UVM is enabled
to handle possible memory oversubscription with MPS and
MIG. We have also tried to compare with Salus and Zico.
However, Zico is not open source, and Salus fails to re-
produce as described in [27] because of its outdated version.
In addition, both of them are built on TensorFlow [1] and
thus cannot be compared fairly with PyTorch-based methods.
To determine task execution efficiency, we select four key
metrics including SM utilization, makespan, JCT, and queuing
time (QT) for comparison, which have been widely adopted

in existing works [16], [27], [62]. We run each method 10
times and present the average results to isolate the effects of
randomness.

B. Overall Performance Comparison
To evaluate the performance comparison of different meth-

ods, we present the makespans, average JCTs, and average
QTs of task queues in Table V. The SM utilization comparison
is shown in Figure 9. Overall, the CoGNN achieves better
performance than Default, MPS, and PipeSwitch on all metrics.
Below we analyze the experiment results in depth.

1) SM Utilization: Since PyTorch profiler [40] does not
support obtaining the overall achieved occupancy of multi-
ple tasks, we leverage NVIDIA System Management Inter-
face [34] to obtain the SM utilization of different methods.
The CoGNN and MPS achieve higher SM utilization due
to the ability of spatial sharing. This indicates that a single
GNN training task often cannot fully utilize GPU resources.
Although the MPS achieves higher SM utilization than CoGNN
for GAT, the memory oversubscription caused by MPS makes
the kernels busy waiting for a large number of page migra-
tions, other than performing useful computation. Such paging
overhead significantly degrades the training performance.

30

40

50

60

70

80

90

100

GCN SAGE GAT GIN Mix

SM
 U

til
iz

at
io

n
(%

)

Default MPS PipeSwitch CoGNN-Base CoGNN-LMCF CoGNN-BMC

Fig. 9. SM utilization comparison of different methods on V100 GPU.

2) Makespan: The MPS achieves more than 2× slowdown
for all task queues except GCN due to memory oversub-
scription. The PipeSwitch achieves an average speedup of
2.1× compared to Default with the same manner of se-
quentially executing tasks. The reason is that the memory
pool maintained by PipeSwitch avoids frequent tensor alloca-
tion and deallocation operations. The CoGNN explores more
optimization opportunities by combining spatial sharing and
temporal sharing, thus almost all scheduling policies achieve
shorter makespans than PipeSwitch. Specifically, tasks within
a group improve overall training throughput through spatial
sharing, whereas different groups reduce pipelining latency by
overlapping data preprocessing and computation. Furthermore,
the universal acceleration of CoGNN across all task queues
demonstrates its generality for various GNNs. Among the
policies, the CoGNN-BMC achieves the shortest makespans for
most task queues (i.e., SAGE, GAT, and Mix). This is because
the BMC policy places high and low complexity GNN tasks
in the same group according to the estimation results, thus
reducing resource contention and improving sharing efficiency.

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON V100 GPU.

Method-policy
Makespan (min) Average JCT (min) Average QT (min)

GCN SAGE GAT GIN Mix GCN SAGE GAT GIN Mix GCN SAGE GAT GIN Mix

Default 12.14 11.57 18.40 19.10 15.02 7.47 7.04 10.47 14.20 8.86 6.86 6.46 9.55 13.25 8.11
MPS 4.26 10.55 44.00 23.12 44.69 3.27 8.05 39.47 20.24 40.96 2.89 7.02 35.21 18.21 36.74
PipeSwitch 3.54 3.53 7.02 11.67 6.07 2.89 2.87 4.93 10.56 4.34 2.71 2.69 4.58 9.97 4.04
CoGNN-Base 3.41 3.40 6.54 11.85 6.04 2.81 2.78 4.52 10.56 4.17 2.62 2.59 4.13 9.92 3.83
CoGNN-LMCF 3.43 3.45 6.88 11.55 5.65 0.56 0.57 1.86 1.33 1.15 0.34 0.35 1.38 0.67 0.80
CoGNN-BMC 3.47 3.29 6.40 13.76 5.46 2.86 2.73 4.62 11.38 4.33 2.67 2.54 4.24 10.67 4.01

3) JCT & QT: The CoGNN with LMCF policy achieves
significant reductions for both average JCTs and QTs. Specif-
ically, the CoGNN-LMCF achieves 9.9× and 15.1× reductions
of JCT and QT on average compared to Default across all
task queues. The CoGNN-LMCF also achieves 18.4× and
25.4× reductions compared to MPS, whereas it achieves 4.9×
and 7.8× reductions compared to PipeSwitch. The reason is
that the LMCF policy prioritizes the execution of tasks with
small PMCs through out-of-order scheduling. In contrast, the
FIFO scheduling of MPS and PipeSwitch may suffer from
head-of-line blocking. This indicates that short-term tasks
experience significant latencies by waiting for long-running
tasks to complete. Figure 10 shows the CDF curves of JCTs
for task queues with different methods. It can be observed
that the JCT distributions are uneven due to the variability
of graph datasets. Likewise, the CoGNN-LMCF significantly
outperforms other methods or policies with smaller JCT for
most tasks.

