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ABSTRACT
Stencil computation is an indispensable building block of many
scientific applications and is widely used by the numerical solvers
of partial differential equations (PDEs). Due to the complex com-
putation patterns of different stencils and the various hardware
targets (e.g., many-core processors), many domain-specific lan-
guages (DSLs) have been proposed to optimize stencil computation.
However, existing stencil DSLs mostly focus on the performance op-
timizations on homogeneous many-core processors such as CPUs
and GPUs, and fail to embrace emerging heterogeneous many-core
processors such as Sunway. In addition, few of them can support
expressing stencil with multiple time dependencies and optimiza-
tions from both spatial and temporal dimensions. Moreover, most
stencil DSLs are unable to generate codes that can run efficiently in
large scale, which limits their practical applicability. In this paper,
we propose MSC, a new stencil DSL designed to express stencil
computation in both spatial and temporal dimensions. It can gen-
erate high-performance stencil codes for large-scale execution on
emerging many-core processors. Specially, we design several opti-
mization primitives for improving parallelism and data locality, and
a communication library for efficient halo exchange in large scale
execution. The experiment results show that our MSC achieves
better performance compared to the state-of-the-art stencil DSLs.
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• General and reference → Performance; • Software and its
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1 INTRODUCTION
Stencil computation is an important and indispensable building
block of modern scientific applications, and it has been widely
used in the fields such as computational electromagnetics [35],
computational fluid dynamics [9], climate modeling [2], and seismic
processing [22]. Applications in these fields commonly rely on the
numerical solvers of partial differential equations (PDEs). Since the
PDEs are defined by continuous functions, the first step to solving
them on a computer is discretization with finite difference methods
(FDM), finite volume methods (FVM) or finite element methods
(FEM). The discretization methods introduce stencil computations
that dominate the performance of PDE solvers.

A stencil defines a particular computation pattern on the struc-
tural grid (or regular grid). As for spatial dimension, it updates each
element on a grid using the values from a subset of the neighboring
elements, where these elements can have different coefficients. As
for temporal dimension, it updates the values of the grid at the
current timestep based on the values from the previous timesteps.
The temporal update can iterate over many timesteps until conver-
gence. A stencil can be defined from many aspects, such as grid
dimensions (e.g., 2D, 3D), shapes (e.g., box, star), number of neigh-
bors (e.g., 7-point, 27-point). Particularly, the stencil computations
with temporal dimension are also named iterative stencil loops
(ISLs). In general, a stencil on a n-dimensional grid with timesteps
can be represented as (n + 1)-dimensional nested loops, where the
outermost loop iterates over the temporal dimension and the inner
loops traverse all elements of the grid over the spatial dimension.

Stencil computation is usually memory bounded [31] and there-
fore can only achieve a limited fraction of the theoretical compu-
tational power on existing hardware. To address such limitation,
tilling optimizations [4, 11, 16] have been found quite effective
to mitigate the memory-bound constraint and become the widely
studied techniques to accelerate the stencil computation. In gen-
eral, a tiling optimization partitions the nested loops into smaller
tiles according to certain tile shape, so that the stencil computa-
tion inside a tile can better exploit the data locality with improved
parallelism. Existing tilling optimizations can be distinguished by
their tile shapes, such as diamond tilling [4], trapezoid tilling [11],
and overlapped tiling [16]. Besides, vectorization [20] has also been
explored for optimizing stencil computation, which leverages the
loop unrolling and data layout transformation to utilize better the
SIMD units available on modern multicore/many-core processors.
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However, due to the various patterns of stencil computations
(e.g., different shape, data dimension, etc.), optimizing stencil com-
putation by hand-tuning stencil codes tends to be tedious and error-
prone. To address such drawback and alleviate the burden of op-
timizing various stencil patterns manually, many domain-specific
languages (DSLs) / compilers [5, 7, 27, 30, 32, 40] have been pro-
posed. For example, PLUTO [5] is a source-to-source compiler for C
code that can leverage the polyhedral model to optimize the nested
loops including stencils [14]. ARTEMIS [32] proposed a DSL and
code generator targeting to accelerate complex stencils on GPU.
In general, all stencil DSLs take the stencil definitions described
by their programming languages as the input, and generate the
optimized codes (or binaries) on hardware targets as the output.
The transformation between stencil definitions and code genera-
tion incorporates optimization methods (e.g., tiling, vectorization),
targeting the particular stencil patterns and hardware architectures.

To support hardware architectures other than CPU, existing sten-
cil DSLs [7, 32, 40] can already generate optimized stencil codes
on many-core processors such as KNLs and GPUs. However, the
many-core processors are still under rapid development, various
architecture designs have been proposed, such as Sunway proces-
sor [13] and Matrix processor [39]. These emerging many-core pro-
cessors have unique architecture designs to manage computation
parallelism, memory locality, and data transfer through customized
programming models. However, how to embrace such many-core
processors to generate efficient stencil codes is seldom addressed
by existing stencil DSLs. Besides, except few (e.g., YASK [40], Ph-
ysis, STELLA [18]), most stencil DSLs focus on optimizations on
a single node and fail to scale across more nodes. Thus, they can-
not handle large-scale stencil computations in real-world cases,
such as simulations with fine-grained resolutions or large input
domains. Moreover, when solving PDEs (e.g., second-order wave
functions such as mechanical waves, electromagnetic waves, and
gravitational waves), a sequence of stencil sweeps are usually per-
formed. Thus a point can be updated by a subset of its neighbors in
both space and time. However, most stencil DSLs can only support
expressing the stencil computation in spatial dimension and do not
consider the multiple time dependencies in temporal dimension.

To address the above limitations of existing stencil DSLs, we
propose MSC, a new stencil DSL designed to express stencil com-
putation in both spatial and temporal dimensions, and generate
high-performance stencil codes for large-scale execution on emerg-
ing many-core processors such as Sunway and Matrix. Specifically,
this paper makes the following contributions:

• We propose MSC, a new stencil DSL that 1) decouples the
stencil expression, computation optimization and code gener-
ation through layered design, 2) addresses the multiple time
dependencies by separatingKernels and Stencils (withmul-
tiple Kernels from different timesteps). Such design can easily
adapt optimization passes tailored for many-core processors.

• We design an efficient communication library to work in
synergy with our stencil DSL to generate large-scale stencil
codes automatically. The library is optimized to support the
halo exchange for large-scale stencil computation.

• We evaluate MSC with representative stencil benchmarks,
and compare it with the state-of-the-art stencil DSLs. In

addition, we provide both strong and weak scalability results
to demonstrate the effectiveness in large-scale execution.

The rest of this paper is organized as follows. Section 2 describes
the background and related work of the stencil optimizations as
well as stencil DSLs. Section 3 and section 4 present the design
overview and detailed implementations of our MSC stencil DSL.
Section 5 presents the evaluation results and compares MSC with
the state-of-the-art stencil DSLs. Section 6 concludes this paper.

