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ABSTRACT
Tensor computations are gaining wide adoption in big data anal-
ysis and artificial intelligence. Among them, tensor completion is
used to predict the missing or unobserved value in tensors. The
decomposition-based tensor completion algorithms have attracted
significant research attention since they exhibit better paralleliza-
tion and scalability. However, existing optimization techniques for
tensor completion cannot sustain the increasing demand for ap-
plying tensor completion on ever larger tensor data. To address
the above limitations, we develop the first tensor completion li-
brary cuTC on multiple Graphics Processing Units (GPUs) with
three widely used optimization algorithms such as alternating least
squares (ALS), stochastic gradient descent (SGD) and coordinate
descent (CCD+). We propose a novel TB-COO format that leverages
warp shuffle and shared memory on GPU to enable efficient reduc-
tion. In addition, we adopt the auto-tuning method to determine the
optimal parameters for better convergence and performance. We
compare cuTC with state-of-the-art tensor completion libraries on
real-world datasets, and the results show cuTC achieves significant
speedup with similar or even better accuracy.

CCS CONCEPTS
• Computer systems organization → Parallel architectures; •
Computing methodologies → Parallel algorithms.
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1 INTRODUCTION
The multi-way data, also known as tensor, has attracted increasing
attention in the fields of big data analysis, computer vision and
artificial intelligence for its ability to represent interactions among
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massive variables [37]. Among the tensor computations, tensor
completion is one of the most popular problems for research, which
is the generalization of the prevailing matrix completion [13]. One
important usage of tensor completion is to estimate or restore the
unobserved values of a tensor. For instance, since the RGB images
are three-dimensional tensors, the tensor completion algorithm
can be applied to image completion and image retrieval for build-
ing facade images [44]. In addition, tensor completion can be used
to help clinical analysis by mining the underlying patterns from
massive health records [46]. Moreover, tensor completion can also
be applied to predict the preference for new products based on
historical customer ratings [34]. Furthermore, tensor completion
algorithms can be adopted to predict climatic parameters for differ-
ent locations or future time [24], which are all unobserved elements
in climate records. All the above applications depend on the perfor-
mance of tensor completion to satisfy the computation demand for
processing ever-increasing volume of tensor data.

Tensor completion algorithms can bemainly divided into two cat-
egories [41]: decomposition-based approach and trace-norm based
approach. In general, the decomposition-based approach receives
more attention in the HPC community due to its better paralleliza-
tion and scalability. Tensor decomposition factorizes a tensor to
low-rank representations, which can ease the understanding of the
relationships among variables. Whereas, the decomposition-based
tensor completion first conducts the tensor factorization based on
observed elements in tensor to generate low-rank representations,
and then estimates the unobserved elements with factor matrices.
The difference between tensor decomposition and decomposition-
based tensor completion is that the former considers the unobserved
elements as zeros, while the latter attempts to predict the exact
values of missing elements.

Recently, accelerating decomposition-based tensor completion
has been actively studied [37, 52]. Researchers have been making
efforts to optimize tensor completion on multicore CPUs [37] and
manycore CPUs (e.g., Intel Knights Landing) [52]. Meanwhile, GPU
has become an attractive architecture for improving the perfor-
mance of linear algebra libraries [26], scientific applications [23]
and artificial intelligence [40]. The GPU exceeds traditional CPU
in several aspects such as massive parallelism, higher memory
bandwidth and higher peak floating-point performance. The above
promising properties of GPU make it a profitable candidate for
further boosting the performance of tensor completion algorithms,
which has not yet been covered by existing research work. More-
over, modern servers are commonly equipped with multiple GPUs
(e.g., 8 GPUs within Nvidia DGX-1 [10]). To take advantage of
such servers, it is inevitable to parallelize tensor completion across
multiple GPUs for exploiting the performance on table.
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To bridge the gap of providing efficient tensor completion on
GPUs, there are several unique challenges to be addressed. Firstly,
the unpredictable sparsity pattern in tensor can lead to severe
load imbalance and poor cache locality, which is detrimental to
performance. Secondly, the formidable memory bandwidth for ac-
cessing the massive data when updating the factor matrices also
deteriorates the computation efficiency. Thirdly, tensor completion
requires more computation and communication resources than tra-
ditional tensor decomposition, especially when using Alternating
Least Squares (ALS) optimization algorithm. It involves additional
batched matrix operations except for the computation hotspot of
tensor decomposition, such as matricized tensor times Khatri-Rao
product (MTTKRP). Therefore, new optimization approaches for
tensor completion need to be developed in order to better adapt to
the GPU architecture. Moreover, when scaling to multiple GPUs
with discrete memory addresses, a more sophisticated data partition
strategy is needed to avoid load imbalance among GPUs, and to
reduce data transfers when updating the factor matrices in each
computation epoch.

In this paper, we exploit the performance potential of GPUs
to accelerate tensor completion by developing a library cuTC. In
cuTC, to facilitate our optimizations on GPUs, we propose a new
sparse tensor storage format TB-COO by extending the coordinate
format (COO) format with tile and bitmap. Based on TB-COO, we
optimize three widely used algorithms in tensor completion on
GPUs, including alternating least squares (ALS), stochastic gradi-
ent descent (SGD) and coordinate descent (CCD+). Leveraging the
efficient design of TB-COO and unique GPU characteristics such
as share memory, hierarchical parallelization and warp shuffle, we
are able to achieve significant performance speedup compared to
the state-of-the-art libraries. To the best of our knowledge, this
is the first work to develop an efficient tensor completion library
targeting multiple GPUs.

Specifically, this paper makes the following contributions:

• We propose a new sparse tensor storage format TB-COO by
extending COO format with tiles and bitmaps. The TB-COO
format improves load balance by tiling tensors into entries
and eliminates expensive atomic operations by enabling re-
duction through bitmaps.

• We optimize three commonly used algorithms in tensor com-
pletion leveraging the efficient design of TB-COO and unique
GPU characteristics. In addition, we design an auto-tuning
scheme to determine the parameter settings for optimal per-
formance and algorithm convergence.

• We develop the first tensor completion library cuTC onmulti-
ple GPUs, and evaluate it on both synthesized and real-world
datasets. The experiment results demonstrate cuTC achieves
significant performance speedup compared to the state-of-
the-art libraries. In addition, we analyze the efficiency of
cuTC through roofline analysis.

The rest of the paper is organized as follows. Section 2 intro-
duces the tensor notations used in this paper and provides a concise
description of decomposition-based tensor completion, popular op-
timization algorithms in tensor completion as well as the existing
sparse tensor storage formats. We present the TB-COO format and
optimization approaches for ALS, SGD and CCD+ algorithms on

GPU in Section 3. The performance results compared to the state-
of-the-art libraries are presented in Section 4. Section 5 presents
the existing researches related to decomposition-based tensor com-
pletion. Section 6 concludes this paper.

2 BACKGROUND
2.1 Decomposition-Based Tensor Completion
Before diving into the details of decomposition-based tensor com-
pletion, we will provide the preliminaries and notations for ten-
sors. The multi-dimensional array is commonly denoted as the
tensor [19], whose dimensions are denoted as modes. Tensor is the
generalization of matrices and vectors. Moreover, a fiber of the
tensor is one of its subarrays, which keeps all but one index of the
tensor to be constant, whereas a slice of the tensor is one of its
subarrays that fixes all but two indices. The important notations
and their definitions are summarized in Table 1. To keep the illus-
tration concise, we focus on the three-dimensional tensor and the
mode-1 operations to describe the tensor storage format and par-
allel tensor completion algorithms without loss of generality (the
same approach can be applied to the operations on other modes).

Table 1: Key Notations

Notation Definition

X A high-dimensional tensor.
Xi, j,k An element in a high dimensional tensor.
Xi, :, : A slice in a high dimensional tensor.
Xi, j, : A fiber in a high dimensional tensor.
A A matrix.

