
Input-Aware Sparse Tensor Storage Format
Selection for Optimizing MTTKRP

Qingxiao Sun , Yi Liu , Hailong Yang , Ming Dun, Zhongzhi Luan , Lin Gan ,Member, IEEE,

Guangwen Yang,Member, IEEE, and Depei Qian

Abstract—Canonical polyadic decomposition (CPD) is one of the most common tensor computations adopted in many scientific

applications. The major bottleneck of CPD is matricized tensor times Khatri-Rao product (MTTKRP). To optimize the performance of

MTTKRP, various sparse tensor formats have been proposed such as CSF and HiCOO. However, due to the spatial complexity of the

tensors, no single format fits all tensors. To address this problem, we propose SpTFS, a framework that automatically predicts the

optimal storage format for an input sparse tensor. Specifically, SpTFS leverages a set of sampling methods to lower the sparse tensor

to fixed-sized matrices and sparsity features. In addition, SpTFS adopts both supervised learning based and unsupervised learning

based methods to predict the optimal sparse tensor storage formats. For supervised learning, we propose TnsNet that combines

convolution neural network (CNN) and the feature layer, which effectively captures the sparsity patterns of the input tensors. Once

trained, the TnsNet can be used with either density or histogram representation of the input tensor for optimal format prediction.

Whereas for unsupervised learning, we propose TnsClustering that consists of a feature encoder using convolutional layers and fully

connected layers, and a K-means++model to cluster sparse tensors for optimal tensor format prediction, without massively profiling on

the hardware platform. SpTFS can use the above two models to predict the optimal tensor storage format for accelerating MTTKRP

accurately. The experimental results show that both TnsNet and TnsClustering can achieve higher prediction accuracy and

performance speedup compared to the state-of-the-art works.

Index Terms—Tensor computation, MTTKRP, sparse tensor storage format, convolutional neural network, convolutional autoencoder

Ç

1 INTRODUCTION

TENSORS can represent high dimensional data with
more than two dimensions. Multi-dimensional tensors

are commonly used in the fields of scientific computing [1]
and numerical analysis [2]. In the meanwhile, tensor decom-
position is widely used to understand the relationship of
data across multiple dimensions. The concept of tensor
decomposition first appeared in the psychometric literature,
and later became popular in the field of chemometrics [3].
In recent years, tensor decomposition has received wide
attention due to its applicability in broader areas such as
neuroscience, recommendation systems, and machine
learning [4].

Canonical polyadic decomposition (CPD) [5] is one of the
most popular tensor decomposition techniques. CPD is a

generalization of singular value decomposition and outputs
matrix factors for each mode (a.k.a, dimension) of a tensor.
Themajor performance bottleneck ofCPD ismatricized tensor
timesKhatri-Rao product (MTTKRP) [6], which is the primary
focus of optimizations in tensor composition. Since real-world
tensors are usually large and extremely sparse, many existing
works optimize the performance of MTTKRP based on the
computation patterns and operation dependency [7].

Although the parallelization can significantly improve
the performance of MTTKRP, it is constrained by the spar-
sity patterns and hardware characteristics. Therefore, differ-
ent sparse tensor formats have been proposed to improve
the computation performance with co-designed storage and
algorithm adapt to the sparsity and hardware. Coordinate
(COO) [8] is a simple but popular sparse tensor format in
which each non-zero value is stored with the indices of all
dimensions. Compressed Sparse Fiber (CSF) [9] uses a tree
structure to store non-zero values and their index pointers,
similar to Compressed Sparse Row (CSR) [10] in matrices.
In addition, hardware-specific extensions based on COO
and CSF formats have been proposed, such as HiCOO and
MM-CSF [11], [12], [13], [14]. However, due to the complex
sparsity patterns and diverse hardware characteristics, the
optimal tensor format for MTTKRP varies significantly.
Therefore, it is challenging to determine the optimal tensor
format for MTTKRP running with different tensor inputs on
different hardware platforms.

The format selection of sparse tensors can be analogized
to the classification problem. For programmers, choosing
the optimal format is a daunting task with tedious efforts.
Although traditional machine learning methods (e.g.,

� Qingxiao Sun, Yi Liu, Hailong Yang, Zhongzhi Luan, and Depei Qian are
with the School of Computer Science and Engineering, Beihang Univer-
sity, Beijing 100191, China. E-mail: {qingxiaosun, yi.liu, hailong.yang,
07680, depeiq}@buaa.edu.cn.

� Ming Dun is with the School of Cyber Science and Technology, Beihang
University, Beijing 100191, China. E-mail: dunming0301@buaa.edu.cn.

� Lin Gan and Guangwen Yang are with the Department of Computer Sci-
ence and Technology, Tsinghua University, Beijing 100084, China.
E-mail: {lingan, ygw}@tsinghua.edu.cn.

Manuscript received 28 Apr. 2021; revised 13 Aug. 2021; accepted 4 Sept. 2021.
Date of publication 16 Sept. 2021; date of current version 11 July 2022.
This work was supported by National Key Research and Development Pro-
gram of China under Grant 2020YFB1506703, and National Natural Science
Foundation of China under Grant 62072018.
(Corresponding author: Hailong Yang.)
Recommended for acceptance by L. A. Sousa.
Digital Object Identifier no. 10.1109/TC.2021.3113028

1968 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 8, AUGUST 2022

0018-9340 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:04:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2927-362X
https://orcid.org/0000-0003-2927-362X
https://orcid.org/0000-0003-2927-362X
https://orcid.org/0000-0003-2927-362X
https://orcid.org/0000-0003-2927-362X
https://orcid.org/0000-0003-1829-2817
https://orcid.org/0000-0003-1829-2817
https://orcid.org/0000-0003-1829-2817
https://orcid.org/0000-0003-1829-2817
https://orcid.org/0000-0003-1829-2817
https://orcid.org/0000-0003-1101-7927
https://orcid.org/0000-0003-1101-7927
https://orcid.org/0000-0003-1101-7927
https://orcid.org/0000-0003-1101-7927
https://orcid.org/0000-0003-1101-7927
https://orcid.org/0000-0002-7186-0556
https://orcid.org/0000-0002-7186-0556
https://orcid.org/0000-0002-7186-0556
https://orcid.org/0000-0002-7186-0556
https://orcid.org/0000-0002-7186-0556
https://orcid.org/0000-0003-1297-4462
https://orcid.org/0000-0003-1297-4462
https://orcid.org/0000-0003-1297-4462
https://orcid.org/0000-0003-1297-4462
https://orcid.org/0000-0003-1297-4462
https://orcid.org/0000-0002-5382-1473
https://orcid.org/0000-0002-5382-1473
https://orcid.org/0000-0002-5382-1473
https://orcid.org/0000-0002-5382-1473
https://orcid.org/0000-0002-5382-1473
mailto:qingxiaosun@buaa.edu.cn
mailto:yi.liu@buaa.edu.cn
mailto:hailong.yang@buaa.edu.cn
mailto:07680@buaa.edu.cn
mailto:depeiq@buaa.edu.cn
mailto:dunming0301@buaa.edu.cn
mailto:lingan@tsinghua.edu.cn
mailto:ygw@tsinghua.edu.cn

decision tree [15]) are relatively easy to implement, they
obtain low accuracy due to the lack of sparsity distribution
information [16], [17]. In contrast, the convolutional neural
network (CNN) has gained tremendous popularity in classi-
fication tasks due to its ability to capture the underlying fea-
tures of input data without human engineering [18], [19].
Related to this study, previous works applied CNN to
sparse matrix format selection for optimizing SpMV [20],
[21] and SpGEMM [22]. However, such approaches cannot
be directly applied in tensor format selection due to higher
dimensional data to deal with. The high-dimensional con-
volution can neither be used in our work due to the unac-
ceptable prediction overhead caused by the tensor
irregularity. In addition, both TensorFlow [23] and PyTorch
[24] can only support tensor computations (e.g., 3-D convo-
lution) up to three dimensional, which cannot satisfy the
need for higher-order tensors. To apply two-dimensional
convolution to tensor format selection, we need to trans-
form any-order tensors into fixed-sized matrices without
losing the sparsity patterns. Furthermore, the CNN network
needs to be re-designed to compensate for the missing spar-
sity features during tensor transformation.