2 BACKGROUND AND RELATEDWORK
2.1 General stencil optimizations
The general stencil optimizations accelerate the stencil computa-
tions primarily by improving the parallelism and utilizing the data
locality. Tilling is a well-established optimization for stencils, which
explores parallelism and data locality. It has been well applied on
both CPUs and GPUs. Hyper-rectangle tiling [34] is widely used
in hand-tuned stencil implementations, which generally divides
the input grids into hyper-rectangle tiles and calculates them in
parallel. When adopting tiling optimization on the temporal dimen-
sion, the overlapped tilling [21] improves parallelism by redundant
computation, while ensuring the dependency between tiles. The
3.5D tilling [29] also belongs to hyper-rectangle tiling, which tiles
a 2D plane of the 3D spatial grid, streams in another dimension
(+0.5D), and then tiles the temporal dimension (+1D). The 3.5D till-
ing is suitable for thread-level data parallelism and can easily scale
with more computation units. In order to reduce the redundant
computation, other tilling methods [4, 11, 26] have been proposed
to apply different tiling shapes at the expense of limited parallelism.
Besides, the split tilling [20] and hybrid tilling [14] adopt multiple
tiling shapes to improve the parallelism further.

2.2 Emerging many-core processors
The Sunway SW26010 heterogeneous many-core processors (Sun-
way processor in short) have been adopted in theworld-first hundred-
PFLOPS supercomputer Sunway TaihuLight. The Sunway processor
runs at 1.45GHz and offers 3.06TFlops peak performance in double
precision. The architecture of Sunway processor is shown in Fig-
ure 1. It contains 4 core groups (CGs), where each CG consists of a
management core (MPE) and 64 acceleration cores (CPEs). Specif-
ically, each CPE contains no data cache but a 64 KB scratchpad
memory (SPM), whose bandwidth and latency are similar to L1
cache. However, the usage of SPM requires explicit control by the
program. Moreover, the CPEs can access the main memory through
direct memory access (DMA) for continuous accesses. A customized
parallel programming paradigm (Athread) is provided to allow pro-
grammers to manipulate the architecture features explicitly [13].

The Matrix MT2000+ many-core processors (Matrix processor in
short) have been adopted in the next generation (prototype Tianhe-
3) of Tianhe-2 supercomputer. The architecture of Matrix processor
is shown in Figure 2. Each processor contains 128 compute cores
running at 2.0GHz. Each core can deliver eight double precision
flops per cycle, with an in-order 8-to-12-stage pipeline extended
with vectorization. The compute cores are further organized into
four Supernodes (SNs), connected through a scalable on-chip com-
munication network. Each supernode has four panels, and each
panel containing eight cache-coherent compute cores. The entire
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Figure 1: The architecture of Sunway processor.

processor delivers around 2.048TFlops double-precision peak per-
formance. The processor supports eight DDR4-2400 channels and
is integrated with the PCIe 3.0 interface.
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Figure 2: The architecture of Matrix processor.

2.3 Stencil optimizations on emerging
many-core processors

There are a few works optimizing stencil computation on Sun-
way many-core processor. For example, two large-scale applica-
tions [12, 38] on Sunway TaihuLight supercomputer that won the
Gordon Bell Prizes optimized 3d13pt stencil computation. The at-
mospheric dynamics application [38] adopted the 2.5D tilling and
performed corresponding optimizations across computation and
memory hierarchies. The earthquake simulation application [12]
adopted on-the-fly data compression, the on-chip halo exchange, as
well as coalesced DMA access to mitigate the memory bound con-
straint. Other works [2, 22] have also focused on memory-related
optimizations of stencil computation. Although not directly related,
the highly optimized computation kernels, such as convolution [10],
and Cholesky factorization [24], have educated us on the neces-
sary techniques to implement efficient stencil DSL on Sunway.
And Matrix MT2000+ many-core processor lacks corresponding
works on optimizing stencil computation lack. However, since it
is pretty similar to many-core CPUs, existing CPU optimizations
such as cache-oblivious tilling [11] can be adopted to implement
high-performance stencil DSL on Matrix processor.

2.4 Stencil DSLs
To address the diverse stencil patterns and to provide better perfor-
mance portability across different processors, many stencil DSLs
have been proposed with their uniqueness [7, 18, 27, 30, 32, 40].
Specifically, YASK generates vectorized stencil codes using the vec-
tor folding method [40], which packs multi-dimension data into
one SIMD vector for better vectorization. Physis [27] focuses on
large-scale stencil computations on GPU based cluster. It optimizes

the computation kernel and provides an MPI runtime for halo data
exchange, enabling the overlapping of communication and com-
putation. STELLA [18] focuses on stencils with multiple stages in
PDEs, and it supports updating the halo data through boundary
conditions or its halo-exchanging library (GCL). Halide [30] is de-
signed to optimize stencil computations in image processing. The
fundamental idea of Halide is to decouple the computation defi-
nition from its implementation (a.k.a., schedule). The above idea
enables large optimization space for stencil computation, where
auto-tuning methods [1] can be applied to select a near-optimal
schedule with various searching techniques automatically. The
comparison between MSC and existing stencil DSLs is briefly sum-
marized in Table 1.

Although significant efforts have been devoted to stencil DSLs,
we notice that the existing works miss support for emerging many-
core processors such as Sunway and Matrix. In addition, most DSLs
focus on expressing and optimizing stencil computations on the
spatial dimension, and fail to support stencil expression with multi-
ple time dependencies. Theoretically, these DSLs (e.g., Halide) can
also support such stencils by writing extra glue codes. For example,
domain experts should manually duplicate the generated stencil
kernels, reserve the memory space to store the intermediate results,
and finally derive the output grid of a timestep by assembling these
intermediate results, which are less friendly and efficient.

Moreover, few stencil DSLs (except YASK, Physis, and STELLA)
can optimize stencil computations at large scale, which constrains
the practical usage of existing DSLs. The above observations mo-
tivate us to propose a new stencil DSL that supports expressing
stencil computation on both spatial and temporal dimensions, and
allows easy adaption to emergingmany-core processors and flexible
integration of large-scale communication optimizations.

3 DESIGN OVERVIEW
The MSC stencil DSL primarily contains three parts: the frontend,
the backend, and the communication library, as shown in Figure 3.

Interface Data type Scalar, Tensor Kernel def
Stencil def MPI process grid

Schedule
Loop tilling Loop reordering

Cache_read/write Parallelization

IR Expression ...
TeNode SpNode
Kernel Stencil

Axis 

CodeGen Ahead-of-Time (AOT)
Compilation

C source code + Makefile + Run scripts

Tianhe-3 Prototype
(MT2000+, 128ARM cores)

Sunway TaihuLight
(SW26010, 260 cores)

sw5cc & mpiccmpicc

Large-scale
communication

library

APIs

Analytic
perf

model

Optimal
parameters

Simulated
Annealing

x86
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B

ackend

Figure 3: Design overview of MSC stencil DSL.

The frontend takes the definition of a stencil computation as
input. Specifically, the definition is expressed with the MSC’s pro-
gramming language, consisting of the stencil pattern, time iteration,
grid domain, and optimization primitives. The optimization primi-
tives further include loop tilling, loop reordering, parallelization,
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Table 1: The comparison between MSC and existing stencil DSLs.

