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Abstract—The computational patterns of stencil operations
are commonly used in HPC applications. Many HPC platforms
utilize the computation capability of GPUs to accelerate stencil
operations. In recent years, stencils have become more complex
in terms of stencil order, memory accesses, and operator pat-
terns. To adapt complex stencils to GPUs, various optimization
techniques have been proposed such as blocking and unrolling.
However, due to the complexity of GPU architecture, no single
parameter setting of the optimization techniques fits all stencils.
To address this problem, we propose csTuner, a scalable auto-
tuning framework that quickly determines the optimal parameter
setting for a given combination of optimization techniques.
Specifically, csTuner leverages a set of statistics and machine
learning methods to generate parameter groups and sampled
parameter settings from the search space. In addition, csTuner
adopts the genetic algorithm with approximation to reduce the
cost of evolutionary search. The experimental results show that
csTuner can find better performing settings with higher auto-
tuning speed compared to the state-of-the-art works.

Index Terms—Stencil computation, GPU, Auto-tuning, Ma-
chine learning, Statistics, Genetic algorithm

I. INTRODUCTION

The stencil computation is one of the most adopted com-
putation patterns in scientific computing applications. Stencil
computations appear in many domains such as image process-
ing [26], physical simulation [12] and cellular automata [41].
A stencil computation sweeps a computational grid and pro-
cesses the fixed neighbors around each point to update its
value, where the extent of the neighbors along each dimension
is referred to as the stencil order. For instance, box-shape
stencils are used to perform smoothing and other neighbor-
pixel-based computations in image processing [30], [34].

In recent years, stencil computations have become more
complex in terms of stencil order, data accesses and operation
patterns [40], [49], [52]. For instance, the stencils in many
physical simulations are conducted in order-3 or above while
processing data from multiple input grids. Besides, a single
iteration of stencil computations may perform hundreds of
double-precision floating-point operations (FLOPs) [1]. Con-
sistent with existing works [38], we define the above stencils
as complex stencils. The complex stencils tend to have more
abundant parallelism, which makes them excellent candidates
for acceleration on GPUs.

However, it is challenging for stencil computations to
achieve high performance on GPUs. The programmers must
ensure memory coalescing, overlapped computation and data
access, reduced synchronization and thread divergence elim-
ination, and trading off between parallelism and resource
utilization. Therefore, many optimization techniques based on
tiling and streaming [15], [17], [24], [35], [51] have been
proposed to adapt to the architecture properties of high com-
putation capability and limited memory bandwidth on GPUs.
However, no single optimization technique fits all complex
stencils due to the diversity of stencil patterns and increased
complexity of GPU architecture [27], [28].

Stencil Domain-Specific Languages (DSLs) explore the
automatic code generation with the integration of optimization
techniques, and thus allow users to select specific optimiza-
tions with parameters fine-tuned [8], [25], [30], [33], [38].
However, it is difficult to evaluate the performance impact
of individual optimization techniques when combined. In
addition, the optimal parameter settings for each optimization
technique vary across the different stencil patterns and GPU ar-
chitectures. To reduce engineering efforts of parameter tuning,
stencil DSLs commonly adopt exhaustive search with expert
knowledge to achieve performance auto-tuning.

The auto-tuning mechanisms integrated in the stencil DSLs
commonly have similar limitations, 1) poor scalability to adapt
to more optimization options and stencil patterns, and 2) time-
consuming search process with large optimization space. To
overcome the above limitations, several stencil auto-tuning
frameworks [13], [23] have been proposed to reduce the search
overhead and determine the optimal parameter settings for the
combined optimization techniques. However, they heavily rely
on expert knowledge to narrow the search space. Moreover,
the random sampling may ignore the global optimal parameter
settings, thus deteriorating the effectiveness of auto-tuning.

To address the above drawbacks, we propose a scalable
auto-tuning framework csTuner, which efficiently determines
the optimal parameter settings of a given optimization combi-
nation for stencil computations on GPUs. The csTuner first
parameterizes the stencil optimization techniques into the
parameter search space. After that, the csTuner generates the
parameter groups and sampled parameter settings through a set
of statistic and machine learning methods. Finally, the csTuner
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utilizes a customized genetic algorithm with approximation to
reduce the cost of evolutionary search. We evaluate csTuner
on different complex stencils to prove its effectiveness in
performance auto-tuning.

Specifically, this paper makes the following contributions:
• We comprehensively analyze the optimization techniques

of stencil computations with their parameterized scope
on GPUs. Besides, we implement rules for checking
optimization constraints so that only valid parameter
settings are explored.

• We propose a search space narrowing mechanism, which
utilizes a set of statistic and machine learning methods
to generate the parameter groups and sampled parameter
settings. The parameter groups are used to design regres-
sion functions that guide the sampling process.

• We design and implement an evolutionary search mech-
anism, which reduces the searching cost by considering
approximation and performs iterative auto-tuning with a
customized genetic algorithm.

• We develop a scalable auto-tuning framework csTuner
that efficiently determines the optimal parameter settings
of optimization combinations for the stencil computations
on GPUs. The experimental results show that csTuner can
identify high-performance parameter settings in a shorter
time.

The rest of this paper is organized as follows. Section II
and Section III present the background and motivation. Sec-
tion IV presents the details of csTuner methodology. Section V
presents the evaluation results of csTuner. Section VI discusses
the related work, and Section VII concludes this paper.