Unlike supervised learning based methods, unsuper-
vised learning based methods only require unlabeled train-
ing data, which can significantly reduce engineering efforts.
Among them, convolutional autoencoder (CAE) [25] have
gained attention in classification tasks due to its ability to
effectively extract the pixel distribution of an image as a fea-
ture vector. After that, the feature vectors are clustered
using traditional machine learning methods (e.g., K-
means [26]) to achieve image classification. However, the
same challenges faced by CNN also apply to CAE. In order
to achieve the automatic tensor format selection, the CAE
also needs to be re-designed to better learn the sparsity pat-
terns of the input tensor. Moreover, a holistic pipeline
including the autoencoder and clustering algorithm needs
to be designed to predict the optimal storage format for
sparse tensors.

To address the above challenges, we propose an auto-
matic tensor format selection framework SpTFS, that effec-
tively predicts the optimal format for an input tensor
running MTTKRP on a particular hardware platform. The
SpTFS first lowers the high dimensional tensors into two-
dimensional matrices and then represents the matrices as
fixed-size input suitable for the CNN and CAE networks
through various scaling methods. For supervised learning,
we re-design the CNN network by adding an additional fea-
ture layer to compensate for the sparsity features lost during
matrix representation. For unsupervised learning, we re-
design the CAE by adding the fully connected layers to bet-
ter extract the spatial distribution of fixed-sized matrices.
After that, the encoding outputs are concatenated with spar-
sity features for K-means++ algorithm to obtain the clusters
of sparse tensors. We evaluate SpTFS on both CPU and
GPU platforms to prove its effectiveness in predicting opti-
mal tensor format.

This paper is an extension of our previous work [27].
Compared to [27], we further implement a holistic pipeline
of optimal tensor format prediction named TnsClustering,
which can effectively predict the optimal tensor format
without massively profiling on the hardware platform. To

the best of our knowledge, this is the first work to utilize
unsupervised learning based method to predict the optimal
storage format for sparse tensor computation. The SpTFS is
open-sourced at https://github.com/sunqingxiao/SpTFS .
Specifically, this paper makes the following contributions:

� We comprehensively analyze the impact of sparse
tensor format selection on the performance of
MTTKRP due to the complex sparsity patterns and
diverse hardware characteristics.

� We propose a tensor transformation mechanism that
first lowers a tensor into matrices and then repre-
sents the matrices to fixed-size inputs to CNN
through two different scaling methods.

� We design and implement TnsNet that combines
CNN and feedforward neural network (FFNN) to
obtain better prediction accuracy. TnsNet integrates
an additional feature layer that compensates for the
sparsity features lost during tensor transformation.

� We design and implement TnsClustering that
includes TnsEncoder and K-means++ modeling.
TnsEncoder combines CAE and stacked autoencoder
(SAE) to encode the feature vectors of matrices after
tensor transformation. K-means++ modeling utilizes
the encoding outputs from TnsEncoder concatenated
with sparsity features to cluster sparse tensors with-
out massively profiling on the hardware platform.

� We develop an automatic sparse tensor format selec-
tion framework SpTFS that effectively predicts the
optimal format for input tensor data running
MTTKRP on different hardware platforms. Experi-
ment results show that SpTFS can achieve high pre-
diction accuracy and thus significant speedup for
MTTKRP.

The rest of this paper is organized as follows: Section 2
presents the background of this paper. Section 3 presents
the details of SpTFS methodology. Sections 4 and 5 present
the evaluation results of SpTFS. Section 6 discusses the
related work, and Section 7 concludes this paper.

2 BACKGROUND

In this section, we present tensor notations and widely used
sparse tensor storage formats. Then, we illustrate popular
machine learning techniques used for supervised and unsu-
pervised classification tasks. The above background moti-
vates our work in this paper.

2.1 Tensor Notation

Tensor denotes the array with multiple dimensions [3] and
is the generalization of matrix and vector. A high-order ten-
sor refers to the tensor with more than two dimensions, and
the mode-n of a tensor denotes its nth dimension. High-
order tensors have been widely used in the fields of signal
processing, chemometrics and image/video rendering.
Since finding the exact rank of a tensor is an NP-hard prob-
lem [28], researchers pay the most attention to ranks that
are less than the longest dimension of a sparse tensor. Here,
we use the three-dimensional tensor and mode-1 computa-
tion to describe the concepts and related mathematics
about tensor decomposition without losing generality. All

SUN ETAL.: INPUT-AWARE SPARSE TENSOR STORAGE FORMAT SELECTION FOR OPTIMIZING MTTKRP 1969

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:04:31 UTC from IEEE Xplore. Restrictions apply.

notations for vectors, matrices, and high-dimensional ten-
sors are shown in Table 1, where a slice denotes the subar-
ray with one index of the tensor fixed, and a fiber denotes
the subarray with two indices of the tensor fixed.

Canonical polyadic decomposition (CPD) [5] is one of the
most widely-applied tensor computations, which decom-
poses a tensor X with rank F into the summation of F rank-
one tensors, and the rank-one tensors can be represented as
the outer products of vectors. In other words, the CPD mod-
els a tensor X 2 RI�J�K with three factor matrices A 2
RI�F , B 2 RJ�F and C 2 RK�F as formulated in Eq. (1). To
solve the CPD, one of the most popular approaches is to uti-
lize Alternating Least Squares (ALS) [3], where a least
square problem for each factor matrix is solved iteratively
with others fixed. The update process for factor matrix A is
shown in Eq. (2). The main bottleneck in the CPD-ALS algo-
rithm for sparse tensors is MTTKRP [6], which can be for-
mulated as Eq. (3).

Xði; j; kÞ ¼
XF

f¼1

Aði; fÞBðj; fÞCðk; fÞ (1)

A ¼ Xð1ÞðB� CÞðCTC � BTBÞy (2)

Â ¼ Xð1ÞðB� CÞ: (3)

2.2 Sparse Tensor Storage Formats

2.2.1 COO and COO-Based Formats

Coordinate format (COO) [8] is an intuitive format for
storing sparse tensor (Fig. 1a). COO consists of tuples,
and each tuple stores the indices and value for every
nonzero element in the tensor. The MTTKRP algorithm
using COO tensor format computes at the granularity of
a single element. The advantage of COO is the simplicity

and insensitivity of sparsity patterns in tensor. However,
it requires a large memory footprint and relies on atomic
operations when running on GPU. Therefore, the var-
iants of COO have been proposed to overcome the above
drawbacks, including F-COO [11] and HiCOO [12], as
shown in Figs. 1b and 1c. F-COO adds two flag arrays
named start-flag and bit-flag, which indicate whether the
indices of slices vary at the beginning of a block and at
an element, respectively. The two flag arrays are used to
guide segment scan for avoiding atomic operations in
MTTKRP on GPU. Meanwhile, HiCOO partitions each
dimension into chunks with size B and compresses the
nonzero tuples with fewer bits. The bptr array stores
where the block begins. The indices for every nonzero
element can be computed using Eq. (4). Atomic opera-
tions in MTTKRP can be avoided through its privatiza-
tion method. Moreover, HiCOO groups blocks into a
large logical superblock with size L. To avoid write con-
flicts, the blocks within a superblock are always sched-
uled together and assigned to a single thread.

i ¼ bi �Bþ ei

j ¼ bj �Bþ ej

k ¼ bk �Bþ ek:

(4)

2.2.2 CSF and CSF-Based Formats

Compressed Sparse Fiber (CSF) [6] extends the Compress
Sparse Row (CSR) [10] format used to store sparse matrices.
CSF maintains a tree-based structure and consists of six
arrays, as shown in Fig. 2a. The i ptr array stores the posi-
tion of the first fibers of the slices, while the j ptr array
stores the position of the first elements of the fibers. Other
arrays store the corresponding indices and values of ele-
ments. The CSF format is superior in less memory footprint
and higher cache hit rate compared to COO, due to its com-
pressed slices and fibers. Moreover, tiling can be used along
the second mode to partition matrix factors, which are dis-
tributed among threads to eliminate the need for locks.
However, the tree-based CSF requires the recursive algo-
rithm when used in MTTKRP, which is not efficient when
implemented on GPU.