MSC Halide
[30]

Pluto
[5]

Tiramisu
[3]

Patus
[7]

Artemis
[32]

YASK
[40]

STELLA
[18]

Physis
[27]

OPS
[33]

Devito
[25]

Lift
[19]

AN5D
[28]

Polly
[15]

Pochoir
[36]

Loo.py
[23]

Stencil Single timestep ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Multiple timestep ✓ ✓ ✓ ✓ ✓ ✓

Hardware
CPU ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GPU ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Manycore ✓

Optimization

Spatial tiling ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Streaming ✓ ✓ ✓
Temporal tiling ✓ ✓ ✓ ✓ ✓ ✓
Auto-tuning ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Distributed Halo exchange ✓ ✓ [8] ✓ ✓ ✓ ✓ ✓ ✓
Pluggable library ✓ ✓ [8]

as well as data access control across memory hierarchy. The inter-
mediate representation (IR) connects the frontend and the backend.
Generally, IR is an abstraction of the stencil computation and is
independent of the hardware details, which decouples the stencil
definition from detailed optimizations.

The backend takes the IR after transformations and optimiza-
tions as input, and generates optimized codes for different hardware
targets. Considering the emerging many-core processors (e.g., Sun-
way) that do not support Just-In-Time (JIT) compilation due to
the runtime overhead, MSC provides the Ahead-Of-Time (AOT)
compilation to generate standard C codes as well as correspond-
ing building scripts (e.g., Makefiles). These C codes can then be
compiled by the native compilers available on the processors. The
AOT compilation in MSC’s code generator enables easy adaption
to other many-core processors.

The communication library handles the data exchange of halo
regions when generating large-scale stencil codes running across
multiple nodes. We implement the communication optimizations as
a library to ensure a clear separation of stencil kernel optimizations
and large-scale communication optimizations. Specifically, the com-
pilation of the MSC DSL identifies the size and location of the halo
regions that need to be exchanged during the computation. Then,
it invokes the corresponding APIs in the communication library
to realize halo exchange during code generation. In addition, the
computation codes are interleaved with the communication codes
to optimize the performance further.

4 METHODOLOGY AND IMPLEMENTATION
4.1 Intermediate Representation
MSC adopts a single level IR that is embedded in the abstract syntax
tree. The IR of MSC mainly contains the tensor, nested loop and
expression IRs, as shown in Table 2. The tensor IR includes SpNode
and TeNode, which represents 1D/2D/3D tensor and record the
dimensions (ndim), shape of each dimension (shape), datatype (dt).
The SpNode also records halo size of each dimension (halo). The
nested loop IR is represented by Axis, and an Axis contains its
id (id_var), order in nested loops (order), start/end position and
stride. The expression IR is represented by Expressions, which
contains several types including value assignment (AssignOpExpr),
unary / binary math operator (OperatorExpr), external function
call (CallFuncExpr, tailored for halo-exchanging library), and index
calculation (IndexExpr).

The Kernel defines the basic stencil kernel (e.g., 3D Laplacian
operator), and is composed of Tensor,Nested loop, and Expression IRs.

And Stencil defines the stencil with multiple time dependencies,
and is composed of Kernels, Tensor and Expression IR. Besides, the
optimization primitives can rewrite the Axis and Expression IR in
Kernel for better code generation.

Table 2: The descriptions of IR nodes in MSC.

Type Nodes Description

Tensor - SpNode Tensor w/i halo region
- TeNode Tensor w/o halo region

Nested loop - Axis Axis of nested loops

Expression

- AssignExpr Value assignment expr.
- OperatorExpr Unary / Binary expr.
- CallFuncExpr External function call expr.
- IndexExpr Index calculation expr.

Kernel - Basic stencil kernel

Stencil - Stencil with multiple
time dependencies

Primitive
- tile, reorder, parallel Optimization passes

which rewrite the IR.- cache_read/write
- compute_at

4.2 Domain specific language definition
The abstraction of a DSL realizes a tradeoff between expressibility
and efficiency. MSC achieves good expressibility by enabling users
to define complex stencils with arbitrary shapes easily, in addition
to standard stencils (e.g., 3d7pt). Moreover, MSC achieves good
efficiency by performing effective optimizations. MSC supports
stencils with multiple time dependencies and scales to multiple MPI
nodes, where the user only needs to write few lines of DSL codes
compared to C-code implementations.

To better illustrate the programming language supported in
MSC, Listing 1 presents the code implementation of a 3d7pt stencil
from HPGMG using MSC. MSC is implemented as an extension
to standard C++ with its unique syntax supported. The variables
M,N , P describe the dimension (2563) of the input/output grid in
Line 1. The halo region’s width in each spatial dimension and the
size of the time window in temporal dimension are defined in Line
3-4, respectively. The time window is determined by the maximum
timesteps that the stencil depends on to update its current value.

Listing 1: MSC implementation of 3d7pt stencil
1 ...
2 const int M = N = P = 256;
3 const int halo_width = 1;
4 const int time_window_size = 2;
5 DefVar(k, i32 ) ; DefVar(j , i32 ) ; DefVar(i , i32 ) ;
6 DefTensor3D_TimeWin(B, time_window_size, halo_width, f64, 256, 256, 256) ;
7 Kernel S_3d7pt((k, j , i ) , c0∗B[k, j , i ] + c1∗B[k, j , i−1] + c2∗B[k, j , i+1] + c3∗B[k−1,j , i ] + c4∗

B[k+1,j , i ] + c5∗B[k, j−1,i ] + c6∗B[k, j +1, i ], schedule) ;
8 // Optimizations
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9 ... Several optimization primitives
10 auto t = Stencil :: t ;
11 Result Res( ( i , j ) , B[i , j ] ) ;
12 Stencil st (( i , j ) , Res[t] << S_3d7pt[t−1] + S_3d7pt[t−2]) ;
13 DefShapeMPI3D(shape_mpi, 4, 4, 4)
14 st . input(shape_mpi, B, "../ data/rand.data") ;
15 st . run (1,10) ;
16 st . compile_to_source_code("3d7pt") ;

MSC supports data types including 32-bit integer (i32), 32-bit
float (f32) and 64-bit float (f64). The variables k, j, i represents the
subscripts of the elements in the grid, as shown in Line 5. They
are defined through the DefVar(α , i32) function, which specifies a
scalar α in 32-bit integer datatype.

The input 3D tensor B in f64 datatype is defined in Line 8, with
shape of 256 × 256 × 256. The halo width of input tensor B is set
to halo_width. In MSC, there are two kinds of tensors, SpNode and
TeNode. The SpNode can be explicitly defined by users through the
DefTensor2D/DefTensor3D functions. Then, the MSC automatically
allocates the extra memory space for SpNode to store the halo
regions and the intermediate data within the time window. The
TeNode is used by the MSC compiler and is transparent to users.
It acts as a temporary buffer to store the intermediate data of the
computation domain per timestep without halo region.

The 3d7pt stencil kernel is defined in Line 7 through the Kernel
function, which updates the element (k, j, i) with six neighboring
elements (k±1, j, i), (k, j±1, i) , and (k, j, i±1). The kernel traverses
all grid elements and handles the halo regions automatically. After
the kernel definition, the users can call the kernel to specify the
stencil computation further. MSC provides various optimization
primitives to optimize the stencil computation in Line 9, which are
illustrated in Section 4.3.

After the optimizations, the stencil computation along the time
dimension st is defined in Line 12, which aggregates the output of
the 3d7pt kernel at timestep (t − 1) and (t − 2). The MPI grid for
large-scale execution is defined in Line 13 with a size of (4×4×4).
After specifying the input data and the time iterations in Line 14
and 15, respectively, MSC generates the optimized codes of 3d7pt
stencil through compilation in Line 16.