C. PMC Estimation Accuracy

Accurate estimation of PMCs is necessary to guarantee
the memory safety of the task groups generated by CoGNN.
We use the metric of relative error (RE) [61] to assess
the estimation precision. Figure 11 shows the REs of PMC
estimation for GNN training tasks. It can be observed that
the CoGNN achieves a RE of less than 6% for all tasks. The
reason is that the memory cost functions accurately calculate
the memory consumption of GNN operators. Furthermore, the
CoGNN generally achieves less than 1% RE for large graph
datasets. This is because the output and ephemeral tensors of
GNN operators occupy a large amount of memory space [58],
which dilutes the estimation error caused by the implicit
tensors from GNN frameworks. On the other hand, the CoGNN
achieves stable accuracy results with changes in the number of
GNN layers. This indicates that the DAG generated according
to the network structure well represents the computation flow
of single-epoch training. In such a way, PMC estimation can
be adaptively scaled to an arbitrary number of network layers.
From the above analysis, we empirically set threshold for
multiplication to 1.15, which is sufficient to ensure memory
safety because of accurate PMC estimations.

D. Beyond Pairwise

Existing works such as PipeSwitch and Zico generally
only support temporal sharing or pairwise spatial sharing.

In contrast, the CoGNN can support spatial sharing of any
number of tasks due to its flexible task management mecha-
nism. Figure 12 shows the normalized performance of CoGNN
with three workers compared to that with two workers. It
can be observed that the performance change of increasing
the number of workers is not consistent for different GNNs.
For example, 3-workers CoGNN achieves 1.18×, 1.14×, and
1.10× increases for GCN in makespan, average JCT, and
average QT, respectively. This is because the GCN layers
are mainly composed of sparse computations, which may
lead to severe cache conflicts when launching more workers.
The performance degradation caused by cache conflicts is
unpredictable, even leading to a 2.13× increase in makespan
for SAGE with BMC policy.

On the other hand, 3-workers COGNN achieves 1.02×,
1.06×, and 1.11× reductions for GAT in makespan, average
JCT, and average QT. The reason is that the fully connected
operations in GAT layers are less memory-bound than sparse
graph operations [60], and thus adding workers can make
better use of memory bandwidth. In addition, spatial shar-
ing of different GNNs may achieve better performance im-
provements. For example, 3-workers CoGNN achieves 1.01×,
1.04×, and 1.08× reductions for Mix in makespan, average
JCT, and average QT. This is because GNNs have different
demands on GPU resources, which alleviates the performance
interference of concurrent tasks. However, the CoGNN still
fails to identify resource contention among concurrent GNN
training tasks. To address this issue, the PMC profiler can be
extended to predict the resource usage of GNN operators and
the latency of operator overlap [10]. We leave such extensions
for future work.

E. Applying to other GPU Hardware

To demonstrate the generality of our approach, we evaluate
CoGNN on NVIDIA A100 GPU with 108 SMs and 40GB
memory. Table VI presents the makespans, average JCTs, and
average QTs of task queues with different methods. It can
be observed that MIG performs even worse than Default for
most task queues. This is because the static resource partition
of MIG causes severe load imbalance and thus exacerbates
the UVM overhead. Consistent with the experiment results
on V100 GPU, the CoGNN achieves better performance than
Default, MIG, MPS, and PipeSwitch on all metrics on A100
GPU. The CoGNN-BMC achieves the shortest makespan for
most task queues, while the CoGNN-LMCF always achieves

0

20

40

60

80

100

2 3 4 5 6 7 8 9 10

Fr
ac

tio
n

of
 T

as
ks

 (%
)

log2JCT (s)

Default
MPS
PipeSwitch
CoGNN-Base
CoGNN-LMCF
CoGNN-BMC GCN

0

20

40

60

80

100

2 3 4 5 6 7 8 9 10

Fr
ac

tio
n

of
 T

as
ks

 (%
)

log2JCT (s)

Default
MPS
PipeSwitch
CoGNN-Base
CoGNN-LMCF
CoGNN-BMC SAGE

0

20

40

60

80

100

4 5 6 7 8 9 10 11 12

Fr
ac

tio
n

of
 T

as
ks

 (%
)

log2JCT (s)