Ai, j An element in a matrix.
a An vector.
ai An element in a vector.
⊙ The symbol for Kronecker product.
∗ The symbol for Hadamard product.
† The symbol for pesudo-inverse.

Canonical polyadic decomposition (CPD) is one of the most
popular methods for tensor decomposition [37] due to its high com-
putation efficiency. Given a three-dimensional tensor X ∈ RI×J×K

and rank F , the CPD algorithm generates three factor matrices to
model the tensor: A ∈ RI×F , B ∈ RJ×F and C ∈ RK×F . In other
words, the CPD algorithm constructs X as the summation of F
rank-one tensors. The element-wise description of CPD is defined
as Xi, j,k =

∑F
f =1 ai f bj f ckf .

Decomposition-based tensor completion is the most widely used
approach for scalable tensor completion [41]. Particularly, the ten-
sor completion using CPD can be written as a non-convex opti-
mization problem as shown in Equation 1, where the X:, :, : only
consists of the observed values, λ is the regularization parame-
ter and L(·) is the loss function which can be computed using
Li, j,k = Xi, j,k −

∑F
f =1 ai f bj f ckf . The adoption of regularization

parameter is to prevent overfitting. To solve this non-convex opti-
mization problem, three algorithms have gained wide popularity,
including Alternating Least Square (ALS), Stochastic Gradient De-
scent (SGD) and Coordinate Descent (CCD+).
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min
A,B,C

1
2

∑
X:, :, :

L2
i, j,k +

λ

2
(∥A∥2F + ∥B∥2F + ∥C∥2F ) (1)

2.2 Alternating Least Square (ALS)
During each epoch, the ALS algorithm cyclically updates one factor
matrix with all the other factor matrices fixed. For instance, the
update for ith row of mode-1 matrix A can be calculated using
Equation 2, where vec(Xi, :, :) is the vectorization of the ith slice
of X. Meanwhile, H is a buffer matrix for storing the result of
Hadamard product and Hi ∈ R|vec(Xi, :, :)|×F stores all the corre-
sponding Hadamard products in the ith slice ofX. If the nth element
in vec(Xi, :, :) is Xi, j,k , then Hl, : can be computed as Bj, : ∗ Ck, :. It
is obvious that HT

i Hi + λI is symmetric positive-definite, thus its
inversion can be calculated through a Cholesky factorization and
forward/backward substitutions. The computation of all Hi is in
the complexity of O(F 2nnz), where nnz is the number of non-zero
elements in tensor X. Moreover, calculating a row for matrix inver-
sions is in the complexity of O(F 3), thus updating the factor matrix
A in ALS is in the complexity of O(F 2nnz + IF 3).

Ai, : = (HT
i Hi + λI)−1HT

i vec(Xi, :, :) (2)

2.3 Stochastic Gradient Descent (SGD)
During each epoch, the SGD algorithm takes several steps, each
of which updates the factor matrices based on the gradient at a
randomly-selected element Xi, j,k . The updates are shown in Equa-
tion 3, where η denotes the learning rate parameter. One popular
parallel implementation of SGD is to exploit the independence be-
tween non-zero values with disjoint coordinates [8]. For instance,
partitioning the tensor X into blocks along the diagonal. Moreover,
researchers have been devoting to design parallel strategies, which
allows the parallelization of elements with overlapped coordinates.
Hogwild [32] enables the shuffled non-zeros to be processed in
parallel without stratification and synchronization, based on the
observation that the input is sparse and conflict rarely happens.
ASGD [8] processes all the non-zeros in a distributed manner and
combines the local updates with weighted summation during each
epoch.

Ai, : = Ai, : + η(Li, j,kBj, : ∗ Ck, : − λAi, :), (3)

2.4 Coordinate Descent (CCD+)
In contrast to ALS and SGD, the CCD+ sequentially updates the
columns of factor matrices based on Ai f =

αi
λ+βi

, where the αi and
βi is formulated as αi =

∑
Xi, :, :

Li, :, :Bj f Ckf and βi =
∑
Xi, :, :

(Bj f Ckf )2

, respectively. The f th columns in B and C are updated after that
in A is updated. To improve the performance of parallel CCD+
algorithm, the loss function L(·) is only computed once in each
epoch and reused for F columns [50].

2.5 Sparse Tensor Storage Format
Recently, several sparse tensor storage formats have been developed
to improve the performance and reduce memory consumption

of sparse tensor decomposition. These formats can be primarily
divided into two categories: COO-based formats and CSF-based
formats. Since the CSF format [36] has a tree-like structure, the CPD
algorithm with CSF format is implemented recursively and does
not fit for GPU architecture [22]. Therefore, the new tensor storage
format (Sec 3.1) proposed in this paper is based on COO, and we will
focus on the discussion of COO-based formats. The illustration of
COO-based formats is shown in Figure 1. COO [17] format directly
stores the indices and the values of non-zero elements in a tensor,
which suffers from massive memory consumption.

When computing the new rows for the factor matrixA, only rows
in matrices B and C are needed. Based on the above observation,
F-COO [22] only stores the indices in mode-2 and mode-3 to reduce
memory consumption. Furthermore, the start flag (sf ) and bit flag
(bf ) arrays are used to represent the variation of mode-1 indices of
non-zero elements. The sf array is compressed to unsigned int with
32 bit and the bf array is with uint8_t to further reduce memory
footprint. For CPD, zero in bf array denotes change of mode-1
indices of an element, and one in sf array denotes change of mode-
1 indices of a block. Moreover, F-COO can enable segment scan [48]
to eliminate atomic operations. However, it is difficult to retrieve the
mode-1 indices with F-COO since they are not provided explicitly.

HiCOO [21] is another variant of COO format. To convert a
tensor from COO to HiCOO, the non-zero elements are sorted in
Z-Morton order, and then the sorted elements are partitioned to
blocks according to the given block size B. The block pointers are
stored in bptr array. Besides, the block indices are denoted as bi,
bj and bk, whereas the element indices are denoted as ei, ej and
ek, respectively. The original indices in COO can be calculated as
i = bi ∗ B + ei , j = bj ∗ B + ej and k = bk ∗ B + ek . HiCOO is
mode-generic, and able to reduce memory consumption through
advanced compression. In addition, the atomic operations can be
eliminated by the privatization method. However, the complicated
structure of HiCOO format makes it inefficient when applied on
GPU.

0 0 0 3

0 0 2 4

0 0 3 2

0 0 4 5

1 0 1 2

1 1 2 4

1 2 3 1

2 3 3 4

i j k nnz

COO

1 0 0 3

0 0 2 4

0 0 3 2

0 0 4 5

1 0 1 2

0 1 2 4

0 2 3 1

1 3 3 4

bf j k nnz

F-COO

1

1

sf

0 0 0 0
0 0 0 3

1 0 1 2

2 0 0 1

0 0 0 4

0 0 1 2

1 1 0 4

5 0 1 1 1 0 1 1

6 1 1 1 0 1 1 4

7 0 0 2 0 0 0 5

bptr bi bj bk ei ej ek nnz

HiCOO

Figure 1: The illustration of COO-based sparse tensor stor-
age formats.