4.3 Compilation optimizations
To achieve high performance on emerging many-core processors,
we implement the optimization primitives including loop tilling
(tile), loop reordering (reorder) and parallelization (parallel) to opti-
mize the nested loops within stencil codes. Additionally, to support
the cache-less processors such as Sunway, we provide cache_read,
cache_write and compute_at primitives to manage the local memory
and the DMA data transfer. As shown in Figure 4, the MSC walks
through the compilation optimizations of (a)∼(c) on Matrix proces-
sor, whereas for Sunway processor it walks through (a), (b), (d) and
(e). Listing 2 presents the 3d7pt stencil code generated by MSC on
Sunway processor that is optimized by the above primitives. We
explain each of the primitives as follows.

Listing 2: Optimizations of 3d7pt stencil with MSC on Sun-
way processor

1 // Kernel defination
2 DefTensor3D_TimeWin(B, time_window_size, halo_width, f64, 256, 256, 256) ;
3 Kernel S_3d7pt((k, j , i ) , c0∗B[k, j , i ] + c1∗B[k, j , i−1] + c2∗B[k, j , i+1] + c3∗B[k−1,j , i ] + c4∗

B[k+1,j , i ] + c5∗B[k, j−1,i ] + c6∗B[k, j +1, i ], schedule) ;
4 // Optimizations
5 const int tile_size_x = 8, tile_size_y = 8, tile_size_z = 32;

6 Axis xo, yo, zo , xi , yi , zi ;
7 CacheRead buffer_read ;
8 CacheWrite buffer_write ;
9 S_3d7pt. tile ( tile_size_x , tile_size_y , tile_size_z , xo, xi , yo, yi , zo , zi ) ;

10 S_3d7pt. reorder (xo, yo, zo , xi , yi , zi ) ;
11 S_3d7pt.cache_read(B, buffer_read , " global ") ;
12 S_3d7pt.cache_write( buffer_write , " global ") ;
13 S_3d7pt.compute_at(buffer_read, zo) ;
14 S_3d7pt.compute_at(buffer_write , zo) ;
15 S_3d7pt. parallel (xo, 64) ;
16 S_3d7pt.build (" sunway");

Tile primitive - Loop fission [37] is one of the most common
loop optimizations, which splits one loop into two nested loops
denoted as outer and inner. The size of the inner loop is specified by
fission factor τ , and the size of outer loop is derived as N /τ , where
N is the original loop size. In MSC, we implement the loop fission
optimization as the tile(τ , axouter , axinner ) primitive, where τ is
the given fission factor and axouter , axinner are the split axises. As
shown in Figure 4(a), after kernel definition of 3d7pt stencil, MSC
allocates three axises x , y, and z to represent three nested loops
i , j and k , respectively. Then we define the fission factor τx = 8,
τy = 8, τz = 32 along x , y, and z axises and corresponding six
axises xo, xi , yo, yi , zo, and zi . Then, we utilize the tile primitive
as shown in Figure 4(a) to optimize the nested loops of the stencil
code. Note that the order of argument lists of fission factor and split
axises are fixed. As shown in Figure 4(b), the tile primitive splits
the original three nested loops into six nested loops, denoted as
i_outer ∈ [0, 32), i_inner ∈ [0, 8) split from i ∈ [0, 256), j_outer ∈

[0, 32), j_inner ∈ [0, 8) split from j ∈ [0, 256), and k_outer ∈ [0, 8),
k_inner ∈ [0, 32) split from k ∈ [0, 256). Note that the size of inner
loops i_inner , j_inner , and k_inner equals to the tile size τx , τy and
τz , respectively.

for(int i_outer=0;i_outer<32;i_outer+=1)
for(int i_inner=0;i_inner<8; i_inner+=1)
for(int j_outer=0;j_outer<32;j_outer+=1)
for(int j_inner=0;j_inner<8; j_inner+=1)
for(int k_outer=0;k_outer<8; k_outer+=1)
for(int k_inner=0;k_inner<32;k_inner+=1)
{

int i = i_outer*2 + i_inner;
int j = j_outer*4 + j_inner;
...... }

for(int i=0; i<256; i+=1)
for(int j=0; j<256; j+=1)
for(int k=0; k<256; k+=1)
{ ...... }

#pragma omp parallel for num_threads(32)
for(int i_outer=0;i_outer<32;i_outer+=1)
for(int j_outer=0;j_outer<32;j_outer+=1)
for(int k_outer=0;k_outer<8; k_outer+=1)
for( inner… )
{ ...... }

(a) Nested loops

(b) Split to four nested loops

(c) Loop reordering and parallel (homogeneous)

S_3d7pt.tile(𝜏 , 𝜏 , 𝜏 , 
xo, xi, yo, yi, zo, zi);

int my_id = athread_get_id(‐1);
for(int i_outer=0;i_outer<32;i_outer+=1)
for(int j_outer=0;j_outer<32;j_outer+=1)
for(int k_outer=0;k_outer<8; k_outer+=1)
task_id = (i_outer*32*8 + j_outer*8 + 
k_outer)
if (task_id % 64 == my_id)

{ for( inner… )...... }
else continue;

+ .build(“matrix”)

(d) Loop reordering and parallel (heterogeneous)
int my_id = athread_get_id(‐1);
double cache_read [8+2][8+2][32+2];
double cache_write[8][8][32];
for( i|j|k_outer )
if (task_id % 64 == my_id)
{
DMA_get::from host mem to cache_read
for( inner… )
cache_write = f(cache_read) 

DMA_put::from cache_write to host mem
}
else continue;

task assignment

scratchpad memory

DMA transmission
CacheRead read;
CacheWrite write;
+ .cache_read(B, read, 
"global")
+ .cache_write(write, 
"global")
+ .compute_at(read, zo)
+ .compute_at(write, zo)

(e) Cache management (cache‐less processor)

+ .reorder(xo,yo,zo,
xi,yi,zi)

+ .parallel(xo, nt)

+ .build(“sunway”)

Figure 4: Illustration of tile, reorder and parallel primitives,
where (a) original stencil kernel of three nested loops, (b)
six nested loops split by tile primitive, (c) loops after reorder
primitive andmulti-threading parallel primitive on a homo-
geneous many-core processor, (d) loops after reorder primi-
tive and multi-threading parallel primitive on a heteroge-
neous many-core processor, and (e) data caching manage-
ment through cache_read|write and compute_at primitives
on a cache-less processor.

Reorder primitive - After loop fission with tile primitive, the
order of data access is not changed. Therefore, we introduce re-
order(<a list of axises>) primitive to reorder the loops for better
data access locality. The reorder primitive reorders the data ac-
cess of the nested loops according to the order of the given list of
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axises. As shown in Figure 4(b), the loops will achieve better data
locality when the loops are reordered into the data access order of
xo (denoted as i_outer ), yo (j_outer ), zo (k_outer ), xi (i_inner ), yi
(j_inner ), zi (k_inner ). The reordered nested loops using reorder(xo,
yo, zo, xi, yi, zi) are shown in Figure 4(c) and (d). The combination
of reorder and tile primitives can split the stencil computation into
a sequence of computation tasks on tiles. The tiles are assigned
with overlapped halo regions to avoid computation dependencies.
Therefore, each task can be calculated independently at per core
basis of the many-core processors (e.g., CPEs of Sunway processor,
and compute cores of Matrix processor).