To address the limitation of CSF, it is extended to HB-
CSF [13] for better adaption on GPU, whose structure is
shown in Fig. 2b. HB-CSF is a mixture of COO, Compressed
Slice (CSL), and CSF. The COO is used when the slice only
contains one element, whereas the CSL is applied when the
slice contains multiple fibers, and each fiber contains a sin-
gle element. Except for the above cases, the CSF format is
adopted. HB-CSF improves the load balance and memory

TABLE 1
Important Tensor Notations

Notation Definition

X A high-dimensional tensor.

N Tensor order.

I; J;K; In Tensor mode sizes.

XðnÞ Matricized tensor in mode-n.

Xði; j; kÞ An element in a high dimensional tensor.

Xði; :; :Þ A slice in a high dimensional tensor.

Xði; j; :Þ A fiber in a high dimensional tensor.

A Amatrix.

Aði; jÞ An element in a matrix.

a An vector.

ai An element in a vector.

� The symbol for Kronecker product.

� The symbol for Hadamard product.

y The symbol for pesudo-inverse.

Fig. 1. The comparison of sparse tensor storage format COO and its var-
iants, F-COO and HiCOO (parameter B ¼ 2).

1970 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 8, AUGUST 2022

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:04:31 UTC from IEEE Xplore. Restrictions apply.

efficiency on GPU due to fine-grained tensor partition.
Meanwhile, the original CSF format is mode sensitive as it
is compressed along a certain mode. As a consequence, d
CSF tensors are needed when conducting CPD of a d�
order tensor, whose memory footprint can be unacceptable
in practice. Therefore, CSF format has been improved to
MM-CSF [14] in order to reduce memory footprint. MM-
CSF is a hybrid of multiple CSF tensors compressed along
different modes to reach the best compression ratio
(Fig. 2c). It adopts a dynamic partitioning scheme: Given a
nonzero element Xði; j; kÞ, it belongs to three fibers in the
CSF tensors for three modes, and it is partitioned along the
longest fiber, after that, the length of other two fibers it
belongs to is reduced by one.

Fig. 3 presents the performance comparison of real-
world sparse tensors using different storage formats for
MTTKRP. The tensor datasets are adopted from
FROSTT [29] and HaTen2 [30], including ten 3-D tensors
and six 4-D tensors. The detailed descriptions of differ-
ent tensors are provided in Section 4.1. Two observations
can be drawn from Fig. 3: 1) the execution time of the
same tensor in different formats varies significantly; 2)
the optimal storage format changes across tensors, there
is no single format that fits for all. In fact, the massive
amount of real-world tensor data is prohibitive for
selecting the optimal format through manual efforts.
What is worse, the sparsity distribution of high-dimen-
sional tensors is difficult to be described by traditional
machine learning methods, and thus makes such meth-
ods less effective. In addition, the selection of a sub-opti-
mal format may exponentially increase the execution
time of MTTKRP. The above observations motivate us to

predict the optimal storage format for tensors through
deep learning methods automatically.

2.3 Machine Learning-Based Techniques

Supervised learning has attracted lots of attention due to its
outstanding performance on image classification tasks [18],
[19], [31]. Among the traditional machine learning methods,
gradient boosted decision tree (GBDT) [32] has been adopted
in many application scenarios. XGBoost [33] is an efficient
implementation of GBDT (based on CART [34]) that has
been widely used in classification. XGBoost also supports
gradient boosting linear classifier (GBLinear). Recently, deep
learning methods have achieved great success in scenarios
where the input contains non-linear patterns (e.g., images).
Convolution neural network (CNN) is one of the most popu-
lar deep neural networks (DNNs) and is often used to realize
classification or detection tasks. Note that the input size of
CNN is typically fixed and equals to the number of nodes of
the input layer. If the raw inputs have different sizes, they
need to be scaled to a fixed size. During scaling, the features
of raw inputs should be retained asmuch as possible to faith-
fully represent the patterns.

Supervised learning based methods usually require an
enormous amount of labeled training data. In contrast, unsu-
pervised learning based methods do not have such con-
straints, which greatly reduces the efforts of training data
collection. Among unsupervised learning based methods, K-
means clustering [26] is favored due to its ease of use. K-
means++ [35] is an extension of K-means that improves the
initialization of cluster centroids. K-means++ has beenwidely
implemented by popular machine learning libraries (e.g., sci-
kit-learn [36]). More recently, deep learning methods have
made great progress in unsupervised image classification sce-
narios. Among them, convolutional autoencoders (CAE) [25]
receive the corrupted image as input and is trained to predict
the original uncorrupted image. The generative adversarial
network (GAN) [37] learns the pixel distribution of images
through its generative model and discriminative model.
While the GAN-based structures have achieved impressive
results in the field of unsupervised classification, the huge
computational overhead is prohibitive in certain scenarios
such as tensor format prediction. For example, based on our
evaluation results the training and inference time of deep con-
volutional GAN (DCGAN) [38] is 4.64� and 2.30� larger than
that of CAE. Therefore, we do not consider GAN-based
approaches in this paper.

Fig. 2. The comparison of sparse tensor storage formats CSF and its variants, HB-CSF and MM-CSF. For MM-CSF, p0means that the slices are orig-
inally from CSF tensor for mode-1.

Fig. 3. The execution time of MTTKRP on real-world sparse tensors
across all modes on CPU. The number of columns each tensor contains
depends on its order.

SUN ETAL.: INPUT-AWARE SPARSE TENSOR STORAGE FORMAT SELECTION FOR OPTIMIZING MTTKRP 1971

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:04:31 UTC from IEEE Xplore. Restrictions apply.

3 METHODOLOGY

In this section, we begin with a high-level overview of the
SpTFS design. After that, we present the key components of
the tensor transformation module including tensor lowering
and matrix representation. Then, we illustrate the super-
vised and unsupervised methods implemented by SpTFS to
achieve the optimal tensor format prediction. Finally, we
explain the overall workflow and other implementation
details of the SpTFS framework.

3.1 Design Overview

In this section, we propose an automatic tensor format
selection framework SpTFS, that can predict the optimal
tensor format for MTTKRP with a re-designed CNN net-
work. As shown in Fig. 4, the SpTFS sampling consists
of two important components including tensor transfor-
mation and feature extraction. The tensor transformation
component converts the sparse tensors into fixed-sized
matrices through tensor lowering (Section 3.2) and
matrix representation (Section 3.3). Inspired by [22],
the feature extraction component is used to capture lost
tensor features during tensor transformation, which is
then fed into the fully connected layer in deep neural
networks.

For supervised learning, the performance of each tensor
input is profiled with different storage formats on the target
hardware platform, and the tensor format with the best per-
formance is labeled. The profiled datasets are then used to
train the TnsNet (a re-designed CNN network), which pre-
dicts the optimal format for a tensor on the target hardware
platform. For unsupervised learning, we propose TnsClus-
tering that consists of three stages such as feature encoding
(TnsEncoder), K-means++ Modeling and cluster labeling.
During training, the unlabeled tensor datasets can be
directly used to train the TnsEncoder (a re-designed CAE)
model for feature encoding. Since the training of TnsEncoder
does not require profiling the performance of different
sparse formats on a large volume of tensor datasets, once
trained the model can be used across different platforms.
After that, the TnsClustering uses the K-means++ algorithm
to cluster the input tensors based on their feature vectors.
Finally, the TnsClustering determines the optimal tensor for-
mat for each cluster by profiling the optimal format for the
cluster centroid tensor on the target hardware platform.
During prediction, the TnsClustering obtains the feature vec-
tor of each input tensor through tensor transformation and
feature encoding (using TnsEncoder). Then, the input tensor
is assigned to the nearest cluster by the trained K-means++

model, with the optimal tensor format predicted the same
as the cluster.

Due to the limited number of publicly available datasets
of sparse tensors, we randomly select sparse matrices from
the SuiteSparse [39] and combine them to generate more
datasets of sparse tensors. SuiteSparse has been widely
used in evaluating the performance of matrix computa-
tion [40] as well as the accuracy of matrix format selec-
tion [22]. For the 3-D tensors, we use the elements of the
first matrix to form the higher two dimensions, and the ele-
ments along the higher indices of the second matrix to form
the lowest dimension. Similarly, for the 4-D tensors, the ele-
ments of the first matrix and the second matrix form the
higher two dimensions and the lower two dimensions,
respectively. Then, the generated sparse tensor datasets are
processed through tensor transformation and feature extrac-
tion in order to be used for training the CNN or CAE
networks.