3 METHODOLOGY AND IMPLEMENTATION
In this section, we introduce the novel sparse tensor storage format
TB-COO on GPU. In addition, we provide the methodology and
implementation details for the three optimization algorithms for
tensor completion: ALS, SGD and CCD+. Moreover, we present the
auto-tuning approach for further improving the performance and
convergence of our tensor completion library cuTC.
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3.1 TB-COO Storage Format
Figure 2 shows the design of our proposed TB-COO format, where
T and B stands for Tile and Bitmap, respectively. To convert a tensor
from COO format to TB-COO format, firstly the tensor needs to be
sorted along mode-1 indices. There are only two arrays in TB-COO,
which are named as d and entries, respectively. The d array stores
the mode-1 indices for non-zero slices. Meanwhile, the entries array
stores the tiled non-zero elements linearly, which are packed in
entries of length T. There is a tuple containing three elements at
the head of each entry, where the first element sp and the second
element lp are the range of pointers to d array, whereas the third
element bm is a bitmap for computing the pointer to d array for
each element in the entry. An additional "1" is added at the head of
bm to ensure the variance of mode-1 indices is stored properly. If
the ith bit in bm is 0, then the mode-1 index of the (i − 1)th element
is different from the (i)th element, and vice versa. The rest of a entry
stores the mode-2 and mode-3 indices as well as values. The sp and
lp are multiplied by -1 to distinguish the indices in the same entry.
The pointer to mode-1 indices for non-zero elements can be easily
and efficiently retrieved by bit operations as pi = sp + i + 1 − дap
and дap = popc(brev(bm) >> (clz(bm))) << (63−i) , where brev is
the function for reversing integers, clz is the function for deriving
the position of the first bit with value 1 in an integer, popc is the
function for counting number of bit 1 in an integer and i is the
position of elements in the entry.

There are several advantages of applying TB-COO in tensor
completion on GPUs. Firstly, the TB-COO partitions the non-zero
elements evenly in the size of T, which can improve the load bal-
ance. Secondly, since the entries in entries array are in the same
size, it is convenient for threads to compute the position of the
entries assigned to them. Moreover, the bitmap in entries can serve
as communication signals to enable efficient reduction utilizing
warp shuffle mechanism [12] on GPU. Warp shuffle enables threads
within the same warp on GPU to read the registers of each other
using a single instruction, which is faster than shared memory.
Meanwhile, compared to F-COO, the bitmap is more compact (e.g.,
there are two bitmap arrays in F-COO), and it is much easier for
threads to fetch the mode-1 indices through the sp and lp, whereas
there are no arrays for mode-1 indices in F-COO, which is inefficient
during matrix update process. In addition, compared to tree-based
CSF format, TB-COO can better fit GPU architecture since TB-COO
does not rely on recursive algorithms for MTTKRP, and its tiles are
more friendly for GPU threads. Last but not least, compared to the
original COO, the TB-COO consumes less memory. Given a tensor
X with I non-zero slices and nnz non-zero elements, if all indices
and values are in the length of eight bytes, the COO format requires
32nnz bytes, whereas TB-COO only requires 24(nnz + nnz

T ) + 8I .
With I ≪ nnz in sparse tensors, TB-COO format can effectively
reduce the memory consumption.

3.2 Optimizing ALS
There are three sub-procedures during the update of factor matri-
ces: MTTKRP, computing HTH and solving matrix equations. We
generate the HTH and the results of MTTKRP simultaneously by
accessing the tensor data only once. The processing logic of com-
puting the MTTKRP and updateHTH is shown in Algorithm 1. The

-0 -0 0x1f

0 0 3

0 2 4

0 3 2

0 4 5

-0 -2 0x11

0 1 2

1 2 4

2 3 1

3 3 4

TB-COO

0

1

2

d

0 0 0 3

0 0 2 4

0 0 3 2

0 0 4 5

1 0 1 2

1 1 2 4

1 2 3 1

2 3 3 4

i j k nnz

COO

entry1

entry2

Figure 2: The design of TB-COO sparse tensor storage for-
mats.

warp sizeW is set to an integer no more than 32 because the warp
shuffle mechanism supports user-defined warp size with the upper
bound of 32. Each warp is assigned with one tile in X. When the
number of non-zero elements nnz ofX is indivisible byT , there will
be some inactive threads in the last warp. These inactive threads
are omitted using warpmask which is generated by function warp-
mask_gen to guarantee correctness (line 6). Thewarpmasks is stored
in shared memory to reduce access latency. Each GPU thread first
gets the indexing information for its tile to be processed, including
sp, lp and bm obtained from function get_tile_attribute (line 7). The
pointer to d array can be calculated as described in Section 3.1 in
function get_myid (line 8). Next, it fetches the non-zero elements
and conducts the Hadamard product with function get_mydata
(line 10) and my_hadamard (line 12), respectively. The result of
Hadamard product is stored in mylocalmbuf. After obtaining the
results of Hadamard product, the new partial results in HTH are
calculated (line 15). Since HTH is a symmetric positive-definite
matrix, we only compute the upper triangular matrices to reduce
computation. Meanwhile, the partial results of MTTKRP are also
generated. Then the threads within the same warp execute the
inter-warp reduction with function warp_reduction (line 19) before
storing the results in global memory, which reduces the need for
atomic add operations.

The illustration of inter-warp signal based reduction algorithm
for ALS is shown in Figure 3. The assumption of this algorithm is
that the mode-1 pointers or indices need to be continuous, which
is satisfied in TB-COO format. The iteration time is the longest
sequence of consecutive 1 bits in bm without counting the first
bit. To simplify analysis for the longest sequence of consecutive
1 bits, the iteration time can be set to the total number of 1 bits,
which does not affect the final results. The SelfBm denotes the differ-
ences of mode-1 indices and can be calculated based on Sel f Bmi =

(brev(bm) >> (clz(bm)) >> (i + 1))&1. Besides, the SelfBm in lane
zero is always set to zero. We utilize SelfBm as a signal and a data
activator. There are two phases in each iteration. During the first
phase, data in lane i is transferred to lane i −1 through warp shuffle,
and the data will be set to 0 if SelfBm of lane i is 0. In the second
phase, the original data in lane i will be discarded if SelfBm of lane i
is 1, in order to avoid repetitive summation. After all iterations, the
thread with SelfBm = 0 stores the final results into global memory,
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which eliminates the expensive atomic operations. If the longest se-
quence of consecutive 1 bits in the bm isN , the inter-warp reduction
algorithm is in complexity of O(loд2N ).

Algorithm 1 Calculating MTTKRP and HTH Update
1: Input: Tensor X, tile sizeT , rank R , warp sizeW
2: Output: HTH for nonzero slices, MTTKRP results
3: for each thread do
4: laneid = threadid modW
5: warpid = threadid /W
6: warpmask_gen()
7: (sp, lp, bm) = get_tile_attribute(warpid)
8: myfid = get_myid(sp, bm, laneid)
9: mybm = get_mybm(bm, landid)
10: (b, c, val) = get_mydata(X, T , blockid, warpid, laneid)
11: itercounter = get_itercounter(bm)
12: mylocalmbuf = my_hadamard(b, c, R)
13: form = 1 → R do
14: for j = 1 →m do
15: newhth = mylocalmbuf[m] * mylocalmbuf[j]
16: warp_reduction(newhth, mybm,W , mywarpmask)
17: end for
18: newm = val * mylocalmbuf[m]
19: warp_reduction(newm, mybm,W , mywarpmask)
20: end for
21: end for

1 1 1 2 2 2 3 4Mode-1 indice

1 1 1 1 1 1 1 1

1Thread Data Stream × 1

0 1 1 0 1 1 0 0SelfBm

1Auxiliary Data

Phase 0

2 1 0 2 1 0 1 1

3 0 0 3 0 0 1 1

Phase 1

Phase 2

× 0

+ + + + + + +

+ + + + + + +

Figure 3: The illustration of inter-warp reduction for ALS.

We utilize the cuSOLVER [29], a linear algebra library based on
cuBLAS and cuSPARSE, to conduct the final process of factor matrix
update, including batched Cholesky decomposition and batched
matrix equations with patterns of Ha = b.