Parallel primitive - The multi-threading parallelization is the
common optimization for stencil computation adopted on many-
core processors. Thus, MSC also provides parallel(ax , Nthreads )
primitive, where ax denotes the outer-most loop axis for paralleliza-
tion and Nthreads indicates the thread number specified for paral-
lelization. As shown in Figure 4(c), the parallel primitive optimizes
the outer-most loop xo (denoted as i_outer ) with multi-threading of
64 threads. Due to the implementation difference of multi-threading
on emerging many-core processors, we currently provide two im-
plementations of parallel primitive. For homogeneous many-core
processors (e.g., Matrix), we choose OpenMP programming model
for multi-threading. Specifically, we add #pragma omp parallel di-
rectives, as shown in Figure 4(c). For heterogeneous many-core pro-
cessors (e.g., Sunway), we use the native multi-threading paradigms
such as athread to enable parallelization. As shown in Figure 4(d),
each CPE of Sunway processor has a uniquemy_id , and each compu-
tation task has its task_id derived through the loop counters. Then
the tasks whose task_id satisfies mod (task_id, 64) == task_id
are assigned to CPEmy_id . With parallel primitive, the computa-
tion tasks generated by tile and reorder primitives can be mapped
to the massive cores of the many-core processors conveniently.

Caching related primitives - For emerging many-core pro-
cessors that adopt the cache-less architecture such as Sunway, the
data access requires explicit control to utilize the local memory
(usually implemented as scratchpad memory, SPM) for data reuse.
To utilize the SPM for better data locality, we provide three prim-
itives in MSC. The CacheRead and CacheWrite primitives define
the read/write buffers allocated in SPM. The two primitives have
two clauses cache_read and cache_write to bind the input/output
tensor to the read/write buffer, and register these bindings to MSC.
To utilize the direct memory access (DMA) mechanism available on
the processors, we provide the compute_at primitive. This primitive
dictates the DMA data transfer, which contains two parts: 1) the
data to be transferred, and 2) the code position to invoke DMA.
The MSC can perform the DMA transfer to get/put the required
data from/to off-chip memory. Take Figure 4(e) for example, the
cache_read primitive binds the input tensorB (SpNode) with the read
buffer, cache_write primitive binds the temporary tensor (TeNode)
with the write buffer, and the parameter дlobal indicates the allo-
cated buffers are in the scope of all loops to avoid frequentmalloc
and f ree memory operations. The two compute_at primitives in-
form MSC to transfer the read/write buffers at the beginning/end
of the zo (denoted as k_outer ) loop respectively. Therefore, the
caching related primitives tailored for cache-less many-core proces-
sors (e.g., Sunway) can control the allocation of local memory (e.g.,

SPM) for better data reuse, and manage the DMA transfer between
local memory and main memory automatically.

Sliding time window - Due to the limited memory space, it is
impossible to store all the intermediate data of a stencil kernel at
each timestep, especially iterating over a large number of timesteps.
In order to reduce the memory occupancy, we introduce the slid-
ing time window to store the intermediate results from previous
timesteps. As shown in Figure 5(a), we use a stencil on 2D grid to
illustrate this optimization. The stencil computation at time t de-
pends on the output tensors from time (t − 1) and (t − 2). Therefore,
the width of the sliding time window is set to three. At the time
t , since the output tensors from time (t − 1) and (t − 2) are within
the sliding time window, they have been stored in the memory
buffer for stencil computation at time t . At time (t + 1), the output
tensor at time t replaces the output tensor at time (t − 2) in the
memory buffer. In this way, the number of intermediate tensors
kept in memory is restricted to three (Figure 5(c)), which avoids
overwhelming the memory by continuously increasing the memory
occupancy (Figure 5(b)).

t-2 t-1 t t+1
(b) Time t+1 without 
sliding time window

t+1 t-1 t
SpNode

with halo
TeNode

without halo

(c) Time t+1 with sliding time window
time window

t-2 t-1 t t+1

t
x

y

(a) Time t

Write backRead

Memory usage

Figure 5: Sliding time window optimization along time.

In sum, the loop related primitives (tile, reorder and parallel)
improve the processor utilization with better parallelism, and the
caching related primitives improve the data locality during memory
access. In addition, the sliding time window optimization mitigates
the memory footprint during the computation. Together, MSC can
effectively leverage the architecture features of many-core proces-
sors, and thus generate optimized stencil codes.

4.4 Communication Library
We design an efficient MPI communication library tailored for large-
scale stencils, which works in synergy with MSC to generate stencil
codes automatically. This library considers the stencil patterns and
ensures computation correctness. Besides, it is asynchronous and
topology-aware. The users only need to specify the size of the MPI
grid (Line 15 of Listing 1) without concerning about the communi-
cation details across multiple nodes. And the MSC invokes the halo
exchanging APIs provided by the library at the correct locations of
the generated stencil codes. Generally, the communication library
contains three parts: 1) domain decomposition, 2) halo exchanging,
and 3) performance auto-tuning. In Figure 6, we choose a 2d7pt
stencil on a 8 × 8 input grid with a 2 × 2MPI grid to illustrate the
implementation of the communication library in detail.
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A (Rank 0)

(a) 8x8 input tensor, halo_size=1

(b) Halo exchanging

2d9pt stencil

B (Rank 1)

D (Rank 3)C (Rank 2) 
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C D

Asynchronous
MPI

pack unpack

buffer_send

buffer_recv
buffer_recv

buffer_send
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(c) MPI communication

outer halo

inner halo

inner

Figure 6: The implementation of the communication library,
where (a) the domain decomposition and task assignment to
MPI processes, (b) the halo exchange betweenMPI processes,
and (c) the detailed MPI communication.

Domain decomposition - The input tensor is decomposed
evenly among the number of MPI processes, and then each sub-
tensor is assigned to an MPI process. In Figure 6(a) and (b), the sub-
tensors A,B,C,D are assigned to MPI processes with rank 0, 1, 2, 3
respectively. Each sub-tensor also contains a halo region similar
to the input tensor. Besides, we further dissect the sub-tensor into
three parts: 1) outer halo region (orange color), which holds the
data to be received from neighboring sub-tensors, 2) inner halo
region (blue/green/yellow/red color), which holds the data to be
sent to neighboring sub-tensors, and 3) inner region (gray color),
which does not participate in halo exchange. Notably, both the
inner halo region and the inner region contain the valid data of a
sub-tensor. As shown in Figure 6(b), we plot the inner halo regions
of sub-tensors A,B,C,D with different colors to illustrate where
the data in the outer halo regions comes from.

Halo exchange - As for halo exchange, a MPI process (rank 1)
allocates the memory for the send buffer and the receive buffer, then
packs the data of the inner halo region in the send buffer. After that,
it calls MPI_isend function to send the packed data to the neigh-
boring MPI process (rank 3) asynchronously. The neighboring MPI
process (rank 3) calls MPI_irecv function to receive the packed data
in the receive buffer, and then unpacks the data to update the outer
halo region. Meanwhile, the neighboring process (rank 3) is also
sending its inner halo region to its neighboring process (rank 1), as
shown in Figure 6(c). Notably, all MPI processes are exchanging the
halo region asynchronously (Figure 6(b)), which better utilizes the
network bandwidth and reduces the communication overhead. Af-
ter the halo exchange, all MPI processes have received the required
data in the outer halo region for stencil computation.