II. BACKGROUND

A. GPU Architecture and Execution Model

The GPU consists of dozens to hundreds of Streaming
Multiprocessors (SMs) depending on the GPU generation. As
shown in Figure 1, each SM contains hundreds of computing
cores and other resources such as registers, shared memory and
L1 cache. The code executed on the GPU is called kernel.
When a kernel is launched on the CPU host, thousands of
threads are created on GPU and every 32 threads are grouped
into a warp. Furthermore, multiple warps are grouped into
a thread block (TB), and the size of a TB is determined by
kernel configuration. The TB scheduler dispatches TBs to SMs
according to the Round-Robin policy, which maximizes the
GPU occupancy under resource and hardware constraints.

Due to the limited computing resources in SMs [16], GPU
tasks have to be fine-tuned to achieve a tradeoff between sys-
tem utilization and performance speedup. For instance, some
optimization strategies (e.g., loop unrolling) increase register-
level data reuse to improve performance [36]. However, the
resulting code is highly constrained by register pressure and
may even cause register spilling. Constant and texture memory
can be used to reduce memory access latency for read-only
data during kernel execution. However, performance gain only
occurs when there is a cache hit in the constant or texture
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Fig. 1. The basic hardware architecture of GPUs.

memory, otherwise the data still needs to be read from the
global memory and exacerbates the bandwidth competition.

B. Optimizations for Stencil Computation

With the continuous development of GPU, it has attracted
widespread attention from academia to accelerate stencil com-
putation on GPU [15], [25], [34]–[36], [40], [51]. We briefly
discuss the existing GPU optimization techniques for stencil
computation.

1) Streaming: Streaming is a commonly used optimization
that improves data reuse and reduces computation redun-
dancy along the streaming dimension. For 3-D input grids,
an effective implementation of streaming is 2.5-D spatial
blocking [25]. Specifically, the computation of 2-D tiles is
streamed over one dimension, and the data of each tile
is reused for updating the next tiles. However, given large
problem size, streaming increases computation granularity thus
limiting parallelism. To achieve better performance, concurrent
streaming [38] divides the streaming dimension into tiles. In
concurrent streaming, the TBs traverse the streaming dimen-
sion in parallel at the granularity of tiles. Meanwhile, loop
unrolling has also been applied to increase register-level data
reuse.

2) Block/Cyclic Merging: Naively, each GPU thread works
on a single output point. Merging the computations of sev-
eral output points reduces the overhead of kernel launching
and eliminates duplicated memory accesses. Two strategies
have been proposed for merging computations such as block
merging and cyclic merging. For block merging, a number
of adjacent output points are merged. Whereas for cyclic
merging, every two points are merged with a fixed distance.
However, both strategies may increase the register pressure
and reduce the number of threads that resided on each SM,
thus hurting parallelism. Furthermore, block merging in the
innermost dimension of the global grid can disrupt memory
coalescing [13]. In general, the choice of merging strategy
and the number of points to merge can significantly impact
the stencil performance.

3) Prefetching: In streaming optimization, after updating
the output grid in current iteration, the data located in the
shared memory is shifted to continue the computation for
next iteration. Due to the concurrent execution of massive
threads on GPU, a synchronization barrier has to be performed
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between adjacent iterations to ensure the correctness of the
results. The synchronization can cause serialization between
kernels and thereby deteriorate performance. Prefetching [38]
can hide the delay of synchronization by overlapping the
computation and data loading. Specifically, the data used for
the next iteration is loaded into registers simultaneously with
the computation of the current iteration. However, prefetching
may exhaust the registers that are quite limited on GPU.

4) Retiming: Retiming [44] improves data reuse by decom-
posing a stencil computation into a set of sub-computations
along with accumulations. Retiming can balance the resource
usage between memory and registers by homogenizing stencil
accesses [36]. In general, high-order stencils can benefit from
retiming optimizations due to the effective reuse of registers.
However, retiming may not improve the performance of sten-
cils with low register pressure.

However, the effectiveness of the above optimization tech-
niques depends on various factors such as GPU architecture,
stencil shape/order, and computational pattern. It can easily
lead to sub-optimal performance if the parameter settings are
not chosen appropriately. This motivates the emergence of
auto-tuning mechanisms for stencil computation.

C. Existing Stencil Auto-tuning Mechanisms

Existing stencil Domain-Specific Languages (DSLs) expose
performance-related parameters to auto-tuning mechanisms
integrated in their frameworks [8], [25], [30], [33], [38]. For
instance, Halide [33] applies stochastic search to automatically
find good pipeline schedules. Besides, Halide limits the num-
ber of domain scheduling operations for each function to pre-
vent the explosion of generated code. Artemis [38] prunes the
search space by hierarchical auto-tuning. Specifically, Artemis
tunes the computation for high-impact optimizations first and
then selects a few high-performance candidates. GoPipe [30]
finds the best task granularity and scheduling mechanism for
each stage of a pipelined box stencil (e.g., image convolution).
AN5D [25] obtains the top-5 parameter sets based on the
performance model and chooses the one that achieves the
highest performance in actual execution.

However, the auto-tuning mechanisms integrated into the
above DSLs have similar limitations. First of all, the narrowing
of the search space (e.g., hierarchical auto-tuning) relies on
expert knowledge, which lacks the generality to adapt the
auto-tuning mechanisms to various complex stencils and GPU
architectures. Secondly, the fixed sampling of the search space
may ignore the global optimal parameter settings, thus dete-
riorating the effectiveness of auto-tuning. Thirdly, since the
auto-tuning mechanisms are customized for particular stencil
DSLs, they have poor scalability to evaluate more optimization
techniques during parameter tuning. Finally, the exhaustive or
stochastic methods are insufficient to guide the search along
the descent direction, thereby increasing the overhead of auto-
tuning.