Default
MPS
PipeSwitch
CoGNN-Base
CoGNN-LMCF
CoGNN-BMC GAT

0

20

40

60

80

100

2 3 4 5 6 7 8 9 10 11

Fr
ac

tio
n

of
 T

as
ks

 (%
)

log2JCT (s)

Default
MPS
PipeSwitch
CoGNN-Base
CoGNN-LMCF
CoGNN-BMC GIN

0

20

40

60

80

100

2 3 4 5 6 7 8 9 10 11 12

Fr
ac

tio
n

of
 T

as
ks

 (%
)

log2JCT (s)

Default
MPS
PipeSwitch
CoGNN-Base
CoGNN-LMCF
CoGNN-BMC Mix

Fig. 10. Comparison of JCT distributions for task queues with different methods.

-14

-12

-10

-8

-6

-4

lo
g2
RE

4-layers
6-layers
8-layers
10-layers

CT CR PB PR AT SB DD AM TW YS OV
-10

-9

-8

-7

-6

-5

-4
lo
g2
RE

4-layers
6-layers
8-layers
10-layers

CT CR PB PR AT SB DD AM TW YS OV
-14

-12

-10

-8

-6

-4

-2

lo
g2
RE

4-layers
6-layers
8-layers
10-layers

CT CR PB PR AT SB DD AM TW YS OV
-12

-10

-8

-6

-4

lo
g2
RE

4-layers
6-layers
8-layers
10-layers

CT CR PB PR AT SB DD AM TW YS OV

GCN SAGE GAT GIN

Fig. 11. Relative errors of PMC estimation for GNN training tasks with CoGNN.

0.8

0.9

1.0

1.1

1.2

N
or

m
al

iz
ed

 M
ak

es
pa

n

2-workers 3-workers

GCN SAGE GAT GIN Mix

2.13

0.8

0.9

1.0

1.1

1.2

N
or

m
al

iz
ed

 A
ve

. J
CT

2-workers 3-workers

GCN SAGE GAT GIN Mix

1.90

0.8

0.9

1.0

1.1

1.2

N
or

m
al

iz
ed

 A
ve

. Q
T

2-workers 3-workers

GCN SAGE GAT GIN Mix

1.861.21

Fig. 12. Performance of CoGNN with three workers normalized to that with two workers.

the shortest average JCT and QT. However, there are differ-
ences in performance details on A100 compared to V100. For
example, the MPS achieves significant performance improve-
ments on A100 because the larger memory eliminates the need
for frequent data swapping. In addition, the CoGNN-BMC
achieves 1.11× and 1.12× makespan reductions compared to
PipeSwitch for Mix queue on V100 and A100. The higher
makespan reduction is that A100 has more cores and larger
memory bandwidth, thereby alleviating performance interfer-
ence for tasks with different resource requirements.

From the above analysis, we believe that the CoGNN has
greater performance potential on future GPU architectures. For
example, the latest NVIDIA H100 [32] has doubled the cores,
memory size, and memory bandwidth due to the evolution of
the manufacturing process. Moreover, H100 introduces thread
block clusters to provide collaboration and data exchange
across multiple SMs. This can further reduce the cache con-
tention caused by concurrent GNN training to a certain extent.

F. Overhead Analysis

We normalize the CoGNN overhead to the duration of the
task queue executing only one epoch. The CoGNN overhead
can be divided into three parts, including PMC estimation,
task grouping, and task scheduling. PMC estimation loads each
model structure and traverses the computation graph through

memory cost functions to update the PMC information. Task
grouping re-orders the task queue and generates task groups
according to the scheduling policy. Task scheduling iteratively
allocates memory, dispatches workers, and synchronizes tasks
within group. Note that the task grouping time is less than
0.001 epoches, which is negligible compared to GNN train-
ing. Figure 13 shows the breakdown of CoGNN processing,
including PMC estimation and task scheduling. It can be
observed that the total overhead of CoGNN is acceptable. PMC
estimation and task scheduling take an average of 2.1 and
3.9 epoches across all task queues and scheduling policies,
respectively. In production scenarios, thousands of epoches
are often required to improve prediction accuracy. In sum, it
is effective to improve GPU throughput by using CoGNN to
schedule and manage massive GNN training tasks.

G. Auxiliary Analysis

1) Memory Safety: We evaluate the runtime memory con-
sumption of CoGNN to demonstrate the effectiveness of the
task grouping strategy. Figure 14 shows the PMC distribution
of task groups with out-of-order policies. On V100 GPU,
we empirically reserve 6GB memory for storing framework-
internal data such as CUDA context and model workspace. It
can be observed that task co-location never leads to memory
oversubscription. Moreover, the PMCs of certain task groups

TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON A100 GPU.