Note that the SpTFS can support the format selection of
higher-order tensors. Tensors of any order can be trans-
formed into matrices through tensor lowering and matrix
representation. In addition to MTTKRP, the SpTFS can also
support more general tensor computations such as Tensor
Times Matrix (TTM) thanks to the versatility of tensor trans-
formation. TTM is the multiplication of a sparse tensor with
a dense matrix (called SpTTM) commonly used in Tucker
decomposition [3]. SpTTM can be seen as a high-dimen-
sional generalization of the sparse matrix-vector multiplica-
tion (SpMV) [11]. Similarly, the SpTFS can transform the
sparse tensor involved in SpTTM into fixed-sized matrices
and sparsity features, which are then fed to TnsNet or
TnsClustering to obtain the optimal tensor format. We leave
the adaptation of SpTFS to TTM for future work.

3.2 Tensor Lowering

Tensor lowering is based on flattening and mapping techni-
ques, both of which are able to capture the sparsity distribu-
tion of tensors, which are important to train the TnsNet
network. As shown in Fig. 5, we take mode-1 MTTKRP as
an example to explain the flattening and mapping of a
third-order tensor. For mapping, we first get the mode-1 sli-
ces of the tensor (i.e., Xði;:;:Þ) (Fig. 5b), which denotes the sub-
arrays with the i index fixed. Next, we map the non-zero
values of all slices to a slice (Fig. 5c), and the non-zero val-
ues of the same position are accumulated to obtain the den-
sity of mode-1 slices. Note that in the density distribution,
all non-zero values are regarded as 1. The mode-1 mapping
can be formulated in Eq. (5), where X 2 RI�J�K and A 2
RJ�K .

Fig. 4. The design overview of SpTFS.

1972 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 8, AUGUST 2022

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:04:31 UTC from IEEE Xplore. Restrictions apply.

A ¼
XI

i¼1

Xði; :; :Þ: (5)

Flattening is to unfold the tensor using matricization.
Fig. 5d shows the mode-1 flattening of X is Xð1Þ in Eq. (3).
For any element in X , its flattening to the matrix can be for-
mulated in Eq. (6), where B 2 RI�JK .

Bði;k�JþjÞ ¼ Xði; j; kÞ: (6)

Here, we generalize the method of tensor lowering regard-
ing aNth-order tensor. Formapping, wemap the non-zeros to
a slice withN � 2 indices fixed each time and eventually gen-
erateCN�1

N matrices. For flattening, we unfold the tensor along
each mode to generate a matrix. The mode-1 mapping can be
formulated in Eq. (7), where X 2 RI1�I2�����IN and A 2
RIN�1�IN . The other matrices generated by mode-1 mapping
can be deduced similarly. Themode-n flattening ofX tomatrix
can be formulated in Eq. (8), where tensor element
ði1; i2; . . . ; iNÞmaps tomatrix element ðin; jÞ [3].

A ¼
XI1;...;IN�2

i1;...;iN�2¼1

Xði1; . . . ; iN�2 :; :Þ (7)

j ¼ 1þ
XN

k¼1
k6¼n

ðik � 1ÞJk; and Jk ¼
Yk�1

m¼1
m6¼n

Im: (8)

Note that flattening and mapping are two separate meth-
ods of tensor lowering that can be applied independently.
As seen, mapping reflects the vertical distribution of the
non-mode indices, and flattening reflects the horizontal dis-
tribution of the mode index. Therefore, they can be com-
bined to retain the sparsity distribution of a tensor. With the
tensor lowered to matrices, we then transform the matrices
into fixed-sized input for the network through matrix repre-
sentation (Section 3.3).

3.3 Matrix Representation

The matrices generated through tensor lowering are irregu-
lar in size, and we need to scale the matrices into fixed-sized

input for the network. Inspired by [20], we consider two
ways for matrix scaling: Density representation and histo-
gram representation. Both methods can represent the
coarse-grained patterns of the original matrix with accept-
able sizes. The density representation captures detailed var-
iations among different regions of the original matrix. The
histogram representation [20] further captures the distance
between an element and the diagonal of the original matrix
while losing parts of the sparsity distribution.

As shown in Fig. 6, we illustrate the matrix representa-
tion methods by the example of mapping the 8� 8matrix to
4� 4 matrices. For the density representation (Fig. 6b), each
block counts non-zero elements and fills into the new
matrix. For histogram representation, row histogram and
column histogram are used to express the diagonal informa-
tion of the original matrix (Fig. 6c). The steps of scaling with
histograms are illustrated in Algorithm 1. The rowDim and
the colDim are the row and column indices of the elements
mapped to the new matrix, which are also used in the den-
sity representation. The dist reflects the distance between
the element and the diagonal. However, the distance does
not fully reflect the sparsity distribution of an element. For
example, if the elements distributed on both sides of the
diagonal have the same distance from the diagonal, they
will be counted at the same position of the histogram.
Finally, the values of the new matrices are normalized to
the range of [0,1] by dividing by the maximum value.

Algorithm 1.Matrix Representation Using Histograms

1: Input: input matrix IM and output resolution r
2: Output: row matrix RM and column matrix CM
3: rowRatio ¼ IM:height=r
4: colRatio ¼ IM:width=r
5: maxDim ¼ maxðIM:height; IM:widthÞ
6: for each non-zero nz in IM do
7: dist ¼ r� absðnz:row� nz:colÞ=maxDim
8: rowDim ¼ nz:row=rowRatio
9: colDim ¼ nz:col=colRatio
10: RM½rowDim�½dist�þ ¼ 1
11: CM½colDim�½dist�þ ¼ 1
12: end for

Note that both representation methods may lose the
potential patterns of a matrix, which will ultimately affect
the accuracy of tensor format selection. Therefore, we

Fig. 5. The process of lowering a high-dimensional tensor into matrices
using mapping or flattening.

Fig. 6. Different ways for representing a matrix.

SUN ETAL.: INPUT-AWARE SPARSE TENSOR STORAGE FORMAT SELECTION FOR OPTIMIZING MTTKRP 1973

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:04:31 UTC from IEEE Xplore. Restrictions apply.

choose to add the feature layer to the network structure to
compensate for the loss of tensor features (Section 3.4).

3.4 Network Structure Design

We utilize TnsNet (supervised learning) and TnsClustering
(unsupervised learning) for optimal format prediction of
sparse tensors. As shown in Fig. 7, TnsNet combines CNN
and feedforward neural network (FFNN) to predict the opti-
mal storage format for a tensor. The inputs of TnsNet
include the fixed-sized matrices and sparsity features
through tensor transformation and feature extraction,
respectively. Here, we take the density representation as an
example, where the BaseNet includes all convolution and
pooling layers of TnsNet. For the matrices generated after
tensor transformation, we use them as inputs to the BaseNets
separately and concatenate the outputs as the joint features.
The joint features are further concatenated with the feature
layer, which can supplement the missing sparsity features
of the original tensors (Table 2). Due to page limit, readers
can refer to [27] for more TnsNet details.

As shown in Fig. 8, TnsEncoder consists of fully connected
layers, convolutional layers and deconvolutional layers. The
original input is encoded by the 2nd	6th layers and

decoded by the 7th	11th layers, which eventually derives
the reconstructed input. The TnsEncoder is trained with the
cost function minimizing the mean squared error between
the original values and the reconstructed values. After train-
ing, the feature vector of an input tensor can be obtained
from the 6th layer of the trained model.

Fig. 9 illustrates the design of TnsClustering using density
representation for predicting the optimal tensor format. For
the matrices generated after tensor transformation, we feed
them into the TnsEncoders separately and concatenate the
encoding outputs with the sparsity features (Table 2). The
resulting feature vectors are then clustered by the K-means+
+ algorithm. After the clustering model is trained, we profile
the performance of the centroid tensor for each cluster with
different storage formats on the target hardware platform.
The optimal tensor format is assigned as a label for each
cluster. During the prediction, the optimal storage format
for the input tensor is determined according to the label of
the cluster which it belongs to. Note that, the performance
profiling of the centroid tensors only needs to be done once
for each target platform.