Performance auto-tuning - To achieve optimal stencil codes,
we need to adjust certain parameters to adapt to the input domains
and the underlying hardwares. These parameters include the sub-
domain size with domain decomposition, and the tile size with tile
primitive. The settings of the above parameters could have a signif-
icant impact on performance. To alleviate the burden of parameter
tuning by hand, we adopt the auto-tuning methods to determine
the optimal parameter settings. Specifically, we build an analytical

performance model using multivariable linear regression to pre-
dict the stencil kernel time. Based on the performance model, we
adopt the simulated annealing algorithm to search for the optimal
parameter settings for large-scale stencil codes. The searching al-
gorithm considers the MPI initialization time, kernel computation
time, data packing/unpacking time, and data transferring time. Due
to the page constraint, we omit the detailed formulations of the
performance model and searching algorithm.

Since the communication library works as a plugin to MSC, it is
naturally separated from the stencil kernel optimizations. There-
fore, various communication optimizations can be further imple-
mented in this library without modifying MSC. Such advantage
overcomes the drawback of tightly coupling stencil kernel opti-
mizations with communication methods adopted in existing DSLs
such as YASK [40] and Physis [27]. Therefore, users can easily plug
in their own halo-exchanging libraries (e.g., GCL in STELLA) and
seamlessly integrate with code generation of MSC. It also enables
easy adaption to supercomputers or large clusters installed with ex-
otic network topologies, requiring customization of the underlying
communication APIs.

5 EVALUATION
5.1 Experimental setup
Our experiments are conducted on the three platforms, including
Sunway TaihuLight supercomputer, the Prototype Tianhe-3 cluster,
and the local CPU server. The detailed configurations of these
platforms are listed in Table 3. Note that in the prototype cluster,
the core resources assigned to the user are at the granularity of 32
cores (one SN) with other cores reserved [39].

Table 3: The hardware and software config.

Platform Processor Compiler MPI OpenMP
Sunway
TaihuLight

SW26010
(65 cores*4)

gcc-8.3
sw5cc

mpich-3.0 None

Tianhe-3
Prototype

MT2000+
(32 cores)

gcc-8.2 mpich-3.2 4.5

Local
CPU Server

E5-2680v4*2
(14 cores*2)

gcc-8.3 openmpi-3.1 4.5

We first evaluate the performance of MSC on a single many-
core processor, including Sunway and Matrix. We then evaluate the
scalability of MSC on multiple processor nodes on Sunway platform
and Tianhe-3 platform, respectively. To compare the MSC with the
state-of-the-art stencil DSLs such as Halide, Patus, and Physis, we
provide the evaluation results on the CPU platform for single node
runs. As listed in Table 4, we evaluate a set of stencil benchmarks
with different shapes, input dimensions, and computation orders,
which are representative of a wide range of scientific applications.

For performance evaluation on a single processor, we compare
the codes generated by the MSC with the codes manually optimized
using OpenACC (on Sunway) and OpenMP (on Matrix). The Ope-
nACC and OpenMP baselines adopt the same optimizations as MSC
for a fair comparison. For scalability evaluation, we measure the
strong and weak scalability of the MSC on Sunway and Tianhe-3
platforms, respectively. Moreover, we evaluate the effectiveness
of the auto-tuning method in MSC for determining the optimal
parameter settings. Each implementation has been executed ten
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times, with the average execution time reported. To ensure the
correctness of MSC, we measure the relative errors between the
generated codes and the serial codes. For all evaluation results, the
relative errors of the single-precision (fp32) results and the double-
precision (fp64) are less than 10−5 and 10−10, respectively, which
indicates our MSC does not affect the correctness [17].

Table 4: Stencil benchmarks used in the evaluation.

Benchmark Read(Byte) Write(Byte) Ops(+-×...) Time Dep.
2d9pt_star 72 8 17 2
2d9pt_box 72 8 17 2
2d121pt_box 968 8 231 2
2d169pt_box 1352 8 325 2
3d7pt_star 56 8 13 2
3d13pt_star 104 8 17 2
3d25pt_star 200 8 41 2
3d31pt_star 248 8 50 2

5.2 Performance comparison on a single
many-core processor

On both Sunway and Tianhe-3 platforms, we execute the MSC on
the login nodes for compilation and code generation, and evaluate
the generated codes on their computation nodes. We use the same
grid size (2563) of 3D stencils in our experiments as Physis [27].
And for 2D stencils, we set the total number of points in the 2D
grids to be equal to that of 3D grids (40962 = 2563). Table 5 present
the parameter settings of MSC across the benchmarks.

Table 5: The parameter settings of 2D/3D stencils usingMSC
on a single Sunway (a CG) / Matrix (32 cores) processor.

Stencil Grid Size Tile Size Reorder Rule

2d9pt_star
2d9pt_box

4, 0962 (32,64) / (2,2048) (xo,yo,xi,yi)

2d121pt_box
2d169pt_box

4, 0962 (16,32) / (2,2048) (xo,yo,xi,yi)

3d7pt_star
3d13pt_star

2563 (2,8,64) / (2,8,256) (xo,yo,zo,xi,yi,zi)

3d25pt_star
3d31pt_star

2563 (2,4,32) / (2,8,256) (xo,yo,zo,xi,yi,zi)

5.2.1 Performance speedup. On Sunway, the users can leverage the
directives (#pragma acc ...) provided by the OpenACC compiler to
optimize stencil codes. And we select the directives of data caching
(acc copyin/copyout), loop splitting (acc tile), and multi-threading
(acc parallel) to accelerate the stencil codes, and use codes opti-
mized by OpenACC as the baseline. Since the OpenACC focuses
on program optimization on a single CG, we conduct experiments
on a single CG for performance comparison (1 MPE + 64 CPEs).
Figure 7 presents the execution time comparison of MSC and Ope-
nACC codes to perform stencil computations under fp64 and fp32
precisions. It can be seen that MSC outperforms OpenACC in all
cases, with the average speedup of 24.4× (fp64) and 20.7× (fp32). Al-
though the OpenACC implementations adopt similar optimization
techniques as MSC, they lack the fined-grained managements that
adapt the stencil patterns to the Sunway architecture, especially on
high-order stencils (e.g., 2d121pt_box and 2d169pt_box). Whereas
the MSC can leverage the various optimization primitives to gener-
ate optimized codes exploiting the architectural features such as

SPM and DMA for superior performance. Taking the 3d13pt_star
stencil for example, all 64 CPEs inside a CG have been fully utilized,
with each CPE calculating 256 tiles. Through DMA, each tile has
been loaded from main memory to SPM, and written back to main
memory when updated. During the computation, the CPEs can
access all required data resided in SPM without accessing the main
memory. Specifically, the SPM utilization has reached more than
78%, with each data point reused about 13 times.
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3d25pt_star
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Figure 7: Performance comparison between MSC generated
codes andOpenACCmanually optimized codes on a Sunway
CG, where OpenACC is set as the baseline.