Method-policy
Makespan (min) Average JCT (min) Average QT (min)

GCN SAGE GAT GIN Mix GCN SAGE GAT GIN Mix GCN SAGE GAT GIN Mix

Default 11.54 10.87 17.66 18.07 14.29 7.15 6.67 10.09 13.49 8.46 6.57 6.13 9.21 12.59 7.74
MIG 10.03 9.87 84.54 25.02 80.23 6.29 6.28 75.05 20.54 72.33 5.36 5.35 70.15 18.79 67.94
MPS 3.78 6.78 22.84 13.56 9.48 2.66 4.23 18.33 10.48 5.69 2.31 3.58 16.11 9.33 4.94
PipeSwitch 3.17 2.77 6.10 10.29 4.93 2.52 2.20 4.14 9.25 3.47 2.36 2.06 3.84 8.74 3.23
CoGNN-Base 3.23 2.69 5.63 10.40 4.85 2.54 2.16 3.85 9.24 3.43 2.35 2.01 3.48 8.68 3.16
CoGNN-LMCF 3.22 2.59 5.76 10.22 4.54 0.73 0.56 1.89 1.31 1.17 0.52 0.39 1.46 0.72 0.87
CoGNN-BMC 3.10 4.05 5.49 11.13 4.39 2.47 3.11 3.86 9.40 3.38 2.27 2.88 3.50 8.81 3.12

0

2

4

6

8

10

12

of

 E
po

ch
es

PMC Estimation Task Scheduling

GCN SAGE GAT GIN Mix

Fig. 13. Performance breakdown of CoGNN processing normalized to one-
epoch execution time of task queues.

are close to the V100 capacity, indicating that the GPU mem-
ory is fully utilized. The LMCF and BMC policies exhibit op-
posite curves with group iterations due to different scheduling
algorithms. Nevertheless, the CoGNN can accurately estimate
PMCs and generate task groups adaptively to avoid working
set size exceeding GPU memory capacity.

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12

lo
g2

PM
C

(M
B)

Group ID

LMCF-GCN LMCF-SAGE LMCF-GAT LMCF-GIN LMCF-Mix
BMC-GCN BMC-SAGE BMC-GAT BMC-GIN BMC-Mix

V100 (32GB)

Fig. 14. PMC distribution of task groups with out-of-order policies.

2) PMC & Execution Time: The CoGNN assumes that
PMC reflects computation complexity and further affects exe-
cution time. Larger graph dimension sizes and feature length
tend to result in larger output and ephemeral tensors dominat-
ing the memory consumption during training. Moreover, larger
dimension sizes indicate that each network layer contains more
basic arithmetic operations (e.g., multiply and add), often
leading to a longer execution time. Therefore, co-locating
high-PMC GNN tasks may exacerbate cache thrashing and

memory bandwidth contention. Figure 15 shows the PMCs
and durations of 8-layer GNNs processing different graph
datasets. It can be observed that PMC is strongly correlated
with execution time, which is consistent with our assumption.

4

6

8

10

12

14

0

3

6

9

12

15

18

lo
g2

Ti
m

e
(s

)

lo
g2

PM
C

(M
B)

GCN-PMC SAGE-PMC
GAT-PMC GIN-PMC
GCN-Dur SAGE-Dur
GAT-Dur GIN-Dur

CTCR PB PR AT SB DD AM TW YS OV

Fig. 15. Correlation of PMC and execution time for GNNs with eight layers.

VI. RELATED WORK

GNN Acceleration on GPUs. Recent research works deeply
mine the computation features of GNNs to enable fine-grained
optimizations for GPU architectures [17], [19], [20], [28], [30],
[52], [53]. GE-SpMM [19] improved the access efficiency by
using shared memory to cache sparse matrix rows and merging
the workloads of different warps. FeatGraph [17] combined
graph partitioning with feature dimension tiling to optimize
cache utilization during GNN aggregation. Huang et al. [20]
clustered central nodes by locality-sensitive hashing and fur-
ther partitioned the workload by neighbor grouping to address
load imbalance. GNNAdvisor [53] introduced warp-aligned
thread mapping with neighbor and dimension partitioning to
reduce thread divergence. ES-SpMM [28] proposed in-kernel
edge sampling that downsized the graph to fit into shared
memory and eliminated preprocessing overhead. TC-GNN [52]
identified the non-zero tiles by sparse graph translation and
adapted the input graph to the dense computations of tensor
cores. The above works are orthogonal to this paper that targets
concurrent GNN training scheduling.
Memory Management for Training. Since limited memory
capacity restricts the scale of network training, research works
generally utilize re-computation or swapping to manage GPU
memory [18], [37], [42]–[45], [50], [65]. vDNN [44] per-
formed data swapping at layer granularity, where data was