Moreover, TnsClustering can be easily adapted to the his-
togram representation or higher-order tensors. In detail, the
fixed-size matrices generated after tensor transformation
are fed into the TnsEncoders, and the output feature vectors
and sparsity features are merged as input to the K-means++
clustering algorithm. The encoding length in TnsEncoder can
be adjusted to ensure that the combined feature vector and
sparsity features have a similar impact on the clustering
results. In such a way, stable prediction performance can be
achieved. When adapting the TnsClustering to a different
hardware platform, only the optimal storage format of the
centroid tensor of each cluster needs to be profiled without
re-training the clustering model.

3.5 Implementation Details

Fig. 10 shows the overall workflow of SpTFS. We implement
tensor transformation and feature extraction in C++ code to
reduce the preprocessing overhead. The fixed-size matrices
and sparsity features after tensor preprocessing are then fed
into TnsNet structure or TnsClustering pipeline. The TnsNet
and Tnsclustering are implemented with popular machine
learning frameworks (i.e., TensorFlow [23] and sklearn [36]).
However, the ideas behind TnsNet and Tnsclustering are
general to be implemented in other frameworks as well.

The optimal sparse format of the input tensor is deter-
mined according to the classification result of SpTFS. Note
that the above process of predicting the optimal format for a

Fig. 7. The structure design of TnsNet.

TABLE 2
The Candidate Feature Set of a Tensor

1974 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 8, AUGUST 2022

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:04:31 UTC from IEEE Xplore. Restrictions apply.

single tensor only needs to be done once. After that, the ten-
sor library such as ParTI!, SPLATT, HB-CSF and MM-CSF is
invoked to perform tensor computations such as MTTKRP
and CPD. Our design decouples the tensor format predic-
tion from tensor library so that the SpTFS can easily support
more sparse tensor formats by incorporating more tensor
libraries.

4 EVALUATION OF SUPERVISED LEARNING

In this section, we evaluate SpTFS by comparing TnsNet
with other supervised learning based methods. Due to page
limit, we present the experimental results that are not
included in [27]. In addition, we also present the evaluation
results of MM-CSF, which gives novel insights to the analy-
sis of TnsNet performance on GPU.

4.1 Experiment Setup

4.1.1 Hardware and Software Platforms

As shown in Table 3, we evaluate the effectiveness of SpTFS
on a server, which consists of an Intel Xeon Silver CPU with
16 cores and an Nvidia RTX Turing GPU with 68 SMs. The
GPU is also utilized to speed up the process of training and
prediction. TnsNet is built using TensorFlow release version
1.15 [23].

4.1.2 Sparse Tensor Formats and Datasets

For MTTKRP on CPU, we evaluate the sparse tensor storage
formats, including COO, CSF, and HiCOO. Specifically, the
CSF implementation is adopted from SPLATT [6], whereas
the COO and HiCOO implementations are adopted from
ParTI! [12]. SPLATT provides the optimization option for
tiling. We use CSF-tile and CSF-based to denote enabling
and disabling this option. For HiCOO, we use two super-
block sizes (i.e., HiCOO-sb10 and HiCOO-sb14) according
to [12]. For example, HiCOO-sb10 means that the size of the
superblock is 210. For MTTKRP on GPU, the tensor formats
we evaluate include COO, F-COO, CSF, HB-CSF and MM-
CSF. We adopt the implementations of all tensor formats
from [13] except F-COO and MM-CSF. For MM-CSF, the
implementation is adopted from [14]. Since there is no pub-
lic F-COO implementation available, we develop our F-
COO implementation based on [11]. Due to severe load
imbalance, F-COO exhibits relatively poor performance,
which has also been confirmed in [13]. Among all GPU for-
mats during our evaluation, F-COO only accounts for 0.4%
of the cases with the best performance, whereas in 59.3% of
the cases, it leads to the worst performance. Therefore, we
do not consider F-COO for tensor format selection. To
ensure fairness, we use the best parameter configurations
reported in each implementation and compile with the
“O3” option.

For the evaluation dataset, we generate 9,855 third-
order tensors and 9,793 fourth-order tensors based on
2,726 matrices selected from the SuiteSparse Matrix Col-
lection [39]. The number of non-zero elements ranges
from 3 to 9,953,208. In addition, we add 16 real-world
tensors (10 for 3-D and 6 for 4-D) from FROSTT [29] and
HaTen2 [30] to the evaluation dataset (listed in Fig. 3).
Note that the evaluation dataset is randomly divided
into a training set and a validation set during cross vali-
dation (Section 4.1.3).

Fig. 8. The structure design of TnsEncoder.

Fig. 9. The design of TnsClustering using density representation for
predicting the optimal tensor format.

Fig. 10. The overall workflow of SpTFS.

TABLE 3
Hardware Platforms Used for Evaluation

Intel CPU Nvidia GPU

Core Intel Xeon Silver 4110 2
processors, 16 cores

GeForce RTX 2080
Ti 68 SMs

Frequency 2.1GHz 1.3GHz

Caches 32KB L1, 1MB L2, 11MB L3 5.5MB L2

Memory 192GB DDR4, 230.4GB/s 11GB GDDR6,
616.0GB/s

OS/Driver CentOS Linux release 7.6 GPU Driver 440.33

Compiler gcc-4.8 nvcc-10.2

SUN ETAL.: INPUT-AWARE SPARSE TENSOR STORAGE FORMAT SELECTION FOR OPTIMIZING MTTKRP 1975

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:04:31 UTC from IEEE Xplore. Restrictions apply.

4.1.3 Cross Validation

We use the 5-fold cross validation method to evaluate the
accuracy of the models. The validation method is widely
used in literatures [20], [21], [41]. Specifically, we randomly
divide the evaluation dataset into 5 folds. In each round, a
single fold is selected as the validation set, and the other 4
folds are used as the training set. The above process is
repeated for 5 rounds, each of which selects a different fold
as the validation set. The validation results are averaged
over the rounds to reduce variability.

We compare the design of TnsNet with the XGBoost [33]
machine learning methods, including GBDT and GBlinear,
which are based on CART [34] and the linear model, respec-
tively. The input features of GBDT and GBLinear are listed in
Table 2, which are the same to the feature layer of TnsNet.
The GBDT and GBLinear are trained for CPU and GPU plat-
forms separately. We have carefully tuned the hyperpara-
meters of GBDT and GBLinear. The hyperparameters of
TnsNet include the batch size, the convolution filter size and
the learning rate. We empirically determine the hyperpara-
meter settings across the validations. We set the batch size to
100 and the convolution filter size to 3� 3. We select the
Adam stochastic optimizer with 0.0001 learning rate. During
training data collection, we set the runtime parameters
according to previous works [6], [12], [13]. Specifically, we
set the number of threads to 16 when on CPU, and the thread
block size to 256when onGPU. The rank size is set to 16.

4.2 Results for Prediction

As seen from [27], the TnsNet with density representation
(density repr.) and feature layer (FL) achieves the highest
prediction accuracy on CPU. In adition, GBDT performs bet-
ter than GBlinear due to its ability to process nonlinar data.
Therfore, we will only present the evaluation results of
TnsNet (density repr.+FL) and GBDT in the rest of the paper.

Table 4 reports the prediction accuracy on GPU. Simi-
larly, TnsNet achieves better prediction accuracy compared
to GBDT in all modes across all tensor formats. Specifically,
TnsNet achieves 93% prediction accuracy on average,
whereas GBDT only achieves 70%. The prediction accuracy
of GBDT on GPU is significantly lower than that on CPU

(86%). This is because the tensor formats (e.g., HiCOO-sb10
and CSF-tile) on CPU are all derived from three basic tensor
formats (i.e., COO, HiCOO and CSF) with minor configura-
tion changes. Therefore, they share similar computation pat-
terns as the basic tensor formats. Whereas on GPU, there are
more basic tensor formats (four in our experiments) avail-
able. Due to the lack of spatial distribution information, the
prediction accuracy of GBDT becomes worse when more
tensor formats need to be considered. The above drawback
of GBDT in turn demonstrates TnsNet is more advantageous
with more sparse tensor formats emerging in the future.