When scaling to multiple GPUs, we propose the tensor blocking
strategy as shown in Figure 4. We develop a two-level blocking
mechanism for ALS algorithm to partition the tensor along with all
modes. Firstly, the sparse tensor is partitioned evenly into blocks,
and each block contains several non-zero slices with approximately
equal number of non-zero elements. Then the blocks are converted
to TB-COO formats, and each GPU will update factor matrices
with the tiles in its assigned blocks. The CPU stores the ranges of
slices in each blocks, which are used to guide the matrix exchanging
between GPUs and CPU, as well as between GPUs. After calculating
the tiles, GPUs need to exchange the updated tiles with each other.
We use the NVIDIA Collective Communications Library (NCCL)
for communication between GPUs. The synchronization of factor
matrices are conducted by using the AllReduce primitive in NCCL.

To improve the convergence of ALS algorithm, we utilize the
randomization strategy proposed in [37]. Instead of updating the

factor matrices cyclicly, the processing order of each mode is re-
shuffled at the beginning of each epoch.

k

Blocks

Sparse Tensor

Block 0

Block 1

Block M

i

j

TB-COO Entries for GPU 0

TB-COO Entries for GPU 1

D00

⋮

D0I

entry00

⋮
⋮

entry0T

entryM0

⋮
⋮

entryMT’

DM0

⋮

DMI’

⋮

Figure 4: The illustration of tensor blocking strategy onmul-
tiple GPUs for ALS and CCD+ algorithms.

3.3 Optimizing CCD+
To accelerate CCD+, similar tensor blocking and communication
strategies used in ALS are applied, where all modes are partitioned.
We adopt a two-level partitioningmechanism in CCD+ as illustrated
in Figure 4. Besides, we adopt a multi-tensor strategy to further
optimize the performance, which is also adopted in previous work
for tensor decomposition [38] and tensor completion [37]. There
are N tensors and the nth tensor is for updating the nth factor
matrix. Meanwhile, there are two sub-processes when updating
the columns in CCD+ as illustrated in Section 2.4. One sub-process
computes the numerators and denominators, and the other one
conducts the division to generate new elements for factor matrices.
During the first sub-process, it performs calculation using the signal
based inter-warp reduction algorithm shown in Algorithm 1, where
each warp is assigned with a tile in TB-COO format and the threads
within the samewarp aggregate their partial results after calculating
their numerators and denominators. During the second sub-process,
each thread performs the division for a row in the factor matrix.

Moreover, to further improve the convergence of CCD+ algo-
rithm, we adopt the randomization mechanism in [37]. At each
iteration, we conduct a reshuffle to the modes to decide their exe-
cution order.

3.4 Optimizing SGD
For SGD algorithm, we optimize the ASGD [8] algorithm, where
all non-zero elements are processed based on equations described
in Section 2.3, with weights added. Unlike the ALS and CCD+ al-
gorithm, SGD algorithm adopts the single tensor strategy, which
means that only one tensor needs to be generated during the update
procedure along all modes. Moreover, unlike ALS and CCD+, SGD
cannot be paralleled among slices as shown in Section 2.3, thus we
develop a different blocking strategy for it when scaling to multiple
GPUs. Since the non-zero elements are used to update three rows
in factor matrices simultaneously, the blocking strategy we adopted
to optimize SGD algorithm across multiple GPUs is illustrated in
Figure 5. After the sparse tensor is converted to TB-COO format,
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the entries in the formats are evenly partitioned amongM GPUs,
where each entry partition is named as a band. When each GPU
finishes the update of its own band, they exchange the updated ma-
trices with each other before the next iteration. We design special
buffers on each GPU to store the partial results of factor matrices
received from other GPUs. The data synchronization between GPUs
is performed using AllReduce primitive in NCCL.
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Figure 5: The illustration of tensor blocking strategy onmul-
tiple GPUs for SGD algorithm.

3.5 Auto-tuning
For implementing our cuTC library that includes the ALS, CCD+
and SGD optimization algorithms using TB-COO format, there are
several parameters that can directly influence the convergence and
performance of tensor completion. Based on our empirical study,
the parameters affecting convergence include regularization pa-
rameter λ (0.01 < λ < 500, and λ ∈ R) for all three algorithms
as well as learning rate η (0 < η < 1, and η ∈ R) and weights w
for SGD (0 < w < 1, and w ∈ R). Whereas, the parameters affect-
ing performance include the GPU block size GPU _BLOCK_SIZE
(GPU _BLOCK_SIZE = 2M , andM ∈ [1, 9]) for all three algorithms
and the tile length l (0 < l < 64, and l ∈ N ) in TB-COO for
SGD. Note that the tile length of TB-COO is fixed for ALS and
CCD+ due to the inter-warp reduction adopted for optimizing
these two algorithms. Therefore, the only tunable parameter is
GPU _BLOCK_SIZE during performance auto-tuning for ALS and
CCD+. Based on our empirical study, the performance-related pa-
rameters do not affect the convergence of tensor completion.

Generally, determining the optimal settings for the above pa-
rameters with the exhaustive search is prohibitive. Therefore, we
propose an auto-tuning scheme using the genetic search [9] to iden-
tify the optimal parameter settings automatically. In the genetic
search, multiple genes constitute an individual, where each gene
is a tuning parameter. Many individuals constitute a population.
Each process handles the operations of a sub-population. The mi-
gration among the sub-populations is achieved through MPI. For
migration, each sub-population exchanges individuals with its two
neighborhoods. The new individual in the sub-population is bred
through its two parents. Breeding involves two steps: 1) each gene
in the individual is randomly selected from the parents; 2) genes
in the individual mutate with a certain probability. The mutation
is used to avoid individuals falling into local optimum. The opti-
mal parameter settings are determined when the genetic algorithm
converges to constant.

In our study, we perform two rounds of auto-tuning to deter-
mine the parameters for optimizing convergence and performance.
Specifically, the auto-tuning is first applied to optimize the set
of parameters affecting the convergence to ensure the algorithm
reaches acceptable RMSE. With the settings of convergence param-
eters fixed, the auto-tuning is then applied to optimize the set of
parameters affecting the performance.

4 EVALUATION
4.1 Experiment Setup
Tensor Completion Libraries. To the best of our knowledge,
there is no public tensor completion library on GPU available. The
cuTensor [30] library from Nvidia only contains basic tensor opera-
tions, including tensor contraction, reduction and element-wise ten-
sor operations, which cannot solve the tensor completion problem
directly. Therefore, to provide a fair comparison, we use two cutting-
edge tensor completion libraries on CPU including SPLATT [37]
and Cyclops [52]. The tensor completion routine in SPLATT trans-
forms input tensor to CSF format and adopts the Intel Math Kernel
Library (MKL) to accelerate the matrix operations. Whereas the
tensor completion routine in Cyclops transforms input tensor to
COO-like format and executes on CPU using Cyclops library [39].
Moreover, to provide a comparison on GPU, we have implemented
COO-TC on GPU, which is a tensor completion library using COO
format. To improve the performance of COO-TC, we also utilize
the blocking strategy with shared memory, where each thread is
assigned with equal number of non-zero elements. The source code
of cuTC is available online at https://github.com/abovekumo/cuTC.
Tensor Datasets. We use real-world datasets for evaluation. We
adopt five real-world datasets, including YELP [49], MovieLens [33],
MIT-DAPRA [14], Nell-1 and Nell-2 [2]. The details of datasets are
listed in Table 2, where I, J, K denotes the length of each dimension
for each dataset, nnz denotes the number of non-zero elements and
Sparsity is calculated as nnz

I×J×K . Each dataset is split with 80% for
training, 10% for validation and 10% for test.

Table 2: The tensor datasets.