offloaded to the CPU in forward phase and prefetched at back-
propagation. SuperNeurous [50] introduced unified tensor pool
to reuse physical memory and re-computed less expensive
layers at back-propagation. Shriram et al. [45] extended vDNN
that applied zero-value compression and non-offload high-end
allocation to reduce memory fragments. SwapAdvisor [18]
used genetic algorithm to explore swapping decisions and
designed data engine simulator to estimate the execution
time. Capuchin [37] performed mini-batches to obtain access
patterns of tensors and selected cheap operations for collective
re-computation. Sentinel [42] coordinated OS and runtime
profiling to enable co-allocating tensors with similar memory
access frequency into the same pages. These approaches
are effective against memory oversubscription and serve as
references for processing larger graph inputs on GPUs.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a concurrent GNN training frame-
work CoGNN, which can efficiently manage massive GNN
training tasks co-located on GPUs. The CoGNN organizes
training tasks into a queue and extracts the information of
model input and network structure. After that, the CoGNN
profiles the computation graph of each task and estimates the
memory consumption according to the operator cost functions.
Finally, the CoGNN exploits out-of-order scheduling policies
to generate task groups that are iteratively submitted to GPU
for execution. The experiment results show that the CoGNN
can achieve shorter completion and queuing time for training
tasks from diverse GNN models.

For future work, we would like to extend the PMC profiler
of CoGNN to predict the resource usage of GNN operators
and the latency of overlapped operators. In such a way, we can
quantify the performance interference among spatially shared
training tasks. Thanks to the flexible management mechanism,
we would like to extend CoGNN to hybrid scenarios with
both training and inference tasks. We can further explore how
to guarantee the QoS of inference tasks and maximize the
throughput of training tasks under GPU co-location. Moreover,
we would like to extend CoGNN to support other deep learning
frameworks such as Tensorflow and Mindspore2, as well as to
evaluate CoGNN on other GPU platforms such as AMD and
Iluvatar Corex3.

ACKNOWLEDGEMENTS

This work was supported by National Key Research and
Development Program of China (No. 2020YFB1506703), Na-
tional Natural Science Foundation of China (No. 62072018
and 61732002), Special Fund for Basic Scientific Research of
Central Universities, and Iluvatar CoreX semiconductor Co.,
Ltd. Hailong Yang is the corresponding author.

2https://www.mindspore.cn/
3https://www.iluvatar.com/

REFERENCES

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., et al.: {TensorFlow}: A system
for {Large-Scale} machine learning. In: 12th USENIX symposium on
operating systems design and implementation (OSDI 16). pp. 265–283
(2016)

[2] Allen, T., Ge, R.: Demystifying gpu uvm cost with deep runtime and
workload analysis. In: 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). pp. 141–150. IEEE (2021)

[3] Bai, Z., Zhang, Z., Zhu, Y., Jin, X.: {PipeSwitch}: Fast pipelined context
switching for deep learning applications. In: 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20). pp. 499–
514 (2020)

[4] Baruah, T., Shivdikar, K., Dong, S., Sun, Y., Mojumder, S.A., Jung,
K., Abellán, J.L., Ukidave, Y., Joshi, A., Kim, J., et al.: Gnnmark: A
benchmark suite to characterize graph neural network training on gpus.
In: 2021 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). pp. 13–23. IEEE (2021)

[5] Beltagy, I., Lo, K., Cohan, A.: Scibert: A pretrained language model for
scientific text. arXiv preprint arXiv:1903.10676 (2019)

[6] Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-
parameter optimization. Advances in neural information processing
systems 24 (2011)

[7] Chakaravarthy, V.T., Pandian, S.S., Raje, S., Sabharwal, Y., Suzumura,
T., Ubaru, S.: Efficient scaling of dynamic graph neural networks.
In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. pp. 1–15 (2021)

[8] Chen, H.H., Lin, E.T., Chou, Y.M., Chou, J.: Gemini: Enabling multi-
tenant gpu sharing based on kernel burst estimation. IEEE Transactions
on Cloud Computing (2021)

[9] Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catan-
zaro, B., Shelhamer, E.: cudnn: Efficient primitives for deep learning.
arXiv preprint arXiv:1410.0759 (2014)