To overcome the above limitations, several works have
considered to speed up the auto-tuning performance of stencil
computation [13], [23]. Garvey [13] trains a random forest [5]

to predict the optimal memory type and group optimization
parameters based on experience. After that, Garvey exhaus-
tively searches for the parameter settings of each group with
random sampling enabled. However, the parameter grouping
relies on expert knowledge and lacks generality. Besides,
random sampling may ignore the optimal parameter settings
and deteriorate the effectiveness of auto-tuning. FAST [23]
trains a regression model to predict the similarity of the
optimal solution space and uses the database to build the
mapping between the parameter features and optimization
solution. However, FAST does not consider the correlation
between parameters and introduce large search cost without
sampling. OpenTuner [3] implements a collection of search
techniques (e.g., differential evolution and hill climber) to find
the optimal solution. Since OpenTuner targets general-purpose
computing, it misses optimization opportunities specific to
auto-tuning stencil computation on GPUs.

III. MOTIVATION

We make three main observations on the characteristics
of stencil computations on GPUs under various parameter
settings. The same observations have been proved in existing
stencil auto-tuning works [13], [25] or other domains such as
tensor program optimization in deep learning [50]. To this end,
we randomly sample more than 20,000 parameter settings for
each stencil to motivate our work. See Section V-A for details
of the experimental configuration.

A. Low Proportion of High-performance Settings

Figure 2 shows the speedup distribution of parameter set-
tings over the optimum, where the speedup values are divided
into 5 bins from 0 to 1 with a stride of 0.2. The x-axis indicates
the stencils used for evaluation (refer to Table III for details).
Each bar indicates the percentage of parameter settings that
fall in the given speedup bin. As seen, the majority of the
parameter settings perform poorly, with only 5.1% on average
achieving a speedup within 20% of the optimal performing
setting. In turn, a large fraction of the settings (24.2% on
average) achieves more than a 5× slowdown relative to the
optimum. This shows that the optimization space is biased
towards poorly performing settings. At this time, random
sampling of the optimization space is likely to fail to obtain
high-performance settings. Therefore, external intervention is
required to filter out poorly performing settings as much as
possible so as to improve the sampling quality.

B. Correlation Between Optimization Parameters

Figure 3 shows the percentage distribution of parameter
pairs with other parameters fixed. The percentage in the legend
indicates the ratio when values of one parameter achieving the
best performance with another parameter fixed are different
from the value of the optimal parameter setting. The missing
yellow bin means that no percentage falls in the [80%, 100%)
interval. A percentage less than 1 means that the optimum
may not be obtained when the pair parameters are tuned
separately. In addition, a higher percentage indicates a larger
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Fig. 2. Speedup distribution of parameter settings over the optimum.

gap between the results after separate tuning and the optimum.
As seen, a large fraction of parameter pairs (28.6% on average)
includes parameter values that are not consistent with the
optimum. Moreover, an average of 22.3% of the parameter
pairs differs from the optimum by more than 40%. The above
results prove that there is a difference in the strength of
correlation between the optimization parameters. Therefore,
the pair-wise correlation shall be taken into account when
grouping parameters in order to narrow the gap with the global
optimum.
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Fig. 3. Percentage distribution of parameter pairs with other parameters fixed.

C. Approximation of High-performance Settings

Figure 4 shows the speedup of the top-n parameter settings
over the optimum. The speedup value of each bar is taken from
the nth best parameter setting, thus representing the largest
gap among top-n settings. As seen, top-10, top-50 and top-
100 parameter settings all achieve relatively high speedup,
with an average of 96.7%, 92.4% and 90.1% respectively. This
indicates that the performance gap among a fixed number of
optimal parameter settings is acceptable. Therefore, we can
consider finding an approximate optimal parameter setting
without determining the global optimum. Doing so achieves
a tradeoff between search cost and final performance. Fur-
thermore, the search process can be automatically terminated
when the approximate condition is reached.
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Fig. 4. Speedup of the top-n parameter settings over the optimum.

IV. CSTUNER METHODOLOGY

A. Design Overview

In this section, we propose a scalable stencil auto-tuning
framework csTuner that determines the optimal parameter
setting through a holistic pipeline with statistic and machine
learning methods. As shown in Figure 5, the csTuner consists
of three important components including parameter grouping
(Section IV-C), search space sampling (Section IV-D) and evo-
lutionary search (Section IV-E). The parameter grouping com-
ponent aggregates the strongly correlated parameters through
statistical metrics and grouping algorithms. The search space
sampling designs a regression performance model, which is
trained to ensure the effectiveness of the sampling process.
The evolutionary search component implements iterative auto-
tuning and efficiently finds the optimal parameter settings
through the approximation of the genetic algorithm.

Stencil Optimization
 retiming/prefetching
 cyclic/block merge
 …

GPU-specific Options
 block dimension
 data loading
 …

Parameter Grouping
 coefficient of variation
 grouping algorithms

Stencil 
Dataset

Parameter 
Groups

Search Space Sampling
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 performance model (PMNF)

Evolutionary Search
 group iterative auto-tuning 
 approximate genetic algorithm

Parameter 
Search Space

Sampled 
Search Space

Optimal Parameter 
Setting

random
sampling

grouping

parameterizing

guided sampling

iterative searching

Fig. 5. The design overview of csTuner.

Figure 5 illustrates the design overview of csTuner. csTuner
parameterizes the stencil optimization techniques and GPU-
specific options into the parameter search space. After that, the
csTuner randomly samples the search space and collects GPU
metrics using Nsight [29] to obtain the performance dataset.
Note that we only need a small-scale performance dataset
for grouping parameters and training performance models, so
the cost of collecting the performance dataset is acceptable
for the entire auto-tuning pipeline. The parameter groups and
sampled search space are used as the input of the customized
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genetic algorithm. The genetic algorithm performs auto-tuning
iteratively with approximation regarding the parameter groups.
This eliminates the need to manually set the number of
iterations based on experience, thus improving the efficiency
of auto-tuning.