In addition, as shown in Table 4 the proportion of MM-
CSF achieving the best performance in mode-1 is low. This
is because the tensor generated by matrix combination in
mode-1 has the same number of non-zeros in each fiber. In
this case, although MM-CSF’s re-partitioning of non-zeros
obtains better data compression and reduces memory
usage, it may lead to load imbalance among warps. There-
fore, for most tensors, the performance of MM-CSF is worse
than CSF and HB-CSF in mode-1.

4.3 Comparison With Other Supervised Methods

To further evaluate the superiority of SpTFS, we compare
TnsNet with more supervised learning based methods
(Fig. 11). We implement three traditional machine learning
methods using sklearn [36], including Quadratic Discrimi-
nant Analysis (QDA), Random Forest (RF) and K-Nearest
Neighbor (KNN). The input features of these methods are
consistent with GBDT. In addition, we implement a 3-D con-
volutional network (3DConvNet) (with conv3d operator)
using TensorFlow [23]. Specifically, we transform a tensor
into a fixed size of 32� 32� 32 through the density repre-
sentation, which is fed into 3DConvNet together with spar-
sity features. Similar to TnsNet, the output of the fixed-size
tensor after 3-D convolutions and fully connected layers is
concatenated with the feature layer. We have carefully
tuned all hyperparameters of the above methods.

As shown in Fig. 11, TnsNet still achieves the highest pre-
diction accuracy in all modes. Among traditional machine
learning methods, GBDT achieves higher accuracy in gen-
eral. This indicates the effectiveness of GBDT for processing
nonlinear data. TnsNet performs better than 3DConvNet
because it retains the mode-specific sparsity distribution as
much as possible. Although increasing the transformed ten-
sor size (i.e., input resolution) may improve the prediction
accuracy of 3DConvNet, the training time and inference time
of 3DConvNet would become prohibitively large (1.51� and
1.20� larger than that of TnsNet in current implementation).
In addition, increasing the input resolution also exacerbates

TABLE 4
Prediction Accuracy of TnsNet and GBDT on GPU

Fig. 11. Prediction accuracy comparison between TnsNet and other
supervised learning based methods on CPU.

1976 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 8, AUGUST 2022

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:04:31 UTC from IEEE Xplore. Restrictions apply.

tensor preprocessing overhead. Therefore, we believe that
TnsNet works better for tensor format selection than 3-D
convolution network.

5 EVALUATION OF UNSUPERVISED LEARNING

In this section, we run a series of experiments to evaluate
the effectiveness of SpTFS. In addition, we compare
TnsClustering with other unsupervised methods in terms of
prediction accuracy and performance speedup. Moreover,
we analyze the overhead of SpTFS from both training and
prediction aspects. We also report the sensitivity of TnsClus-
tering to the number of cluster centroids and encoding
length.

5.1 Experiment Setup

We use the same hardware platforms listed in Table 3 to
evaluate the unsupervised learning based method in SpTFS.
The autoencoders are built using the Keras APIs [42] of Ten-
sorFlow v1.15 with eager execution enabled. In eager mode,
TensorFlow evaluates operations immediately without con-
structing a computational graph in advance. This design
provides simplicity and flexibility, thereby making pro-
gramming and model debugging easier. Unlike supervised
learning based method, the autoencoders are trained
directly using unlabeled sparse tensor datasets (illustrated
in Section 4.1.2). The K-means++ clustering algorithm is
implemented using scikit-learn v0.20.4 [36].

We use the 5-fold cross validation method to evaluate the
accuracy of the models. We compare TnsClustering with
FcClustering, which uses a stacked autoencoder [43] without
convolutional and deconvolutional layers. We also evaluate
the performance of the method that uses the K-means++
algorithm to cluster sparse tensors based on their sparsity
features (Table 2) without autoencoders (named as Pure-
Clustering). The above three methods are trained only once
on each target hardware platform. For each target platform,
the cluster labeling is done to determine the optimal storage
format for each cluster. For both autoencoders, we empiri-
cally determine the hyperparameter settings across the vali-
dations. Specifically, we select the Adam stochastic
optimizer with 0.001 learning rate and a batch size of 100.
For TnsEncoder, we set the convolution filter size to 3� 3
and the stride to 2. For K-means++ algorithm, we set the
number of cluster centroids to 256 and the batch size to 200.
Since the density representation outperforms the histogram

representation (Section 4), all experiments for unsupervised
learning are conducted with the density representation.

5.2 Prediction Accuracy

We use top-N accuracy to measure the effectiveness of clus-
tering model, where top-N accuracy is how often the pre-
dicted class falls in the top N values of the probability
distribution. The homogeneity score (H-score) [36] is used
to check whether all of the clusters contain only samples
that are members of a single class. H-score is independent
of the absolute values of the labels. A higher H-score means
the better homogeneity of the clustering.

Table 5 reports the clustering accuracy of three unsuper-
vised learning based methods on different hardware plat-
forms. For 3-D tensors on CPU, TnsClustering achieves the
highest H-score in all modes, which reflects the effective-
ness of TnsEncoder for clustering. Compared to FcClustering
and PureClustering, TnsClustering achieves higher Top-1/2
accuracy in most modes on both hardware platforms. Spe-
cifically, TnsClustering achieves 76% Top-1 accuracy on
average, whereas FcClustering and PureClustering only
achieve 73% and 71%, respectively. The results of Top-1
accuracy on GPU are similar to that on CPU. TnsClustering
achieves an average Top-2 accuracy of 95% and 92% on
CPU and GPU respectively, which is close to the Top-1
accuracy of TnsNet (93% and 93%). This indicates that
TnsEncoder can effectively encode the spatial information of
sparse tensors into feature vectors, and thus improve the
clustering accuracy.

For 4-D tensors, we adjust the encoding length of autoen-
coders to provide stable clustering accuracy. For the matri-
ces generated after flattening and mapping, we set the
encoding length to 128 and 32, respectively. As shown in
Table 5, TnsClustering achieves the highest Top-1/2 accu-
racy across all modes. Specifically, TnsClustering achieves
63.4% Top-1 accuracy on average, whereas FcClustering and
PureClustering achieve 60.9% and 61.2%, respectively. We
can observe that PureClustering has even better clustering
accuracy than FcClustering. This is because the sparsity pat-
terns of higher-order tensors are difficult to be accurately
represented with only fully connected layers. This also
proves the effectiveness of sparsity features extracted by
SpTFS for K-means++ clustering.

Note that the supervised learning and unsupervised
learning methods satisfy different user scenarios regarding
the cost of labeling training data. When the cost of labeling

TABLE 5
Clustering Accuracy Comparison of Unsupervised Learning Based Methods

SUN ETAL.: INPUT-AWARE SPARSE TENSOR STORAGE FORMAT SELECTION FOR OPTIMIZING MTTKRP 1977

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:04:31 UTC from IEEE Xplore. Restrictions apply.

training data is acceptable, it is always recommended to
choose the supervised learning method (TnsNet) for better
prediction accuracy.

5.3 Performance Speedup

The performance of MTTKRP using the tensor format pre-
dicted by the unsupervised learning based methods on
CPU and GPU is presented in Figs. 12 and 13, respectively.
The performance using the COO format and CSF-based/
CSF format is chosen as the baseline, respectively. We can
observe that TnsClustering achieves higher performance
speedup than FcClustering and PureClustering in most
modes on both platforms.

On CPU, TnsClustering achieves an average speedup of
4.03� and 1.93� over COO format and CSF-based format,
respectively. The low performance speedup of TnsClustering
over CSF-based format is due to the fact that CSF format
performs better than the COO format in most cases [27]. On
GPU, TnsClustering achieves 1.45� and 1.68� speedup over
COO format and CSF format, respectively. The low perfor-
mance speedup of TnsClustering over COO format is due to
the fact that COO format already achieves optimal perfor-
mance in most cases (refer to Table 4). Although the Top-1
prediction accuracy of TnsClustering is significantly lower
than that of TnsNet, it does not lead to a large gap in perfor-
mance speedup [27]. This indicates that even if TnsCluster-
ing does not accurately predict the optimal tensor format in
some cases, it can still select a good tensor format with per-
formance speedup.