Dataset I J K nnz Density
YELP 71K 16K 108 334K 2.72E-6

MovieLens 72K 11K 157 10M 8.04E-5
MIT-DARPA 22K 22K 24M 28M 2.41E-9

Nell-1 3M 2M 25M 144M 9.6E-13
Nell-2 12K 9K 29K 77M 2.46E-5
Yahoo! 205K 133 101 257M 9.33E-2

Amazon-T 4.8M 1.8M 1.8M 850M 6.66E-8
Patents-T 46 239K 239K 1.5B 5.71E-4

Experiment Platform. To compare with other tensor completion
libraries, our evaluation is conducted on a CPU-GPU server, which
contains two Intel Xeon E5-2680v4 CPUs, each with 14 cores. More-
over, there are two NVIDIA Tesla V100 GPUs in the server. The
GPUs are connected to the CPU sockets through the PCIe bus. On
this server, cuTC exchanges data between GPUs through PCIe bus
instead of utilizing NCCL. The important hardware and software
configurations of the server are listed in Table 3. We parallelize
linear algebra routines with MKL on CPUs and cuSOLVER on GPUs,
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respectively. Besides, Cyclops v1.5.5 and HPTT are used to build the
tensor completion routine in Cyclops. Whereas the tensor comple-
tion routine in SPLATT is installed with OpenMP and MKL. cuTC
utilizes OpenMP to control the parallel execution among multiple
GPUs on a single node. To further evaluate the scalability of our
cuTC, we provide more experiments on another server with eight
V100 GPUs connected through NVLink. The configuration details
are provided in Section 4.3.

Table 3: Experimental platform configuration.

Intel Xeon E5-2680v4 NIVDIA Tesla V100
Microarchitecture Broadwell Volta

Frequency 2.4GHz 1.23GHz
Memory Size 189 GB 32 GB

Peak DP Performance 537.6 GFLOPS 7.066 TFLOPS
Compiler Intel Compiler v19.0.4 CUDA NVCC v10.2

Evaluation Criteria. Firstly, we compare the performance of cuTC
on a single GPU as well as on multiple GPUs, with COO-TC on a
single GPU, SPLATT-COMPLETION and Cyclops-COMPLETION
on multicore CPUs. Then, we compare the storage overhead of
TB-COO and other popular sparse tensor formats. In addition, we
compare with MM-CSF [27] by implementing MTTKRP algorithm
with TB-COO on GPU. Moreover, we evaluate the scalability of
cuTC with increasing rank size on multiple GPUs. The effectiveness
of our proposed optimizations is further analyzed using the roofline
model [47]. Eventually, we present the experiment results with auto-
tuning on convergence and performance. In all experiments, the
execution time represents the average execution time of an epoch,
and the convergence is evaluated with RMSE in validation datasets

named RMSE-vl, which is formulated as RMSE =

√∑
X:, :, : L

2
i, j,k

nnz(X)
.

The RMSE-vl is calculated after the last epoch. For GPU implemen-
tations, the data transfer time between CPU and GPU within an
epoch is included. All the computation is done in double precision.
The symbol ∅ denotes an execution instance fails due to out-of-
memory error, and the symbol ∞ denotes an execution instance
fails to converge with RMSE metric.

4.2 Performance Analysis
4.2.1 Performance Comparison. The performance results of cuTC
withALS, CCD+ and SGD algorithm compared to SPLATT-COMPLE
TION and Cyclops-COMPLETION at rank R = 16 are shown in Ta-
ble 4, Table 5 and Table 6, respectively. SPLATT-COMPLETION and
Cyclops-COMPLETION represent the tensor completion routine in
SPLATT andCyclops, respectively. Since the Cyclops-COMPLETION
does not support calculating the RMSE for result validation, we
omit the RMSE-vl results for Cyclops-COMPLETION (with − sym-
bol). For the ease of discussion, we choose the execution time of
SPLATT-COMPLETION as the baseline. For the datasets where
SPLATT-COMPLETION fails to converge, we omit the speedup
results (with − symbol). Meanwhile, the highest speedup achieved
by cuTC on these optimization algorithms is bolded in Table 4-6.

First of all, the performance of cuTC on multiple GPUs exceeds
SPLATT-COMPLETION and Cyclops-COMPLETION, at all datasets
with all three optimization algorithms. In addition, the results from

cuTC achieve similar or even better RMSE at most datasets com-
pared to other implementations. For cuTC with ALS algorithm, the
highest speedup of 3.21× is achieved on YELP dataset, whereas the
average speedup is 1.86×. For CCD+ algorithm, cuTC achieves the
highest speedup of 829.58× on NELL-2 dataset, whereas the average
speedup is 205.63×. For SGD algorithm, the highest speedup of 7.86
× is achieved on MovieLens dataset, whereas the average speedup
is 4.73×. Meanwhile, when comparing cuTC with COO-TC on a
single GPU, it is obvious that cuTC performs better than COO-TC,
especially with ALS and CCD+. The reason is that with TB-COO
format, there are bitmaps to indicate the difference of the indices for
non-zero elements, which allows efficient reduction and eliminates
expensive atomic operations.

We notice that cuTC achieves worse RMSE than SPLATT-COMPL
ETION on MovieLens dataset. We suspect the reason is due to the
initial value of the factor matrices randomly generated in cuTC,
which affects the RMSE for particular datasets. However, the ex-
act reason requires further investigation. We also notice that the
average speedup of cuTC with ALS is far below with CCD+ and
SGD algorithms. This is because ALS algorithm generates addi-
tional HTH, which requires more memory access than CCD+ and
SGD. In general, cuTC achieves the best performance with CCD+
algorithm since it requires less memory access and adopts the inter-
warp reduction algorithm for eliminating the expensive atomic
operations.

Moreover, cuTC is able to conduct the tensor completion for
all five datasets, whereas the other three libraries fail on several
datasets. Particularly, Cyclops-COMPLETION fails on the three
large datasets due to memory overflow with all three optimization
algorithms, whereas SPLATT-COMPLETION fails to converge on
NELL-1 and NELL-2 datasets with SGD algorithm (generating in-
valid RMSE-vl results). COO-TC fails to converge on Nell-1 dataset
with CCD+ and SGD because there is no auto-tuning scheme to
obtain the optimal parameter configurations, and it also causes
memory overflow with ALS since it needs much larger memory
buffer for HTH than cuTC.

cuTC on multiple GPUs achieves better performance than on a
single GPU, especially on large datasets. This is because the per-
formance improvement for updating factor matrices outweighs the
overhead of data transfer between CPU and GPU when process-
ing large datasets. Whereas on small datasets, the computation
of updating factor matrices is quite limited, which is not enough
for compensating the data transfer overhead, and thus leads to
deteriorated performance speedup. In addition, due to the memory
constraint of a single GPU, cuTC also suffers frommemory overflow,
especially when running ALS algorithm on large datasets.

Furthermore, we measure the absolute performance (in GFLOPS)
and iteration number of SPLATT-COMPLETION, COO-TC and
cuTC. We do not compare with Cyclops-COMPLETION because
its performance falls behind other implementations by order of
magnitude (shown in Table 4∼Table 6). The absolute performance
is measured using Performance Application Programming Inter-
face (PAPI) [25] on CPU and NVPROF [1] on GPU, respectively.
We present the average GFLOPS per epoch. The iteration number
denotes the number of iterations that the algorithm needs to reach
convergence. The absolute performance in Figure 6 demonstrates
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Table 4: The performance comparison of cuTC, SPLATT-COMPLETION and Cyclops-COMPLETION with ALS Algorithm.

Dataset
SPLATT-COMPLETION Cyclops-COMPLETION COO-TC cuTC-single GPU cuTC-multiple GPUs

Time Speedup RMSE-
vl Time Speedup RMSE-

vl Time Speedup RMSE-
vl Time Speedup RMSE-

vl Time Speedup RMSE-
vl

YELP 0.045s 1 3.98 15.64s 0.0029 − 0.018s 0.25 2.84 0.013s 3.46 4.05 0.014s 3.21 3.98
MovieLens 0.14s 1 0.84 38.10s 0.0037 − 0.25s 0.56 1.57 0.14s 1 3.67 0.075s 1.87 3.67
MIT-DARPA 3.18s 1 34.30 ∅ − − ∅ − ∅ ∅ − ∅ 2.01s 1.58 1.12

Nell-1 4.81s 1 23.61 ∅ − − ∅ − ∅ ∅ − ∅ 2.48s 1.58 23.60
Nell-2 0.51s 1 189.52 ∅ − − 5.61s 0.091 1204.03 ∅ − ∅ 0.49s 1.04 82.50

Table 5: The performance comparison of cuTC, SPLATT-COMPLETION and Cyclops-COMPLETION with CCD+ Algorithm.