We also compare the performance of MSC with manually opti-
mized OpenMP codes on a singleMatrix processor. Figure 8 presents
the performance comparison of MSC and OpenMP codes to perform
stencil computations under fp64 and fp32 precisions. The perfor-
mance of MSC generated stencil codes is close to the manually
optimized OpenMP codes. This is because the Matrix processor is
an ARM-based homogeneous many-core processor, which is easier
to optimize codes manually than the Sunway processor. In addition,
the OpenMP programming paradigm provides efficient pragmas
to manipulate the parallelism and data access. Specifically, MSC
achieves 1.05× (fp64) and 1.03× (fp32) performance of the manu-
ally optimized codes on average. Note that although MSC achieves
similar performance with manually optimized OpenMP codes, the
productivity using MSC to write stencil codes is better than using
OpenMP (byLoC in Section 5.2.3).
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Figure 8: Performance comparison between MSC generated
codes and OpenMP manually optimized codes on a Matrix
processor, where OpenMP is set as the baseline.

5.2.2 Roofline model analysis. We use the roofline model analysis
to better understand the performance of stencil codes generated
by MSC. Due to the similar computation patterns under both fp64
and fp32 precision, we only provide the roofline model analysis
under fp64 precision on both Sunway and Matrix processors. As
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shown in Figure 9(a) and Figure 9(b), most stencil benchmarks
are on the left of the ridge point, which means their performance
is memory-bound. Whereas for 2d169pt stencil on Sunway, it is
compute-bound due to the large number of calculations required
for applying the stencil computation. However, due to the limited
bandwidth on Matrix processor, the 2d169pt stencil is still memory-
bound. The roofline results indicate the future direction of our MSC
optimizations for generating high-performance stencil codes.

To further analyze the roofline results, we classify the stencil
benchmarks into three categories based on their operational in-
tensity on Sunway processor, including 1) 2d9pt_star, 2d9pt_box,
3d7pt_star, 3d13pt_star, 2) 3d25pt_star, 3d31pt_star, and 3) 2d121pt_box,
2d169pt_box. The stencil benchmarks in category 3) achieves better
performance compared to other categories due to their intensive
computation patterns, which densely access the neighboring ele-
ments in compact regions and thus improve the data locality. The
above reason also applies to the observation that 2d9pt_box out-
performs 2d9pt_star in category 1). We also notice that the stencil
benchmarks in category 2) have lower performance even than sten-
cil benchmarks with lower operational intensity in category 1). This
is because the star stencils with more points have much larger
neighboring regions, which leads to more discrete (input grid) and
redundant (halo region) data accesses, and thus poorer data locality.
Similar analysis can also be applied on Matrix processor.
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Figure 9: Roofline analysis of all stencil benchmarks on a
CG of Sunway processor (a) / a Matrix processor (b).

5.2.3 LoC comparison. To measure the productivity of MSC, we
compare the line of codes (LoC) between MSC DSL and manually
optimized OpenACC/OpenMP codes on Sunway and Matrix pro-
cessors, respectively. As shown in Table 6, the LoCs using MSC are
less than that of the manually optimized codes, especially on Matrix
processor. The average reduction of LoC is 27% and 74% on Sun-
way and Matrix processors, respectively. On Sunway processor, the
LoCs using MSC are close to that of OpenACC. This is because the
OpenACC provides limited primitives for optimizing stencil codes
on Sunway. Therefore, the length of OpenACC code is usually quite
constrained. On the contrary, the OpenMP offers a large number
of pragmas for performance tuning. Therefore, it costs the users
significant time for code optimizations with increasing code length.
In sum, the results indicate that MSC can significantly reduce the
programming efforts to write high-performance stencil codes.

5.3 Scalability
We evaluate the strong and weak scalability of MSC on Sunway
TaihuLight supercomputer and prototype Tianhe-3 cluster. The

Table 6: LoC comparison between MSC and manually opti-
mized codes on Sunway and Matrix processor.

Benchmark Sunway Matrix
MSC OpenACC MSC OpenMP

2d9pt_star 33 45 27 95
2d9pt_box 32 45 26 95
2d121pt_box 50 55 44 207
2d169pt_box 54 57 48 255
3d7pt_star 36 45 28 101
3d13pt_star 33 51 27 98
3d25pt_star 35 65 29 102
3d31pt_star 37 72 31 103

configuration of the strong/weak scalability experiments on the
two platforms is listed in Table 7. On Sunway platform, we scale
the execution of MSC generated codes from 128 to 1,024 CGs. Since
each CG contains 65 cores, the number of cores used in the stencil
computation ranges from 8,320 to 66,560. On Tianhe-3 platform,
we scale the execution from 32 to 256 processors. Since each Ma-
trix processor contains 32 cores, the number of cores used in the
stencil computation ranges from 1,024 to 8,192. Figure 10(a) and
(b) presents the strong and weak scalability of MSC on Sunway
platform and Tianhe-3 platform, respectively. The y-axis represents
the absolute measured performance (GFlops), and the x-axis repre-
sents the number of computation cores. Note that on the x-axis, the
number on the left and right of the separator line (e.g., 1,024|256)
represents the number of computation cores on Sunway (e.g., 1,024)
and Tianhe-3 (e.g., 256) platform, respectively. The dash and solid
line represent the ideal and achieved performance.

Table 7: Configuration of the strong/weak scalability experi-
ments of MSC on Sunway TaihuLight supercomputer (Left|)
and prototype Tianhe-3 cluster (|Right).

Dim Weak Scalability Strong Scalability MPI Grid ProcessesSub_grid per MPI Sub_grid per MPI

2D

4, 0962 4, 096 × 4, 096 16 × 8 | 8 × 4 128 | 32
4, 0962 4, 096 × 2, 048 16 × 16 | 8 × 8 256 | 64
4, 0962 2, 048 × 2, 048 32 × 16 | 16 × 8 512 | 128
4, 0962 2, 048 × 1, 024 32 × 32 | 16 × 16 1024 | 256

3D

2563 256 × 256 × 256 8 × 4 × 4 | 4 × 4 × 2 128 | 32
2563 256 × 256 × 128 8 × 8 × 4 | 4 × 4 × 4 256 | 64
2563 256 × 128 × 128 8 × 8 × 8 | 4 × 8 × 4 512 | 128
2563 128 × 128 × 128 16 × 8 × 8 | 8 × 8 × 4 1024 | 256

For strong scalability experiments, we double the number of
computation cores each time, with the size of the input grid fixed.
As shown in Figure 10(a), all stencil benchmarks achieve linear
speedup on Sunway platform when scaling the number of cores.
Therefore, the strong scalability of MSC on Sunway platform is
almost ideal. For Tianhe-3 platform, the MSC achieves almost ideal
strong scalability on the 3D stencils. Whereas for the 2D stencils,
the strong scalability of MSC deviates from ideal as the number
of cores increases. This is because the halo regions of 2D stencils
are exchanged more frequently, which leads to network conges-
tion on the Tianhe-3 platform. Particularly, when scaling to the
maximum number of cores, the average speedup (compared to the
performance at the minimum number of cores) achieved by MSC is
6.74× and 5.85× on Sunway and Tianhe-3 platforms, respectively.

For weak scalability experiments, we double the number of com-
putation cores, with the size of the input grid also doubled. In
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addition, we keep the sub-grid assigned to each core fixed. As
shown in Figure 10(b), the stencil codes generated by MSC achieve
linear speedup as the number of cores scales. Therefore, the weak
scalability of MSC is almost ideal. Particularly, when scaling to the
maximum number of cores, the average speedup (compared to the
performance at the minimum number of cores) achieved by MSC is
7.85× and 7.38× on Sunway and Tianhe-3 platform, respectively.