The csTuner pipeline can be extended to incorporate more
optimization parameters capturing future stencil optimizations.
If the input or stencil pattern changes, the stencil dataset needs
to be re-collected with the same process repeated to obtain the
optimal parameter settings. In addition to stencil computation,
the csTuner can also support auto-tuning of more general GPU
algorithms due to the versatility of its components.

B. Optimization Space Parameterization

Firstly, we need to parameterize the combination of opti-
mization techniques for the subsequent auto-tuning pipeline.
Table I takes a 3-D stencil as an example to present the
parameterized optimization space, where Mn is the length of
the nth dimension of the input grid. We start from 1 with
unit stride to represent the parameters of bool type (e.g.,
useShared) and enumeration type (e.g., SD). In such way, the
csTuner ensures the legitimacy of the log operations involved
in PMNF (Section IV-D). For the numerical parameters, the
csTuner restricts their values to power of two in consistent
with existing works [13], [25], [36]. Note that when grouping
parameters, we perform log2 operation on the numerical
parameters so that the input for calculating the coefficient of
variation (CVs) is continuous (Section IV-C). This guarantees
fairness when comparing the correlation of different parameter
pairs.

TABLE I
THE PARAMETERIZED OPTIMIZATION SPACE OF STENCIL COMPUTATION

ON GPUS.

Optimzation Parameter Range

TB Dimension TBx, TBy , TBz [1, 1024], [1, 1024], [1, 64]
Shared Memory useShared {1, 2}

Constant Memory useConstant {1, 2}
Streaming useStreaming {1, 2}

Streaming Dimension SD {1, 2, 3}
Concurrent Streaming SB [1,MSD]

Loop Unrolling UFx, UFy , UFz [1,M1], [1,M2], [1,M3]

Cyclic Merging CMx, CMy , CMz [1,M1], [1,M2], [1,M3]

Block Merging BMx, BMy , BMz [1,M1], [1,M2], [1,M3]

Retiming useRetiming {1, 2}
Prefetching usePrefetching {1, 2}

In addition to the parameter ranges illustrated in Table I,
there are some explicit constraints between the optimization
parameters. For instance, the TB size (i.e., TBx×TBy×TBz)
must be less than or equal to 1,024. Besides, the parameters of
SD and SB are only valid when enabling streaming optimiza-
tion. When enabling concurrent streaming, the loop unrolling
factor in the streaming dimension must be no greater than SB.
After enforcing these constraints, the total search space still
contains more than 100 million parameter settings. Moreover,
there are also implicit constraints due to the limited resources
of GPUs. For instance, the settings of the block merging

and loop unrolling are restricted by the usage of register and
shared memory. csTuner checks the above constraints before
generating the search codes so that only non-spilled parameter
settings are explored during auto-tuning.

C. Parameter Grouping

The principle of parameter grouping is to put strongly
correlated parameters in a group to facilitate the design of per-
formance models (Section IV-D) and iterative genetic search
(Section IV-E). Firstly, we need to quantify the correlation be-
tween any two parameters. Assuming there are N parameters
(P0, P1, ..., PN−1), where Pi ∈ Ri. We change the settings of
two parameters with the remaining N−2 parameters fixed each
time. The settings of the fixed parameters are taken from the
optimal parameter settings in the performance dataset. Taking
P0 and P1 for an example, we evaluate the settings of P0

from R0, and finally obtain the setting of P1 (V S01) that
achieves the best performance with P0 fixed. Note that we skip
a particular setting in R0 if it does not exist in the performance
dataset. Next, we quantify the correlation between P0 and P1

by calculating the coefficient of variation (CV) of V S01 based
on Equation 1.

cv =
σ

µ
=

√
1
n

∑n
i=1(xi − x̄)2

x̄
(1)

The CV is defined as the ratio of the standard deviation
σ to the mean µ. It is widely used to reflect the extent of
dispersion of a data set in the field of statistics [2]. Here a
higher CV means a lower correlation. Repeating the above
process, we can finally obtain AN−1

N CV values representing
the correlation among the parameters. After that, we push the
parameter pairs into a double-ended queue (Deque) [19] based
on the ascending order of CVs. We design Algorithm 1 to
implement parameter grouping, where the input is the Deque
data structure and the output is a list of parameter groups.

As illustrated in Algorithm 1, we first pop the leftmost
parameter pair in Deque (Line 7). If none of the two pa-
rameters is in the existing parameter groups, then we create a
new parameter group to store the parameter pair (Line 8-9).
Otherwise, we merge the parameter into the existing parameter
group (Line 13-17). We then pop the rightmost parameter
pair in Deque (Line 21) and apply the similar process as
above (Line 25-30). The former steps are repeated until Deque
is empty, and the final parameter groups are obtained by
csTuner.