[10] Cui, W., Zhao, H., Chen, Q., Zheng, N., Leng, J., Zhao, J., Song,
Z., Ma, T., Yang, Y., Li, C., et al.: Enable simultaneous dnn services
based on deterministic operator overlap and precise latency prediction.
In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. pp. 1–15 (2021)

[11] Fey, M., Lenssen, J.E.: Fast graph representation learning with pytorch
geometric. arXiv preprint arXiv:1903.02428 (2019)

[12] Gao, Y., Liu, Y., Zhang, H., Li, Z., Zhu, Y., Lin, H., Yang, M.:
Estimating gpu memory consumption of deep learning models. In:
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. pp. 1342–1352 (2020)

[13] Grandl, R., Kandula, S., Rao, S., Akella, A., Kulkarni, J.:
{GRAPHENE}: Packing and {Dependency-Aware} scheduling for
{Data-Parallel} clusters. In: 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). pp. 81–97 (2016)

[14] Gu, J., Chowdhury, M., Shin, K.G., Zhu, Y., Jeon, M., Qian, J., Liu,
H., Guo, C.: Tiresias: A {GPU} cluster manager for distributed deep
learning. In: 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19). pp. 485–500 (2019)

[15] Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning
on large graphs. Advances in neural information processing systems 30
(2017)

[16] Hu, Q., Sun, P., Yan, S., Wen, Y., Zhang, T.: Characterization and
prediction of deep learning workloads in large-scale gpu datacenters.
In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. pp. 1–15 (2021)

[17] Hu, Y., Ye, Z., Wang, M., Yu, J., Zheng, D., Li, M., Zhang, Z., Zhang,
Z., Wang, Y.: Featgraph: A flexible and efficient backend for graph
neural network systems. In: SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. pp. 1–13.
IEEE (2020)

[18] Huang, C.C., Jin, G., Li, J.: Swapadvisor: Pushing deep learning beyond
the gpu memory limit via smart swapping. In: Proceedings of the
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems. pp. 1341–1355 (2020)

[19] Huang, G., Dai, G., Wang, Y., Yang, H.: Ge-spmm: General-purpose
sparse matrix-matrix multiplication on gpus for graph neural networks.
In: SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. pp. 1–12. IEEE (2020)

[20] Huang, K., Zhai, J., Zheng, Z., Yi, Y., Shen, X.: Understanding and
bridging the gaps in current gnn performance optimizations. In: Pro-
ceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. pp. 119–132 (2021)

[21] Jeon, M., Venkataraman, S., Phanishayee, A., Qian, J., Xiao, W.,
Yang, F.: Analysis of {Large-Scale}{Multi-Tenant}{GPU} clusters for
{DNN} training workloads. In: 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). pp. 947–960 (2019)

[22] Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa,
R., Bates, S., Bhatia, S., Boden, N., Borchers, A., et al.: In-datacenter
performance analysis of a tensor processing unit. In: Proceedings of the
44th annual international symposium on computer architecture. pp. 1–12
(2017)

[23] Kashyap, B.R.: The double-ended queue with bulk service and limited
waiting space. Operations Research 14(5), 822–834 (1966)

[24] Kipf, T.N., Welling, M.: Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

[25] Li, J., Louri, A., Karanth, A., Bunescu, R.: Gcnax: A flexible and
energy-efficient accelerator for graph convolutional neural networks. In:
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). pp. 775–788. IEEE (2021)

[26] Li, S., Song, W., Fang, L., Chen, Y., Ghamisi, P., Benediktsson, J.A.:
Deep learning for hyperspectral image classification: An overview. IEEE
Transactions on Geoscience and Remote Sensing 57(9), 6690–6709
(2019)

[27] Lim, G., Ahn, J., Xiao, W., Kwon, Y., Jeon, M.: Zico: Efficient {GPU}
memory sharing for concurrent {DNN} training. In: 2021 USENIX
Annual Technical Conference (USENIX ATC 21). pp. 161–175 (2021)

[28] Lin, C.Y., Luo, L., Ceze, L.: Accelerating spmm kernel with
cache-first edge sampling for graph neural networks. arXiv preprint
arXiv:2104.10716 (2021)

[29] Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities
improve neural network acoustic models. In: Proc. icml. vol. 30, p. 3.
Citeseer (2013)

[30] Min, S.W., Wu, K., Huang, S., Hidayetoğlu, M., Xiong, J., Ebrahimi,
E., Chen, D., Hwu, W.m.: Large graph convolutional network train-
ing with gpu-oriented data communication architecture. arXiv preprint
arXiv:2103.03330 (2021)

[31] NVIDIA: Sharing a gpu between mpi processes: multi-process service
(2012)