5.4 Performance Auto-tuning
To evaluate the effectiveness of auto-tuning method in MSC, we
measure the performance of 3d7pt_star stencil in large-scale exe-
cution before and after auto-tuning. Specifically, we use the input
domain size of 8192×128×128 and run the stencil codes on 128 CGs
of Sunway platform. The parameters to be tuned include the tilling
size in each spatial dimension and the shape of MPI process grid.
We invoke the auto-tuning method twice to evaluate its stability.
We omit the evaluation results on Tianhe-3 platform, which reveals
a similar tendency.

Figure 11 presents the stencil performance as the auto-tuning
method iterates. The x-axis indicates the number of iterations us-
ing the simulated annealing algorithm. The y-axis indicates the
execution time of 100 timesteps. The execution time of both runs
decreases rapidly as the number of iterations increases. The two
runs identify the optimal parameters after 13,460,000 (around 13
minutes) and 19,670,000 (around 16 minutes) iterations, respectively.
This converged iteration time across runs proves the stability of
the auto-tuning method. Using the optimal parameters identified
by the auto-tuning method, the performance of the stencil code
can be improved by 3.28×. The results indicate that the auto-tuning
method in MSC can effectively determine the optimal parameters
for generated stencil code.

5.5 Performance Comparison with SOTA DSLs
Since no stencil DSLs support the Sunway and Matrix processors,
we decide to compare MSC and SOTA stencil DSLse on the CPU
platform. We choose Halide (v12.0.1), Patus, and Physis for compari-
son. Specifically, we use Halide and Patus with OpenMP parallelism
since they do not support MPI. We use Physis with MPI paral-
lelism. Note that Physis does not support hybrid parallelism with
OpenMP and MPI, whereas MSC supports well (kernel optimiza-
tion + communication library). The experiments are conducted on
a two-socket Intel E5-2680v4 CPU with 28 cores in total.

The parameter settings of stencils are the same as in Table 5
when comparing MSC with Halide and Patus. In addition, we set
the thread number to 28. And the configuration parameters of MSC,
when compared to Physis, are shown in Table 8. Note that we only
adjust the number of MPI processes and OpenMP threads, whereas
the input grid and the program parallelism remain unchanged. The
size of the 2D and 3D input grid used to compare with Physis is
16, 384 × 28, 672 and 512 × 512 × 1, 792, respectively.

The performance comparison between MSC and Halide (un-
der both JIT and AOT settings) is shown in Figure 12. Compared
with Halide-JIT (baseline), the average speedup of Halide-AOT and
MSC is 2.92× and 3.33×, respectively. The poor performance of
Halide-JIT can be attributed to the large overhead of JIT compilation.
We also notice that Halide-AOT achieves better performance than

Table 8: Configuration of MSC when compared with Physis
on CPU platform.

Dim Sub_grid MPI Grid MPI Processes OMP Threads

2D
4096×4096 4×7 28 1
8192×4096 2×7 14 2
16384×4096 1×7 7 4

3D
256×256×256 2×2×7 28 1
512×256×256 1×2×7 14 2
512×512×256 1×1×7 7 4

MSC on small stencils (e.g., 2d9pt_star, 2d9pt_box, and 3d7pt_star),
whereas MSC performs better than Halide-AOT on large stencils.
After careful investigation, we realize the performance difference
can be attributed to data indexing codes generated by them. Specifi-
cally, Halide-AOT generates a large number of subscript expressions
for data indexing, whereas MSC can directly index the data due to
its design of tensor IR. Therefore, Halide-AOT requires more com-
putation for evaluating subscript expressions as the stencil order
increases, and thus is inferior to MSC with large stencils.

The performance comparison between MSC and Patus (baseline)
is shown in Figure 13. The performance of MSC is better than Patus
for all stencil benchmarks, and the average speedup is 5.94×. This
is because the evaluated stencil benchmarks are already bounded
by memory bandwidth. However, Patus applies aggressive SIMD
vectorization with SSE intrinsics, which leads to more unaligned
memory accesses and thus exacerbates the memory-bound problem.
In addition, the 3D star stencils require more data elements (e.g.,
3d25pt_star, 3d31pt_star) for updating the input grid, which suffers
more from discrete memory accesses, and further deteriorates the
performance of Patus.

The performance comparison between MSC and Physis under
different configurations is shown in Figure 14. For all stencil bench-
marks, the performance of MSC is better than that of Physis, with
an average speedup of 9.88×. Especially on stencil benchmarks
with higher orders (e.g., 2d121pt_box, 2d169pt_box, 3d25pt_star, and
3d31pt_star), the performance of MSC is much better than Physis.
This is because there is a large amount of halo exchange for the
above stencils. In Physis, the halo exchange relies on the RPC run-
time that coordinates the communication among all processes with
a master process, which soon becomes the bottleneck as the amount
of halo exchange increases. In contrast, the communication library
in MSC supports asynchronous halo exchange, which is efficient
for large-scale execution of high-order stencils.

5.6 Discussion
We are interested to apply MSC to real-world applications such
as weather forecasting (WRF) and ocean modeling (POP2), whose
performance critical kernels consist of stencil computation. For
example, the advect_mono and advect subroutines from advect_em
module of WRF, as well as the hdifft and vdifft subroutines from
baroclinic module of POP2. The above stencils commonly require
more than one input grid, along with their coefficient grids. These
grids can be too large to fit in the limited local memory of the many-
core processors. Therefore, MSC should manage the large input
data in a streaming and pipelined manner so that it can overlap the
data access and computation within the limited local memory. In ad-
dition, since WRF and POP2 suffer from serious load imbalance [41]
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Figure 10: Strong (a)/weak (b) scalability of MSC on Sunway TaihuLight supercomputer and prototype Tianhe-3 cluster.
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Figure 11: Auto-tuning results of 3d7pt_star stencil in large-
scale execution on Sunway platform.
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Figure 14: Performance comparison of Physis and MSC,
where Physis running on 28 cores is chosen as the baseline.

in large-scale execution, the subgrids assigned to different proces-
sors may require diverging compilation optimizations. Therefore,
we plan to adopt the inspector-executor method [6] in MSC, which
analyzes the subgrids and generates the corresponding optimiza-
tion schedules in the inspector phase, and performs compilation and
code generation in the executor phase.

6 CONCLUSION
In this paper, we propose MSC, a new stencil DSL that generates
optimized stencil codes targeting many-core processors such as
Sunway and Matrix. MSC supports expressing stencil computation
with multiple time dependencies and optimizes the stencil codes
from both spatial and temporal dimensions. It also implements
various optimization primitives to exploit the parallelism and data
locality across the computation and memory hierarchies. Moreover,
we design an efficient communication library to support asynchro-
nous halo region exchange in large-scale stencil codes. This library
is integrated into MSC as a plugin, which decouples from the sten-
cil kernel optimizations and can be easily adapted to customized
network topologies. The experiment results with representative
stencils demonstrate that the MSC can generate optimized codes
with similar or better performance than manually optimized codes
on Sunway and Matrix many-core processors. In addition, MSC
achieves better performance compared to existing stencil DSLs
such as Patus and Physis on CPU. The MSC is open-sourced at
https://github.com/buaa-hipo/MSC-stencil-compiler.
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