D. Search Space Sampling

The principle of search space sampling is to filter out low-
performance parameter settings during the sampling process.
Note that the performance of stencil computation can be
impacted by various factors, so we build accurate performance
models based on GPU metrics. The GPU metrics can be
collected from the performance dataset using Nsight1. GPU

1The profiling output from Nsight includes numerous GPU metrics.
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Algorithm 1 Parameter grouping based on Deque structure.
1: Input: double-ended queue Deque
2: Output: parameter group list paraGroup
3: queSize = Deque.size // original stack size
4: for i in range [0, queSize) do
5: if i%2 == 1 then
6: // pop the parameter pair from the right side
7: ftPara, bkPara = Deque.popright()
8: if neither ftPara and bkPara in paraGroup then
9: paraGroup.append([ftPara, bkPara])

10: else if both ftPara and bkPara in paraGroup then
11: continue // skip to next iteration
12: else
13: if ftPara in paraGroup then
14: paraGroup[ftIn].append(bkPara)
15: else
16: paraGroup[bkIn].append(ftPara)
17: end if
18: end if
19: else
20: // pop the parameter pair from the left side
21: firstPara, secondPara = Deque.popleft()
22: if both ftPara and bkPara in paraGroup then
23: continue // skip to next iteration
24: else
25: if ftPara not in paraGroup then
26: ftPara.append([ftPara])
27: end if
28: if bkPara not in paraGroup then
29: bkPara.append([bkPara])
30: end if
31: end if
32: end if
33: end for

metrics can be used to comprehensively analyze the computa-
tion and memory efficiency of stencil tasks during execution.
For example, the SM utilization and L1/texture/L2 cache hit
rate can indicate the efficiency of computation and memory,
respectively. However, it is unrealistic to build performance
models based on all GPU metrics collected. We combine
GPU metrics by comparing the Pearson correlation coefficient
(PCC) [4] of pairwise metrics based on Equation 2.

PCC(x, y) =
E[(x− µx)(Y − µy)]√∑n

i=1(xi − µx)2
√∑n

i=1(yi − µy)2
(2)

The closer to 1 the absolute value of PCC is, the stronger
the linear correlation of the metric pair is. Similarly, we push
the metric pairs into a Deque according to the ascending
order of PCCs. Algorithm 2 illustrates the process of metric
combination, where the input includes the Deque structure
and the number of metric collections, and the output is a list
of metric collections. Specifically, we pop the rightmost metric
pair each time. If none of the metrics is in the existing metric
collections (Line 7) and the metrCollection size is smaller
than numCollections (Line 8), then we create a new metric
collection to store the metric pair (Line 9). Otherwise, we
merge the metric pair into the existing metric collections (Line
16-20). The metric collections are generated by repeating the
above steps until Deque is empty. Finally, we select the metric

with the highest PCC correlated to execution time from each
metric collection for performance modeling.

Algorithm 2 Metric combination based on Deque structure.
1: Input: double-ended queue Deque and number of metric col-

lections numCollection
2: Output: metric collection list metrCollection
3: queSize = Deque.size // original stack size
4: for i in range [0, queSize) do
5: // pop the metric pair from the right side
6: ftMetr, bkMetr = Deque.popright()
7: if neither ftMetr and bkMetr in metrCollection then
8: if metrCollection.size < numCollection then
9: metrCollection.append([ftMetr, bkMetr])

10: else
11: continue // skip to next iteration
12: end if
13: else if both ftMetr and bkMetr in metrCollection then
14: continue // skip to next iteration
15: else
16: if ftMetr in metrCollection then
17: metrCollection[ftIn].append(bkMetr)
18: else
19: metrCollection[bkIn].append(ftMetr)
20: end if
21: end if
22: end for

For each metric selected, we construct a multi-parameter
performance model that predicts the GPU metrics based on
input parameter values. We define the non-linear regression
function based on performance model normal form (PMNF),
which assumes that the performance can usually be expressed
as a combination of polynomial and logarithmic terms [9].
PMNF defines a function search space, which is traversed
to find the function that most accurately represents the rela-
tionship between the parameters and the metrics. However,
the PMNF incurs unpredictable search overhead for multi-
parameter models, which forces the state-of-the-art (SOTA)
performance modeling tool such as Extra-P [6], [39], [42]
to only support up to four-parameter PMNF. Therefore, we
leverage the parameter groups to simplify the multi-parameter
PMNF, where n is the number of groups and mk is the number
of parameters in the kth group.

f(P ) =

n∑
k=1

ck

mk∏
l=1

P i
l · log

j
2(Pl) (3)

Inspired by [10], we multiply the parameters within a group
(strong correlation) and accumulate the parameters of different
groups (weak correlation) as shown in Equation 3. Supposing
that i ∈ I and j ∈ J , the search space of PMNF is reduced
to I × J regardless of the number of parameters. Next, we
train a non-linear regression model for each function using
the performance dataset, which provides the fitted values of
the coefficients (ck). Since R2 score is valid only for linear
regression [43], we use residual standard error (RSE) [7] to
measure the fitness of the functions and select the best one
for search space sampling. Empirically, we set a threshold for
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each selected GPU metric to filter out inappropriate parameter
settings during the sampling process.

E. Evolutionary Search with Approximation

Although the search space has been greatly narrowed after
sampling, it is still time-consuming to use exhaustive search
to determine the optimal settings of optimization parameters.
Therefore, we propose an evolutionary search using genetic
algorithm [14] to find the optimal parameter settings effi-
ciently. Figure 6 presents the multi-process genetic algorithm
in csTuner. As shown, multiple genes constitute an individual,
which is evaluated by the fitness. Many individuals constitute
a population, where the operations of each sub-population
are handled by a process. The migration among the sub-
populations is achieved using MPI communication. For migra-
tion, each sub-population exchanges individuals with its two
neighborhoods (single-ring topology [48]).

…
…

migration

…
…

…
…

sub-population steps 

Population

Processes

Individual

Processes Processes

update

Neighborhood

Sub-population

parent 
selection

Parent Individual

cross-over
mutation

New Individual

Gene

Fig. 6. Multi-process genetic algorithm in csTuner.