[32] NVIDIA: Nvidia h100 tensor core gpu architecture.
https://nvdam.widen.net/s/9bz6dw7dqr/gtc22-whitepaper-hopper (2022)

[33] NVIDIA: Nvidia multi-instance gpu user guide.
https://docs.nvidia.com/datacenter/tesla/mig-user-guide (2022)

[34] NVIDIA: Nvidia system management interface.
https://developer.nvidia.com/nvidia-system-management-interface
(2022)

[35] NVIDIA, N.V.S.E.: 4.7 user guide (2022)
[36] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,

Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An
imperative style, high-performance deep learning library. Advances in
neural information processing systems 32 (2019)

[37] Peng, X., Shi, X., Dai, H., Jin, H., Ma, W., Xiong, Q., Yang, F.,
Qian, X.: Capuchin: Tensor-based gpu memory management for deep
learning. In: Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems. pp. 891–905 (2020)

[38] Peng, Y., Bao, Y., Chen, Y., Wu, C., Guo, C.: Optimus: an efficient
dynamic resource scheduler for deep learning clusters. In: Proceedings
of the Thirteenth EuroSys Conference. pp. 1–14 (2018)

[39] PyTorch: The topological sorting algo-
rithm for computation graphs in pytorch.
https://github.com/pytorch/pytorch/blob/v1.8.0/caffe2/core/nomnigraph/
include/nomnigraph/Graph/TopoSort.h (2021)

[40] PyTorch: Pytorch profiler. https://pytorch.org/tutorials/recipes/recipes/
profiler recipe.html (2022)

[41] Rasley, J., He, Y., Yan, F., Ruwase, O., Fonseca, R.: Hyperdrive:
Exploring hyperparameters with pop scheduling. In: Proceedings of the
18th ACM/IFIP/USENIX Middleware Conference. pp. 1–13 (2017)

[42] Ren, J., Luo, J., Wu, K., Zhang, M., Jeon, H., Li, D.: Sentinel: Efficient
tensor migration and allocation on heterogeneous memory systems
for deep learning. In: 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). pp. 598–611. IEEE (2021)

[43] Ren, J., Rajbhandari, S., Aminabadi, R.Y., Ruwase, O., Yang, S.,
Zhang, M., Li, D., He, Y.: {ZeRO-Offload}: Democratizing {Billion-
Scale} model training. In: 2021 USENIX Annual Technical Conference
(USENIX ATC 21). pp. 551–564 (2021)

[44] Rhu, M., Gimelshein, N., Clemons, J., Zulfiqar, A., Keckler, S.W.:
vdnn: Virtualized deep neural networks for scalable, memory-efficient
neural network design. In: 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). pp. 1–13. IEEE (2016)

[45] Shriram, S., Garg, A., Kulkarni, P.: Dynamic memory management for
gpu-based training of deep neural networks. In: 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). pp. 200–209.
IEEE (2019)

[46] Stahlberg, F.: Neural machine translation: A review. Journal of Artificial
Intelligence Research 69, 343–418 (2020)

[47] Sun, Q., Liu, Y., Yang, H., Jiang, Z., Qian, D.: Stencilmart: Predicting
optimization selection for stencil computations across gpus. In: 2022
IEEE International Parallel and Distributed Processing Symposium
(IPDPS). pp. 1–11. IEEE (2022)

[48] Sun, Q., Liu, Y., Yang, H., Luan, Z., Qian, D.: Smqos: Improving
utilization and energy efficiency with qos awareness on gpus. In: 2019
IEEE International Conference on Cluster Computing (CLUSTER).
pp. 1–5. IEEE (2019)

[49] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio,
Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

[50] Wang, L., Ye, J., Zhao, Y., Wu, W., Li, A., Song, S.L., Xu, Z., Kraska,
T.: Superneurons: Dynamic gpu memory management for training deep
neural networks. In: Proceedings of the 23rd ACM SIGPLAN sympo-
sium on principles and practice of parallel programming. pp. 41–53
(2018)

[51] Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J.,
Ma, C., Yu, L., Gai, Y., et al.: Deep graph library: A graph-centric,
highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 (2019)

[52] Wang, Y., Feng, B., Ding, Y.: Tc-gnn: Accelerating sparse graph neural
network computation via dense tensor core on gpus. arXiv preprint
arXiv:2112.02052 (2021)

[53] Wang, Y., Feng, B., Li, G., Li, S., Deng, L., Xie, Y., Ding, Y.:
{GNNAdvisor}: An adaptive and efficient runtime system for {GNN}
acceleration on {GPUs}. In: 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). pp. 515–531 (2021)