Dataset
SPLATT-COMPLETION Cyclops-COMPLETION COO-TC cuTC-single GPU cuTC-multiple GPUs

Time Speedup RMSE-
vl Time Speedup RMSE-

vl Time Speedup RMSE-
vl Time Speedup RMSE-

vl Time Speedup RMSE-
vl

YELP 0.023s 1 3.98 3.65s 0.0063 − 0.0032s 7.19 3.98 0.0019s 12.11 3.98 0.0034s 6.76 3.98
MovieLens 0.29s 1 0.84 46.50s 0.0063 − 0.032s 9.06 3.67 0.0032s 90.63 3.67 0.0037s 78.38 3.67
MIT-DARPA 4.28s 1 1.07 ∅ − − ∞ − ∞ 0.53s 8.08 1.13 0.44s 9.73 1.13

Nell-1 53.92s 1 30.97 ∅ − − ∞ − ∞ 0.68s 79.29 23.60 0.52s 103.69 23.60
Nell-2 5.89s 1 190.72 ∅ − − ∞ − ∞ 0.0094s 626.60 82.50 0.0071s 829.58 82.50

Table 6: The performance comparison of cuTC, SPLATT-COMPLETION and Cyclops-COMPLETION with SGD Algorithm.

Dataset
SPLATT-COMPLETION Cyclops-COMPLETION COO-TC cuTC-single GPU cuTC-multiple GPUs

Time Speedup RMSE-
vl Time Speedup RMSE-

vl Time Speedup RMSE-
vl Time Speedup RMSE-

vl Time Speedup RMSE-
vl

YELP 0.015s 1 4.45 0.24s 0.063 − 0.0043s 3.49 1.47 0.0035s 4.29 4.06 0.0044s 3.41 5.23
MovieLens 0.11s 1 0.88 2.03s 0.054 − 0.030s 3.67 1.23 0.022s 5 3.75 0.0140s 7.86 3.71
MIT-DARPA 2.68s 1 1.12 ∅ − − ∞ − ∞ 0.81s 3.31 1.34 0.92s 2.91 1.26

Nell-1 ∞ − ∞ ∅ − − ∞ − ∞ 1.55s − 23.61 1.35s − 24.38
Nell-2 ∞ − ∞ ∅ − − ∞ − ∞ 0.24s − 82.50 0.14s − 82.67

that cuTC exceeds SPLATT-COMPLETION and COO-TC on all
datasets. We observe that the cuTC on a single GPU may achieve
better performance than on multiple GPUs when running on small
datasets. The reason is that the performance speedup of paralleliza-
tion across multiple GPUs cannot compensate the synchronization
overhead on small datasets. From the iteration number shown in
Table 7, it is obvious that SGD algorithm usually requires more
epochs than ALS and CCD+ algorithm to reach convergence. In
most cases, cuTC requires less epochs to reach convergence than
SPLATT-COMPLETION due to the optimal parameter settings de-
termined by auto-tuning scheme.

Table 7: The iteration comparison of SPLATT-
COMPLETION, COO-TC and cuTC on both a single
GPU andmultiple GPUs. SC, cuTC-sG and cuTC-mG denote
SPLATT-COMPLETION, cuTC on a single GPU andmultiple
GPUs, respectively.

Dataset
SC COO-TC cuTC-sG cuTC-mG

ALS CCD+ SGD ALS CCD+ SGD ALS CCD+ SGD ALS CCD+ SGD
YELP 21 21 24 20 3 118 20 4 3 5 4 3

MovieLens 23 131 85 21 3 99 20 4 134 7 4 96
MIT-

DARPA 21 124 25 ∅ ∞ ∞ ∅ 4 39 4 4 33

Nell-1 20 20 ∞ ∅ ∞ ∞ ∅ 4 3 4 4 3
Nell-2 20 20 ∞ 20 ∞ ∞ ∅ 4 3 7 4 3

Table 8: The performance of cuTC onAmazon-T andPatents-
T datasets running on eight GPUs.

ALS CCD+ SGD
Amazon-T 0.5739s 0.1342s 0.3781s
Patents-T 0.7387s 0.02439s 1.8232s

4.2.2 Storage Comparison. To understand the storage overhead of
TB-COO, we compare TB-COO with COO, HiCOO and MM-CSF
on the evaluation datasets. The analytical results are shown in
Table 9, where “*-ONE" means that the algorithm uses one tensor
representation to update d modes, and “*-ALL" means that the
algorithm uses d tensor representations to update d modes. We
use open source implementations of CSF-ONE and CSF-ALL from
SPLATT-COMPLETION [37], COO and HiCOO from ParTi! [21],
and MM-CSF from [27]. For HiCOO, we set the block size B to 128
according to [21]. For consistency, we use data type of uint64_t
and double to store indices and values, respectively. We present the
results of both TB-COO-ALL (used in ALS and CCD+) and TB-COO-
ONE (used in SGD). From Table 9, we can see that TB-COO-ONE
can reduce the memory footprint compared to COO, and TB-COO-
ALL has the similar memory footprint as CSF-ALL, which is due to
the compression in TB-COO through bitmap. Although TB-COO-
ALL uses more memory compared to COO/HiCOO/MM-CSF, it can
achieve better performance than COO and MM-CSF as shown in
Section 4.2.1 and Section 4.2.3.
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(a) ALS (b) CCD+ (c) SGD

Figure 6: The performance comparison (in GFLOPS) of SPLATT-COMPLETION (SC), COO-TC and cuTC on both a single GPU
andmultiple GPUs. YP,ML,MD, N1 andN2 on the x-axis are abbreviations of YELP,MovieLens, MIT-DARPA, Nell-1 and Nell-2
datasets. SC, cuTC-sG and cuTC-mG denote SPLATT-COMPLETION, cuTC on a single GPU and multiple GPUs, respectively.
The blank space indicates the implementation fails to converge or runs out of memory.

Table 9: The storage comparison (in MB) of TB-COO-ONE,
TB-COO-ALL, COO, HiCOO, MM-CSF, CSF-ONE and CSF-
ALL.

Dataset
TB-
COO-
ONE

TB-
COO-
ALL

COO HiCOO CSF-
ONE

CSF-
ALL

MM-
CSF

YELP 6.87 19.65 8.18 4.00 7.53 25.38 5.25
MovieLens 189.33 566.99 244.14 85.74 152.96 448.53 71.82
MIT-

DARPA 537.11 1792.55 694.24 410.53 349.91 1719.72 689.05

Nell-1 2733.69 8367.64 3505.85 2479.46 2767.20 9736.63 2951.03
Nell-2 1451.81 4355.52 1876.94 683.04 1005.39 3497.28 772.50

4.2.3 Comparison on MTTKRP. To provide a fair comparison with
the state-of-the-art sparse tensor format on GPU, we evaluate the
performance of MTTKRP implemented using TB-COO and MM-
CSF [27] (since MM-CSF only provides MTTKRP implementation).
The results are shown in Figure 7. The MM-CSF only supports MT-
TKRP execution on a single GPU, whereas cuTC can run onmultiple
GPUs. It is clear that cuTC outperforms MM-CSF on most datasets.
Compared to MM-CSF, cuTC achieves 1.82× speedup on average on
a single GPU. Moreover, the performance of cuTC further outper-
forms MM-CSF when scaling the MTTKRP execution on multiple
GPUs, with an average speedup of 2.55×. We notice that the only
case with MovieLens dataset, where cuTC performs worse than
MM-CSF on a single GPU. The reason is that the MovieLens dataset
is relatively dense on one dimension while sparse on other two
dimensions. The sparsity in MovieLens generates more fibers in an
entry of TB-COO, and thus causes more atomic operations during
inter-warp reduction. The excessive atomic operations deteriorate
the performance of TB-COO on MovieLens dataset.