The new individual in the sub-population is bred through
uniform cross-over and mutation. The breeding involves three
steps: 1) the parents are selected from the four neighborhoods
(higher fitness means higher selection chance); 2) each gene
of the individual is randomly chosen from the parents; 3)
the genes of the individual mutate with a certain probability
(mutation rate). The mutation is used to prevent the individuals
from falling into local optimum [46].

Sampled 
Search Space Customized 

Genetic Algorithm

𝑃 𝑃 𝑃 𝑃 𝑃 𝑃 𝑃 𝑃 𝑃 𝑃Parameter Groups

𝑃 𝑃 𝑃 𝑃 𝑃Determined Parameter Settingre-indexing

guided searching 𝐶𝑉 <𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
iterative

auto-tuning

Fig. 7. Iterative auto-tuning of csTuner based on parameter groups.

For adopting the genetic algorithm in csTuner, we need to
guide the search process according to the parameter groups.
Genes are stored in binary for mutation, and the valid value
range of each gene needs to be given before initialization.
However, the parameter values in the sampled search space
are no longer continuous. In such a case, there may be a
large number of invalid points outside the search space during

initialization and mutation. To address this problem, we re-
index the valid values of the parameter groups from the
sampled search space. As shown in Figure 7, assuming that
the available value set of the first parameter group (P0, P1) are
{(0, 1), (4, 2), (3, 4)}, we re-index the set to {0, 2, 1} based on
the ascending order. Then, the value range of the gene g can
be designated as [0, 2], and g ∈ N .

The auto-tuning results usually conform to the normal
distribution, which means that the top-n parameter settings
achieve similar performance [25], [50]. Here we still use
CV to represent the approximation of the top-n parameter
settings. Empirically, the parameter setting of a group is
determined if the CV of top-n fitness (CVtop−n) is less than
a certain threshold. After that, we proceed to the auto-tuning
of the following parameter group until all parameter groups
are tuned. By incorporating approximation, csTuner greatly
reduces the overhead of evolutionary search and stops the
genetic algorithm without manual intervention.

V. EVALUATION

A. Experiment Setup

1) Hardware Platforms and Stencil Programs: The hard-
ware and software specifications are presented in Table II. The
PMNF regression models involved in csTuner is fitted with the
curve fit function using scikit-learn v0.23.1 [31]. We explore
a set of eight 3-D double-precision stencil programs taken
from [36] (Table III). The selected stencils are a mixture of
various patterns including stencil order, FLOPs, input grid and
I/O arrays. This mixture of stencils provides a comprehensive
evaluation of the effectiveness of csTuner.

TABLE II
HARDWARE AND SOFTWARE SPECIFICATIONS.

Hardware Software
CPU: Intel(R) Xeon(R) CPU E5-2680 v4 @2.40GHz GPU driver: 455.23.05

GPU: NVIDIA Tesla A100 × 2 CUDA version: 11.1
OS: Linux version 5.8.0-50-generic GCC version: 9.3

TABLE III
STENCILS USED FOR EVALUATION.

Stencil Input Grid Order # FLOPs # I/O Arrays

j3d7pt 512× 512× 512 1 10 2
j3d27pt 512× 512× 512 1 32 2

helmholtz 512× 512× 512 2 17 2
cheby 512× 512× 512 1 38 5

hypterm 320× 320× 320 4 358 13
addsgd4 320× 320× 320 2 373 10
addsgd6 320× 320× 320 3 626 10

rhs4center 320× 320× 320 2 666 8

2) Search Methods and Implementation Details: We com-
pare csTuner with three popular stencil auto-tuning methods
including Garvey [13], OpenTuner [3] and Artemis [36]. For
csTuner, we randomly sample 128 parameter settings for each
stencil as a stencil dataset for grouping parameters and fitting
the PMNF models. We set the ranges of i and j involved in the
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PMNF (See Equation 3) to {0, 1, 2} and {0, 1}, respectively.
In addition, the sampling ratio of the parameter search space
is set to 10%. For the genetic algorithm adopted in csTuner,
the number of sub-populations is set to 2, where each sub-
population contains 16 individuals. The cross-over rate and
the mutation rate are set to 0.8 and 0.005, respectively. Note
that if the settings of a parameter group are less than the
individuals of a population, the auto-tuning of the parameter
group degenerates to the exhaustive search.

For OpenTuner, we adopt the global genetic algorithm as
the basis of its evolutionary technique. The options of the
global genetic algorithm are set to be consistent with csTuner.
Since there is no public Garvey implementation available, we
re-implement Garvey based on [13]. For Garvey, we select
the optimization of grouping by dimension in [13] and the
sampling ratio is also set to 10%. For both Garvey and Artemis,
the number of parameter settings evaluated during one iteration
is set to be the same as the population size of the genetic
algorithms. This guarantees the fairness of the performance
comparison of different auto-tuning methods.

3) Comparison Metrics: The key metrics for determining
the effectiveness of auto-tuning methods are the number of
iterations and amount of time required to obtain optimal
parameter settings. Therefore, we compare csTuner against the
above methods on two key metrics such as iso-iteration search
quality and iso-time search quality [18]. For iso-iteration
search quality, all methods are run for a fixed number of
iterations. For iso-time quality, all methods are run until a fixed
wall-clock time. Specifically, iso-iteration comparison and iso-
time comparison are used to verify the performance and speed
of auto-tuning methods. To isolate the effects of randomness,
we run each method 10 times and present the average results.