The performance speedup for 4-D tensors is shown in
Fig. 14. TnsClustering achieves the highest performance
speedup in most modes. On average, TnsClustering achieves
17.0� and 1.70� speedup over COO format and CSF-based
format, respectively. This is because the distribution of the
optimal formats is highly skewed. For example, the COO for-
mat only accounts for 4.1% of the cases with the best perfor-
mance. The performance gap among different formats of 4-D
tensors is much larger than that of 3-D tensors. This demon-
strates the necessity of our proposed methods for selecting
the optimal format to speedup tensor computations.

5.4 Overhead Analysis

Considering the training overhead of TnsClustering, it takes
about 7 minutes to train TnsEncoder, and it only takes about 2
seconds to train the K-means++ model. Profiling the optimal
tensor formats for all centroid tensors (cluster labeling) takes
about 28 minutes and 2 hours on CPU and GPU, respectively.
Compared to TnsNet that it takes about 15 hours and 70 hours
to collect the performance profiles on CPU and GPU, TnsClus-
teringuses unsupervised learning basedmethod and thus only
needs to profile the optimal formats for the centroid tensors
(256 in our experiments). Therefore, it significantly eliminates
the time for preparing the training dataset. Since the training
of TnsEncoder and K-means++ model is independent of the
hardware platform, and the cluster labeling only needs to be
performed once for each target platform, the training overhead
of TnsClustering is negligible. The prediction overhead of
TnsClustering can be divided into four parts: 1) feature extrac-
tion, 2) tensor transformation, 3) feature encoding using
TnsEncoder, and 4) format prediction using K-means++ model.
Our empirical study shows that the prediction overhead can
be amortized to 15 iterations of CPD-ALS.

Fig. 15 shows the performance breakdown using
TnsClustering for optimal format selection normalized to
that using the COO format on CPU and GPU. The cases
where COO is already the optimal format are not taken into
account. The performance of tensor computation is pre-
sented in 7 groups, where the nnz ranges from 100 to 107.
The absolute value and error bar for each group are also
presented. The results less than 100% indicate achieving bet-
ter performance even with prediction overhead considered.
On CPU, the performance results of all groups are below
100%. The overhead of feature encoding and format predic-
tion is negligible compared to other parts. On GPU, the
results of all groups are still below 100%. Due to the shorter
tensor computation time, the overhead of feature encoding
is significant than that on CPU. Compared to TnsNet [27],
TnsClustering has lower overhead due to the shorter time of
feature encoding and format prediction.

Fig. 12. Speedup of unsupervised learning based methods over the
COO and CSF-based format on CPU.

Fig. 13. Speedup of unsupervised learning based methods over the
COO and CSF format on GPU.

Fig. 14. Speedup of unsupervised learning based methods over the
COO and CSF format for 4-D tensors.

Fig. 15. Performance breakdown using TnsClustering for optimal format
selection normalized to the COO format.

1978 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 8, AUGUST 2022

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:04:31 UTC from IEEE Xplore. Restrictions apply.

5.5 Parameter Sensitivity Analysis

5.5.1 Number of Cluster Centroids

Fig. 16a presents the prediction accuracy of TnsClustering
with different number of cluster centroids. The number of
cluster centroids ranges from 23 to 29 with a stride of �2. As
shown, the prediction accuracy is positively correlated with
the number of cluster centroids. However, the improvement
of prediction accuracy gradually slows down as the number
of cluster centroids increases. Note that the overhead of
cluster labeling during training is proportional to the num-
ber of cluster centroids. Therefore, if the overhead of cluster
labeling is acceptable, users can increase the number of clus-
ter centroids within a certain range to improve the predic-
tion accuracy.

5.5.2 Encoding Length

Fig. 16b presents the prediction accuracy with different
encoding length of TnsEncoder. As shown, a higher predic-
tion accuracy is achieved when the encoding length is set
between 128 and 256. Note that the time of TnsEncoder for-
ward inference is mainly dominated by the convolution
layers. This means that the length of the output layer has lit-
tle impact on the encoding overhead. Therefore, we choose
the output length of 256 for TnsEncoder to achieve better pre-
diction accuracy.

6 RELATED WORK

Optimization for CPD Algorithm. For optimizing the CPD
algorithm on CPUs, Smith et al. [6] developed SPLATT that
accelerated the CPD algorithm through efficient cache-
friendly tilting and reordering under CSF format. For opti-
mizing the CPD algorithm on GPUs, Liu et al. [11] intro-
duced F-COO, which adds flag arrays for eliminating
atomic operations. Li et al. [12] developed the HiCOO for-
mat that is compact and mode-generic to improve the per-
formance of the CPD algorithm. Nisa et al. [13] developed
HB-CSF to alleviate the load imbalance caused by tree-
based CSF. Furthermore, to mitigate overwhelming mem-
ory overhead when using CSF to calculate CPD in dth order,
MM-CSF was proposed by Nisa et al. [14], which a hybrid of
multiple CSF tensors compressed along different mode to
reach the best compression ratio. Meanwhile, Srivastava
et al. [7] designed the Compressed Interleaved Sparse Slice
(CISS) format, which is the generalization of the Com-
pressed Interleaved Sparse Row (CISR) format [44] for the
matrix to match a customized hardware for CPD. Phipps

et al. [4] utilized Kokkos to build portable CPD software
among multicore CPU, GPU and manycore Intel Xeon Phi.
Although the above optimizations significantly improve the
performance of tensor computation, they cannot effectively
adapt to the complex sparsity patterns of tensors. The SpTFS
is built on top of these optimizations, and automatically
selects an optimization scheme suitable for each tensor
through deep learning methods.

Sparse Matrix Format Selection. Existing methods for
sparse matrix format selection can be divided into tradi-
tional machine learning based methods [15], [16], [17] and
deep learning based methods [20], [21], [22]. Sedaghati et al.
[15] developed the learning model using the decision tree
classifier to select the best matrix format on GPUs. Zhao
et al. [16] proposed a two-stage scheme using regression
tree-based models to construct overhead-conscious selectors
of sparse matrix formats. Chen et al. [17] trained a decision
tree model for the ARMv8-based manycore architecture to
predict the best sparse matrix format and corresponding
parameters. For deep learning based methods, Zhao et al.
[20] used CNN for the first time to implement sparse matrix
format selection through histogram representation. Xie et al.
[22] used CNN to predict the best format and algorithm for
SpGEMM through matrix features and density representa-
tion. Barred et al. [21] proposed a blockwise strategy to
make the CNN model independent of matrix sizes and esti-
mated the performance through regression. Since the above
works are developed based on supervised learning, they all
require large engineering efforts to label training data. In
addition, the SpTFS supports the format selection for any
arrays higher than two-dimensional by transforming them
to fixed-sized matrices and sparsity features.

Supervised/Unsupervised Image Classification. Selecting the
optimal sparse tensor format can be regarded as a classifica-
tion problem, similar to recognizing handwritten digits. For
supervised learning based methods, CNN-based network
design has achieved impressive performance in image clas-
sification [18], [19], [31]. For example, Li et al. [18] designed
a customized CNN for classification of lung image patches.
Later, CNN was applied to more complex multi-label classi-
fication tasks. Wang et al. [19] combined CNN and RNN to
model the label co-occurrence dependency in a joint image/
label embedding space. Whereas, unsupervised learning
based methods generally consist of two stages: 1) extract
low-dimensional features of the original input, and 2) apply
traditional clustering algorithms (e.g., K-means [26]) based
on the extracted features. Stacked autoencoders (SAE) [45]
trained a stack of denoising autoencoders in a layer-wise
manner and the entire network was fine-tuned to predict
pixel states. Convolutional autoencoders (CAE) [25] learned
spatial relationships between image pixels in an end-to-end
manner without greedily layer-wise pre-training. Genera-
tive adversarial networks (GAN) [37] built image represen-
tations by training, and reused parts of the generator and
discriminator as feature extractors for unsupervised classifi-
cation. To achieve the tradeoff between prediction accuracy
and inference overhead, the SpTFS selects CNN and CAE as
the basis for supervised and unsupervised methods, respec-
tively. To the best of our knowledge, this is the first work to
utilize unsupervised learning for optimal sparse format
prediction.

Fig. 16. The prediction accuracy of TnsClustering with different (a) num-
ber of clusters, and (b) encoding length.