4.2.4 Rank Scalability. The results for rank scalability of cuTC
with ALS, CCD+ and SGD algorithms on two GPUs are shown in
Figure 8. First of all, the ALS algorithm has more chance to end up
with memory overflow due to the requirement for extra memory
space to store HTH, especially on the memory constrained GPU
architecture. In addition, the slope of the execution time curve for
ALS algorithm is much higher than CCD+ and SGD, as the rank

Figure 7: Performance comparison of cuTC and MM-CSF
(baseline) onMTTKRP. YP, ML,MD, N1 and N2 on the x-axis
are abbreviations of YELP, MovieLens, MIT-DARPA, Nell-1
and Nell-2 datasets. cuTC-sG and cuTC-mG denote cuTC on
a single GPU and multiple GPUs, respectively.

size increases. This is because the amount of computation required
for updating HTH in ALS exhibits a square relationship with rank
size. In general, when the rank size is relatively small (below 12),
the execution time of all three algorithms is almost the same across
all datasets. However, as the rank size increases, the SGD algorithm
exhibits better scalability across all datasets.

4.3 Scaling to more GPUs
To demonstrate the scalability of cuTC on more GPUs, we measure
the performance of cuTC on another server with eight NVIDIA
V100 GPUs. This server has one Intel Xeon Gold 6240 CPU and
eight NVIDIA V100 GPUs, connected through NVLink. On this
server, we use NCCL to exchange data among GPUs. To evalu-
ate the scalability, we use a larger dataset, Yahoo! [6] dataset. We
choose the performance of cuTC on a single GPU as baseline. As
shown in Figure 9, ALS and SGD achieve good scalability on Yahoo!
dataset. Meanwhile, as the number of GPUs scales, the cost of data
transfer and synchronization between GPUs increases, which slows
down the performance speedup. For CCD+, since its computation
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Figure 8: Rank scalability of cuTC with ALS, CCD+ and SGD algorithms. All results are normalized to the execution time in
rank 8 on each dataset (baseline).

complexity is much lower than ALS and SGD (e.g., avoid comput-
ing HTH matrices), when scaling to more GPUs, the computation
on each GPU becomes too small that offsets the benefit of paral-
lelization. Therefore, its performance becomes stagnant when the
number of GPUs is beyond two. Moreover, we evaluate cuTC on
other two large datasets Amazon [24] and Patents [35]. Since the
datasets are too large to be fitted with even eight GPUs, we trun-
cate the datasets as large as they can be fitted with eight GPUs by
randomly partitioning at fixed ratio and dimensions. We truncate
the datasets as Amazon-T and Patents-T by randomly partitioning
at fixed ratio and dimensions. The details of the truncated datasets
are shown in Table 2. We truncate the datasets as long as they can
be fitted with eight GPUs. The performance results are shown in
Table 8, where the CCD+ algorithm achieves the best performance
on these two datasets.

Figure 9: Scalability of cuTC with ALS, CCD+ and SGD algo-
rithms on Yahoo! dataset. All results are normalized to the
execution time on a single GPU (baseline).

4.4 Roofline Model Analysis
Given a sparse tensor X with I ′, J ′, K ′ non-zero slices in three
modes respectively, nnz non-zero elements and rank R, we utilize
the roofline model to better understand the effectiveness of our
optimizations applied in cuTC for ALS, CCD+ and SGD algorithms
on GPU. All indices and values are stored with eight bytes. The
roofline ceiling on NVIDIA V100 GPU is 7.83 TFLOPS and the peak
memory bandwidth is 900 GB/s, therefore the ridge point I is 8.7

FLOPS/Byte. We take Nell-2 dataset with R = 16, nnz = 77M and
TL = 32 for quantitative analysis. Here, R is the rank, nnz is the
number of non-zeros and TL is the length of TB-COO tiles. Other
datasets exhibit similar tendency with roofline model analysis.

4.4.1 ALS. For ALS algorithm, we only analyze the update of MT-
TKRP andHTH since we utilize cuSOLVER for solving matrix equa-
tions. Based on the equations in Section 2.2, we can calculate the

amount of dataQ accessed frommemory as (4+ 1
T L +(2+α )R+

αR2
2 )nnz

N

, the number of floating-point operationsW as (2R+ R
2
2 )nnz
N and

the arithmetic intensity I as Equation 4 for ALS in mode-1 tensor
completion, where N is the number of GPUs and α is the ratio
of performing atomic operations. Our inter-warp reduction opti-
mization can reduce the ratio of atomic operations (α ) down to
3.14% for dataset Nell-2, and thus increase I from 0.11 FLOP/Bytes
to 0.49 FLOP/Bytes, which indicates our optimization can effec-
tively improve the computation intensity, and in turn mitigate the
memory-bound constraint.

I =
(2R + R2

2 )

(4 + 1
T L + (2 + α)R +

αR2
2 ) ∗ 8bytes

(4)

4.4.2 CCD+. For CCD+ algorithm, we only analyze the sub-proce-
dure of updating the numerators and denominators, where the
inter-warp reduction algorithm is applied. Based on the equations
in Section 2.4, the arithmetic intensity I can be calculated from
Equation 5 for CCD+ in mode-1 tensor completion. It is obvious that
when α = 1 (not optimized) there is I < 4

3 , which indicates CCD+
is memory-bound on GPU. Similarly to ALS, for Nell-2 dataset,
our inter-warp reduction optimization is effective to mitigate the
memory-bound constraint, by increasing I from 0.095 FLOP/Bytes
to 0.15 FLOP/Bytes.

I =
4R

(4 + 1
T L + 3R + 2αR) ∗ 8bytes

(5)

4.4.3 SGD. For SGD algorithm, based on the equations in Sec-
tion 2.3, the arithmetic intensity I can be calculated from Equa-
tion 6 for SGD in mode-1 tensor completion. It is clear that SGD
is memory-bound on GPU since I is far less than the ridge point.
Currently, our tiling scheme for SGD does not optimize its memory
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access. It would be a potential optimization direction in our future
work to alleviate the memory-bound constraint for SGD algorithm.

I =
4R

(4 + 1
T L + 4R) ∗ 8bytes

(6)

4.5 Effectiveness of Auto-tuning
We apply auto-tuning to determine the optimal parameter settings
for both algorithm convergence and performance. However, due to
the limited search space for performance tuning of ALS and CCD+,
we only apply performance auto-tuning for SGD algorithm. For
the genetic search adopted in our auto-tuning, we set the number
of sub-populations to 16, where each sub-population contains 64
individuals. In addition, the cross-over rate and the mutation rate
are set to 0.8 and 0.005, respectively. The tuning parameters consid-
ered are described in Section 3.5. For the convergence, we set the
search space parameters of λ, η, andw to 2048, 4, and 2, respectively.
Based on these parameters, the search spaces of the ALS, CCD+
and SGD algorithms can be calculated. The genetic search has been
performed for 20 generations each time.

4.5.1 Convergence. We chose RMSE-vl as the tuning target for
algorithm convergence. As shown in Table 6, inappropriate parame-
ter settings may lead to not convergent or positive infinite RMSE-vl,
which invalidates the computation results. Therefore, it is necessary
to determine the appropriate parameters through auto-tuning. As
shown in Figure 10 (a), (b) and (c), we evaluate the effectiveness
of auto-tuning for all three algorithms. The results demonstrate
that for all datasets, the genetic search can quickly determine the
optimal parameter settings in a few generations. Note that the con-
vergence curve varies across different datasets, which indicates the
sensitivity of the dataset to different parameter settings.