B. Results for Auto-tuning Performance

Figure 8 shows the iso-iteration comparison between
csTuner and the other auto-tuning methods for different sten-
cils. The x-axis and y-axis represent the elapsed iterations
and the shortest execution time, respectively. The missing
points mean that the parameter settings have been evaluated
completely before the current iteration. Overall, csTuner has a
better starting point and converges faster than other auto-tuning
methods. Garvey adopts similar system design as csTuner,
which also performs parameter grouping and search space
sampling. Although Garvey also converges quickly due to the
reduced parameter settings, the random sampling approach
limits the stability of its performance. In contrast, csTuner
uses PMNF to filter out inappropriate parameter settings, thus
guaranteeing the high quality of the sampled search space.

OpenTuner converges slowly due to the search of the
global parameter space. Although the genetic algorithm helps
OpenTuner to speed up the convergence, the disadvantage
is that it is easy to fall into a local optimum with a small
population size. In contrast, the customized genetic algorithm
of csTuner adopts the iterative auto-tuning based on parameter
groups, thus effectively narrowing the search space. Moreover,
csTuner terminates the search process for a single parameter

group before falling into a local optimum using approximation.
Note that for certain stencils (e.g., addsgd6 and rhs4center),
the csTuner converges much faster (after only few iterations)
than that of Artemis and OpenTuner (after 10 iterations). This
further proves the effectiveness of the parameter grouping and
PMNF function adopted in csTuner.

C. Results for Auto-tuning Speed

Figure 9 shows the iso-time comparison between csTuner
and the other auto-tuning methods for different stencils, where
the x-axis represents the elapsed time. Note that the search
time per iteration may vary for auto-tuning methods except
OpenTuner. For example, the number of settings that Artemis
performs an exhaustive search on a single parameter group
may not be divisible by the population size. Besides, since
csTuner and Garvey significantly narrow the search space by
sampling, the number of settings during the auto-tuning of a
single parameter group is likely to be less than the population
size. Therefore, iso-time is a fairer metric than iso-iteration for
a limited parameter search space. For most stencils, csTuner
converges faster than other auto-tuning methods and performs
better for parameter settings determined after a fixed search
time (100 seconds). The parameter settings determined by
Garvey achieve the worst performance due to the low quality
of the sampled search space.

Since OpenTuner does not implement the parameter group-
ing method, the large search space makes it difficult to
converge in a short time. For best performance found under
the iso-time evaluation, Artemis is closer to csTuner on most
stencils. This is mainly because the hierarchical auto-tuning
based on expert knowledge adopted by Artemis is effective
to most stencils. In addition, the mutual constraints among
optimization parameters of stencil computations significantly
reduce the number of valid parameter settings. For a narrow
search space, the sampling method adopted in csTuner may
not show much advantage. Nevertheless, csTuner still clearly
outperforms Artemis for certain stencils (e.g., cheby and
addsgd4). This indicates the parameter grouping algorithms
along with statistic methods adopted in csTuner can be gener-
alized to various complex stencils. In sum, csTuner identifies
better parameter settings with higher speed compared to other
auto-tuning methods.

D. Applying to other GPU Hardware

To demonstrate the generality of our method, we evaluate
csTuner on another platform equipped with two NVIDIA Tesla
V100 GPUs. Specifically, we re-collect the stencil dataset on
the new GPU hardware and use the csTuner pipeline to quickly
find optimal parameter settings. Figure 10 shows the iso-
time performance of various auto-tuning methods normalized
to Garvey on the V100 GPUs. Again, csTuner outperforms
other auto-tuning methods for most stencils. For the best
performance found in iso-time evaluation, csTuner achieves an
average speedup of 1.7×, 1.2× and 1.3× over Garvey, Artemis
and OpenTuner respectively. Garvey performs the worst for
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Fig. 8. Iso-iteration comparison of various auto-tuning methods compared to csTuner.
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Fig. 9. Iso-time comparison of various auto-tuning methods compared to csTuner.

most stencils due to the sampled low-quality parameter set-
tings. On the contrary, it is difficult for OpenTuner to find
optimal parameter settings in a short time due to the large
search space.
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Fig. 10. Iso-time performance of various auto-tuning methods normalized to
Garvey on a V100 × 2 GPU platform.

The csTuner achieves comparable performance as Artemis
on three stencils (i.e., cheby, hypterm and addsgd4), and
significantly outperforms Artemis for others. Note that the
statistic-based parameter grouping and PMNF-guided search
space sampling adopted in csTuner does not require any expert

knowledge. Therefore, csTuner can be easily applied to various
complex stencils and hardware platforms with stable auto-
tuning quality.

E. Parameter Sensitivity Analysis

Figure 11 shows the iso-time performance of csTuner with
different sampling ratios, where the x-axis represents the
sampling ratio ranging from 5% to 50% with a stride of 5%.
A good sampling ratio can achieve the balance between search
range and search speed. A smaller sampling ratio completes
the search process more quickly, but the limited search range
is unlikely to obtain optimal parameter settings. In contrast,
a larger sampling ratio is more promising to obtain optimal
parameter settings, yet with a longer search time. As seen, the
worst performance is achieved for half of the stencils with 5%
sampling ratio. Besides, The sampling ratio with the optimal
iso-time performance is usually between 5% and 50%.

For most stencils, the iso-time performance with the sam-
pling ratio using the middle range of settings (e.g., 15%∼40%)
remains stable. This proves that the PMNF model adopted
in csTuner filters out as many poorly performing settings as
possible during the sampling process. In addition, it can be
observed that high iso-time performance is still achieved when
setting the sampling ratio to 50%. This is mainly because
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Fig. 11. Iso-time performance of csTuner with different sampling ratios.

the valid search space of stencil computations is limited by
the constraints among optimization parameters. Although the
constrained search space cannot fully exploit the superiority
of the guided sampling adopted in csTuner, we believe that
csTuner is more advantageous when applied to a much larger
parameter search space for stencil computations.