[54] Wu, X., Rao, J., Chen, W., Huang, H., Ding, C., Huang, H.: Switchflow:
preemptive multitasking for deep learning. In: Proceedings of the 22nd
International Middleware Conference. pp. 146–158 (2021)

[55] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A
comprehensive survey on graph neural networks. IEEE transactions on
neural networks and learning systems 32(1), 4–24 (2020)

[56] Xiao, W., Bhardwaj, R., Ramjee, R., Sivathanu, M., Kwatra, N., Han, Z.,
Patel, P., Peng, X., Zhao, H., Zhang, Q., et al.: Gandiva: Introspective
cluster scheduling for deep learning. In: 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18). pp. 595–610
(2018)

[57] Xiao, W., Ren, S., Li, Y., Zhang, Y., Hou, P., Li, Z., Feng, Y., Lin,
W., Jia, Y.: {AntMan}: Dynamic scaling on {GPU} clusters for deep
learning. In: 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). pp. 533–548 (2020)

[58] Xie, Z., Ye, Z., Wang, M., Zhang, Z., Fan, R.: Graphiler: Acompiler for
graph neural networks (2021)

[59] Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826 (2018)

[60] Yan, M., Chen, Z., Deng, L., Ye, X., Zhang, Z., Fan, D., Xie, Y.: Char-
acterizing and understanding gcns on gpu. IEEE Computer Architecture
Letters 19(1), 22–25 (2020)

[61] Yu, G.X., Gao, Y., Golikov, P., Pekhimenko, G.: A runtime-based
computational performance predictor for deep neural network training.
arXiv preprint arXiv:2102.00527 (2021)

[62] Yu, P., Chowdhury, M.: Salus: Fine-grained gpu sharing primitives for
deep learning applications. arXiv preprint arXiv:1902.04610 (2019)

[63] Zhao, X., Wang, Z., Eeckhout, L.: Classification-driven search for
effective sm partitioning in multitasking gpus. In: Proceedings of the
2018 international conference on supercomputing. pp. 65–75 (2018)

[64] Zhao, Z.Q., Zheng, P., Xu, S.t., Wu, X.: Object detection with deep
learning: A review. IEEE transactions on neural networks and learning
systems 30(11), 3212–3232 (2019)

[65] Zheng, B., Vijaykumar, N., Pekhimenko, G.: Echo: Compiler-based
gpu memory footprint reduction for lstm rnn training. In: 2020
ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture (ISCA). pp. 1089–1102. IEEE (2020)

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
Hardware and Software Configurations. We evaluate CoGNN on
Intel Xeon E5-2680 v4 CPU and NVIDIA V100/A100 GPUs. The
experiments are conducted on Ubuntu 20.04 with GCC v9.3 and
NVCC v11.1. The CoGNN is built on PyG v1.7 and PyTorch v1.8.

Graph Datasets and Task Queues. The graph datasets used for
experiments have diverse graph dimensions and feature lengths.
We set the number of layers in the range of [4, 10] and train for
200 epochs. The layer number and graph dataset are combined to
generate task queues. We perform experiments based on five task
queues including four queues with identical GNNs (i.e., GCN, SAGE,
GAT, and GIN) and one queue with distinct GNNs.

Comparison Methods and Metrics. We compare CoGNN with
three scheduling policies (i.e., Base, LMCF, and BMC) against De-
fault, PipeSwitch and MPS. For a fair comparison, the numbers of
MPS spatial-sharing tasks and CoGNN workers are both set to 2.
CUDA UVM is enabled to handle memory oversubscription with
MPS.We select four keymetrics including SM utilization, makespan,
JCT, and queuing time (QT) for comparison.

For more details on the environment and experiments, please
refer to the READMEs in our github repository.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: https://github.com/guessmewho233/

CoGNN_info_for_SC22;https://doi.org/10.5281/
zenodo.6586262

Artifact name: CoGNN Github repo/DOI

Artifact 2
Persistent ID: https://drive.google.com/drive/folders/

1Vq1nwAfVwBJfMVvepwW7UwtAx7PVRPaQ?usp=sharing
Artifact name: CoGNN AE Docker Image

Reproduction of the artifact with container: 1. Download the
Docker Image from Google Drive.

2. Follow the README to load the image and access the software
environments.

3. Follow the instructions to reproduce the experimental results
in our paper.

/home/sqx/reproduce/perf/README.md -> Tables 4-5, Figure
10, and Figure 12

/home/sqx/reproduce/pmc/README.md -> Figure 11
/home/sqx/reproduce/overhead/README.md -> Figure 13
Note that docker containers do not support MPS. MPS data can

be reproduced via the instructions in our github repository, or an
account will be provided later to access our machine.