4.5.2 Performance. As shown in Figure 10 (d), we apply the genetic
search to auto-tuning the performance of SGD algorithm. With the
increasing generations, the genetic search gradually identifies the
optimal parameter settings. Different from the convergence curves,
we notice that the trends of the performance curves are similar
across different datasets. The above observation further demon-
strates that the necessity of auto-tuningmethod for achieving better
performance of SGD algorithm through determining the optimal
parameter settings regardless of the datasets.

4.5.3 Time Cost. As shown in Figure 11, we compare the time cost
required to find the optimal parameter settings under the same
search space for the genetic search and the random search. To
evaluate the time cost, the termination condition is to find the opti-
mal parameter settings (determined by exhaustive search) within
the specified search space. We measure the time cost of the ran-
dom search as half of the exhaustive search (assuming the search
space is large enough, the probability for finding the optimal with
random search is 50%). The evaluation results show that the ge-
netic search can find the optimal solution in a shorter time in most
cases (except Nell-1 in Performance-SGD). In addition, as the search
space becomes larger, the advantage of the genetic search over the
random search becomes more significant. For example, the differ-
ence of time cost in Figure 11 (c) is larger than that in (a) and (b).

Note that the time cost of the genetic algorithm itself is negligi-
ble compared to evaluating the objective function (execution time
of ALS/CCD+/SGD) to be optimized. The above results prove the
effectiveness of the genetic search for performance auto-tuning.

5 RELATEDWORK
5.1 Optimizing Canonical Polyadic

Decomposition
Recent researches have exploited tensor decomposition for its wide
application in recommendation system [34], health record analy-
sis [11] and machine learning [45]. Optimizing the performance
of CPD algorithm and its main hotspot matricized tensor times
Khatri-Rao product (MTTKRP) are the primary research targets.
Kang et al. [15] utilized the MapReduce framework [5] to develop
the Gigatensor that can handle tensors scaled in terabytes and min-
imize the intermediate data size. Besides, DFacTo [4] contains both
ALS and Gradient Descent (GD) algorithm for CPD. It accelerates
the MTTKRP process of CPD-ALS algorithm by utilizing Sparse
matrix-vector multiplication (SpMV). In addition, Smith et al. [38]
implemented SPLATT that adopts cache-friendly reordering and
tilingmechanisms for high-performance CPD-ALS algorithm.More-
over, Choi et al. [3] utilized fine-grained blocking techniques to
further optimize the SPLATT. Phipps et al. [31] developed portable
and efficient CPD-ALS algorithm based on Kokkos [7] as well as
improved the MTTKRP process. Larsen et al. [20] used leverage
scores to sample the rows to accelerate the CPD-ALS algorithm
without sacrificing accuracy. All above works have promoted the
advance of tensor completion.

5.2 Parallelizing Tensor Completion
Tensor completion is generalization of matrix completion and the
algorithms applied in tensor completion have already been widely
adopted by matrix completion (such as ALS [13], SGD [18], CCD+
[50]). Moreover, researchers have already been making efforts to
design parallel matrix completion algorithms [50].

For parallel tensor completion, most of the recent advances focus
on decomposition based tensor completion [41]. Smith et al. [37]
developed scalable parallel ALS, SGD and CCD+ algorithms for
tensor completion on both shared and distributed memory systems.
In addition, stratification and randomization have been adopted to
further optimize the performance and convergence, respectively.
Meanwhile, Karlsson et al. [16] implemented parallel ALS and CCD+
algorithm through novel data distribution paradigm on distributed
memory systems. While efficient, those parallel algorithms are only
optimized targeting multicore CPUs, which cannot be adopted to
GPUs. Furthermore, Zhang et al. [52] developed ALS, SGD and
CCD+ algorithm based on Cyclops tensor algebra library [39],
which is a C++ library leveraging multiple parallel paradigms and
libraries such MPI/OpenMP, HPTT [42], CUDA and ScaLAPACK.
To improve the algorithm efficiency, they proposed a novel multi-
tensor routine named TTTP that can outperform ALS. However,
their implementations do not target at optimizing tensor comple-
tion on GPU neither. In addition, the Cyclops library transforms the
tensor to matrices as well as uses dense tensor to store the output
of sparse tensor-times-dense matrix multiply (spTTM) operation,
which degrades the efficiency [22]. Zhang et al. [51] utilized the
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Figure 10: Auto-tuning for cuTC with ALS, CCD+ and SGD algorithms. For SGD, both performance and convergence auto-
tuning is included, whereas for ALS and CCD+ only convergence auto-tuning is included due to the limited search space in
performance tuning. The y-axis is the execution time or log(RMSE-vl) normalized to the worst case results.
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Figure 11: Comparison of the time cost using genetic search and random search. N1, N2, MD, ML and YP on the x-axis are
abbreviations of Nell-1, Nell-2, MIT-DARPA, MovieLens and YELP datasets.

tubal sampling pattern in tensors from Internet of Things (IoT) and
big data applications to develop the tensor completion algorithm
on GPUs. However, they only optimized the least square algorithm
for tensor completion. To the best of our knowledge, this is the first
work to develop an efficient tensor completion library targeting
multiple GPUs.

5.3 Sparse Tensor Storage Format
For sparse tensor computation, the storage format has a profound
impact on its performance. Therefore, researchers have been paying
attention to design novel sparse tensor storage formats for exploit-
ing parallelism, reducing memory consumption and optimizing the
performance. The coordinate format (COO) [17] that stores the in-
dices and the values of non-zero elements directly, benefits from the
insensitivity of the irregularities in sparse tensor structures. How-
ever, the original COO format can cause massive atomic operations
on GPU, when the same indices are shared by multiple GPU threads.
The F-COO [22] only stores the product modes and complements
flag arrays to indicate the change in index mode to optimize tensor
decomposition on GPU. However, F-COO increases the difficulty
in searching for the index mode, which plays a significant role in
tensor completion. Moreover, Li et al. proposed HiCOO [21] that
compresses the indices in sparse tensor blocks for improving data
locality and reducing memory consumption. Meanwhile, Smith
et al. proposed compressed data fiber (CSF) format [36], which is
the generalization of CSR format in matrices to optimize CPD on
multi-core CPUs and reduce memory consumption. Nevertheless,
the recursive algorithms for implementing CPD with CSF format

do not fit on GPU [22]. To improve the load balance and further
exploit parallelism on GPU, Nisa et al. [28] modified CSF to HB-CSF
by splitting the dense slices. Besides, to improve the memory band-
width, Srivastava et al. [43] proposed a customized Compressed
Interleaved Sparse Slice (CISS) format for the tensor factorization
accelerator Tensaurus. However, this format only works for Ten-
saurus accelerator, and has idle elements in its entries, which wastes
memory capacity. Nisa et al. [27] further optimized the CSF format
by proposing a mixed-mode CSF, which addresses the multi-mode
tensor storage problem. In this paper, we propose a new storage
format TB-COO along with an optimized tensor completion library
that scales well to multiple GPUs.

6 CONCLUSION
In this paper, we develop the first tensor completion library onGPUs
for three optimization algorithms, including ALS, CCD+ and SGD.
We propose a novel sparse tensor storage format TB-COO, that ex-
tends COO format with tiles and bitmap for improving load balance.
Based on TB-COO, we present an inter-warp reduction algorithm
that leverages the warp shuffle mechanism on GPU to eliminate
expensive atomic operations. We also develop different partitioning
schemes for different algorithms when scaling to multiple GPUs.
Moreover, we adopt an auto-tuning method to further improve the
convergence and performance of the algorithms. Our implementa-
tion cuTC exceeds the state-of-the-art tensor completion libraries
in performance on real-world datasets, while achieving similar or
even better accuracy.
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