F. Overhead Analysis

For each stencil, it takes less than five minutes to use Nsight
to collect the GPU metrics included in the stencil dataset.
The stencil dataset determines the cost of metric collection
regardless of the size of the parameter search space. Therefore,
for complex stencils with more optimizations proposed in
the future, the cost of obtaining the stencil dataset can be
further amortized. Since the metric collection only needs to
be done offline once, we do not consider it in the overhead
analysis of online auto-tuning. The overhead of the search
process in csTuner can be divided into two parts including
pre-processing and searching itself. The pre-processing can
be further divided into parameter grouping, search space
sampling and code generation. The parameter grouping mainly
consists of the correlation calculation based on CVs and the
grouping algorithm based on Deque structure. The search
space sampling consists of metric combination, generating
PMNF functions, fitting regression models and filtering out
non-compliant parameter settings. The code generation writes
the sampled parameter settings into CUDA kernels for the
subsequent auto-tuning process.
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Fig. 12. Performance breakdown of the pre-processing in csTuner normalized
to the search process.

Since the parameter searching dominates the search process
(more than 98%), to better illustrate the overhead of pre-
processing, we show the performance breakdown of the pre-
processing normalized to the search process in Figure 12.
The search process performs iterative auto-tuning at parameter
group basis. When the size of a single parameter group is
larger than the population size, csTuner adopts the genetic
algorithm with approximation. Otherwise, csTuner degenerates
to the exhaustive search. As seen, the pre-processing overhead
of csTuner is negligible compared to the entire search pro-
cess, occupying only 0.76% of the search time on average.
Specifically, the overhead of code generation increases with
the complexity of stencil patterns. However, even for the
stencil with the highest FLOPs (i.e., rhs4center), the code
generation overhead is only 1.04% compared to the entire
search time. Similarly, the pre-processing overhead of csTuner
can be further amortized for the larger search space with more
stencil optimizations proposed in the future.

VI. RELATED WORK

Stencil DSLs and Optimizations. Based on the regular
patterns of stencil computation, existing research works exploit
the integration of optimization schemes into DSLs to achieve
automatic code transformation and optimization [8], [15], [17],
[24], [25], [30], [33]–[35], [38], [51]. PATUS [8] allowed users
to define stencils by a C-like syntax and chose the predefined
or custom strategies for optimization. Physis [24] translated
user-written stencil code into scalable implementation for
GPU-equipped cluster. Forma [34] proposed a DSL for im-
age processing application with stencil operations. Grosser et
al. [15] presented a novel hybrid tiling method that combined
hexagonal tiling and wavefront tiling on GPUs. Hagedorn et
al. [17] explored how to use LIFT primitives to implement
stencil codes and optimizations such as tiling. Rawat et al. [37]
presented a stencil framework based on STENCILGEN DSL
and optimized the performance by blocking, streaming and
resource management using DAG. Matsumura et al. [25]
proposed a C-based stencil framework named AN5D, which
implemented high-degree temporal blocking and spatial block-
ing. AN5D also adopted low-level optimizations to reduce
the usage of shared memory and registers. GOPipe [30]
automatically pipelined and dynamically scheduled stencil
execution on GPUs. Although the above DSLs significantly
reduce engineering efforts, they lack effective support for
auto-tuning. csTuner can be integrated into these DSLs and
quickly obtain the optimal parameter settings for the target
optimization schemes.
Performance Auto-tuning on GPUs. Since identifying the
optimal kernel variants is extremely challenging for both
programmers and code generators, a large amount of re-
search works focus on the auto-tuning of target problems
on GPUs [11], [20]–[22], [32], [45], [47], [50]. Kurzak et
al. [20] proposed heuristic auto-tuning to prune the search
space and generate the fastest code variant of matrix multi-
plication kernels. Li et al. [21] resolved the conflict between
concurrency and register usage by precomputing the critical
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points and selecting the global optimum. Lim et al. [22]
proposed a static analyzer tool to estimate the runtime behavior
of kernels and tune the applications without running programs.
Dongarra et al. [11] presented an automated exploration of the
implementation space for batched Cholesky factorization to
maximize the hardware occupancy. Pfaffe et al. [32] integrated
hierarchical online auto-tuning with polyhedral parallelization
to reduce search complexity and increase convergence speed.
Ansor [50] sampled optimization combinations from a large
hierarchical search space and utilized an evolutionary search
with a learned cost model to fine-tune the tensor programs.
The above works are orthogonal to this paper that targets the
auto-tuning of stencil kernels. In turn, csTuner can be extended
to other target programs due to its versatility.

VII. CONCLUSION

In this paper, we propose a scalable auto-tuning framework
csTuner, which quickly identifies optimal parameter settings
in a given optimization space for complex stencils on GPUs.
The csTuner leverages a set of statistic and machine learning
methods to generate parameter groups and guide the search
space sampling. After that, csTuner utilizes iterative auto-
tuning based on parameter groups to further narrow the search
space. Finally, we re-design the genetic algorithm to reduce
the cost of evolutionary search using approximation. The
experimental results show that csTuner can identify high-
performance parameter settings with higher auto-tuning speed.

For future work, we would like to extend csTuner to support
auto-tuning of more optimization techniques for complex
stencils. In addition, we would like to apply csTuner to other
domains with even larger search space (e.g., tensor optimiza-
tions in deep learning). We would also like to extend csTuner
to support other hardware such as CPU and accelerator. To
achieve that, we only need to adjust the optimization space
according to the target hardware and then parameterize the
optimization space into tuning options.
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