SUN ETAL.: INPUT-AWARE SPARSE TENSOR STORAGE FORMAT SELECTION FOR OPTIMIZING MTTKRP 1979

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:04:31 UTC from IEEE Xplore. Restrictions apply.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose an automatic tensor format selec-
tion framework SpTFS that effectively predicts the optimal
storage format for an input tensor running MTTKRP. The
SpTFS lowers the high-dimensional tensors into fixed-sized
matrices through tensor lowering and matrix representa-
tion. Using supervised learning based method, we propose
TnsNet, a re-designed CNN network with the feature layer
added to compensate for the sparsity features lost during
matrix representation. Once trained, the TnsNet can be used
with either density or histogram representation of the input
tensor for optimal format prediction. Whereas, using unsu-
pervised learning based method, we propose TnsClustering,
that consists of a re-designed CAE (TnsEncoder) for better
feature encoding of input tensor, and a K-means++ model to
cluster sparse tensors for optimal tensor format prediction.
The experiment results show that SpTFS achieves high pre-
diction accuracy to determine the optimal tensor format on
both CPU and GPU platforms, which in turn leads to signifi-
cant performance speedup for MTTKRP.

For future work, we would like to extend SpTFS to sup-
port more tensor computations such as TTM, which is the
key building block of the ALS-based Tucker decomposition.
Since the computational complexity of TTM is lower than
that of MTTKRP, we may need to further improve the per-
formance of tensor transformation of SpTFS for reduced
preprocessing overhead. We would also like to treat the ten-
sor format selection as a regression problem and predict the
performance of each tensor format, if there are more tensor
formats emerging in the future and the performance gap
among different tensor formats is further reduced.

REFERENCES

[1] A. Cichocki et al., “Tensor decompositions for signal process-
ing applications: From two-way to multiway component ana-
lysis,” IEEE Signal Process. Mag., vol. 32, no. 2, pp. 145–163,
Mar. 2015.

[2] F. Le Gall , “Powers of tensors and fast matrix multiplication,” in
Proc. 39th Int. Symp. Symbolic Algebr. Comput., 2014, pp. 296–303.

[3] T. G. Kolda and B. W. Bader, “Tensor decompositions and
applications,” SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[4] E. T. Phipps and T. G. Kolda, “Software for sparse tensor decom-
position on emerging computing architectures,” SIAM J. Sci. Com-
put., vol. 41, no. 3, pp. C269–C290, 2019.

[5] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum
of products,” J. Math. Phys., vol. 6, no. 1/4, pp. 164–189, 1927.

[6] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis,
“SPLATT: Efficient and parallel sparse tensor-matrix multi-
plication,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2015,
pp. 61–70.

[7] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z.
Zhang, “Tensaurus: A versatile accelerator for mixed sparse-
dense tensor computations,” in Proc. IEEE Int. Symp. High Perform.
Comput. Architecture, 2020, pp. 689–702.

[8] O. Kaya and B. Uçar, “Scalable sparse tensor decompositions in
distributed memory systems,” in Proc. IEEE Int. Conf. High Per-
form. Comput. Netw. Storage Anal., 2015, pp. 1–11.

[9] S. Smith and G. Karypis, “Tensor-matrix products with a com-
pressed sparse tensor,” in Proc. 5th Workshop Irregular Appl.: Archi-
tectures Algorithms, 2015, pp. 1–7.

[10] E. F. D’Azevedo, M. R. Fahey, and R. T. Mills, “Vectorized sparse
matrix multiply for compressed row storage format,” in Proc. Int.
Conf. Comput. Sci., 2005, pp. 99–106.

[11] B. Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi, “A unified
optimization approach for sparse tensor operations on GPUs,” in
Proc. IEEE Int. Conf. Cluster Comput., 2017, pp. 47–57.

[12] J. Li, J. Sun, and R. Vuduc, “HiCOO: Hierarchical storage of sparse
tensors,” in Proc. IEEE Int. Conf. High Perform. Comput. Netw. Stor-
age Anal., 2018, pp. 238–252.

[13] I. Nisa, J. Li, A. Sukumaran-Rajam , R. Vuduc, and P. Sadayappan,
“Load-balanced sparse MTTKRP on GPUs,” in Proc. IEEE Int. Par-
allel Distrib. Process. Symp., 2019, pp. 123–133.

[14] I. Nisa, J. Li, A. Sukumaran-Rajam , P. S. Rawat, S. Krishnamoor-
thy, and P. Sadayappan, “An efficient mixed-mode representation
of sparse tensors,” in Proc. Int. Conf. High Perform. Comput. Netw.
Storage Anal., 2019, pp. 1–25.

[15] N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy, and P.
Sadayappan, “Automatic selection of sparse matrix representation
on GPUs,” in Proc. 29th ACM Int. Conf. Supercomputing, 2015,
pp. 99–108.

[16] Y. Zhao, W. Zhou, X. Shen, and G. Yiu, “Overhead-conscious for-
mat selection for SpMV-based applications,” in Proc. IEEE Int. Par-
allel Distrib. Process. Symp., 2018, pp. 950–959.

[17] D. Chen, J. Fang, S. Chen, C. Xu, andZ. Wang, “Optimizing sparse
matrix–vector multiplications on an ARMv8-based many-core
architecture,” Int. J. Parallel Program., vol. 47, no. 3, pp. 418–432, 2019.

[18] Q. Li,W. Cai, X.Wang, Y. Zhou,D. D. Feng, andM. Chen, “Medical
image classification with convolutional neural network,” in Proc.
IEEE 13th Int. Conf. Control Autom. Robot. Vis., 2014, pp. 844–848.

[19] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu, “CNN-
RNN: A unified framework for multi-label image classification,” in
Proc. IEEEConf. Comput. Vis. Pattern Recognit., 2016, pp. 2285–2294.

[20] Y. Zhao, J. Li, C. Liao, andX. Shen, “Bridging the gap between deep
learning and sparse matrix format selection,” in Proc. 23rd ACM
SIGPLAN Symp. Princ. Pract. Parallel Program., 2018, pp. 94–108.

[21] M. Barreda, M. F. Dolz, M. A. Casta~no, P. Alonso-Jord�a, and E. S.
Quintana-Ort�ı, “Performance modeling of the sparse matrix–vec-
tor product via convolutional neural networks,” J. Supercomputing,
vol. 76, pp. 8883–8900, 2020.

[22] Z. Xie, G. Tan, W. Liu, and N. Sun, “IA-SpGEMM: An input-aware
auto-tuning framework for parallel sparse matrix-matrix multi-
plication,” in Proc. ACM Int. Conf. Supercomputing, 2019, pp. 94–105.

[23] M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. 12th USENIX Symp. Operating Syst. Des. Imple-
mentation, 2016, pp. 265–283.

[24] A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” Proc. Int. Conf. Neural Inf. Process. Syst.,
2019, pp. 8024–8035.

[25] X. Guo, X. Liu, E. Zhu, and J. Yin, “Deep clustering with convolu-
tional autoencoders,” in Proc. Int. Conf. Neural Inf. Process., 2017,
pp. 373–382.

[26] J. MacQueen et al., “Some methods for classification and analysis
of multivariate observations,” in Proc. 5th Berkeley Symp. Math.
Statist. Probability, 1967, pp. 281–297.

[27] Q. Sun et al., “SpTFS: Sparse tensor format selection for MTTKRP
via deep learning,” in Proc. IEEE Int. Conf. High Perform. Comput.
Netw. Storage Anal., 2020, pp. 1–14.

[28] J. Ha

stad, “Tensor rank is NP-complete,” J. Algorithms Print,

vol. 11, no. 4, pp. 644–654, 1990.
[29] S. Smith et al., “FROSTT: The formidable repository of open sparse

tensors and tools,” 2017. [Online]. Available: http://frostt.io/
[30] I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos, “HaTen2: Bil-

lion-scale tensor decompositions,” in Proc. IEEE 31st Int. Conf.
Data Eng., 2015, pp. 1047–1058.

[31] M. Zhang, W. Li, and Q. Du, “Diverse region-based CNN for
hyperspectral image classification,” IEEE Trans. Image Process.,
vol. 27, no. 6, pp. 2623–2634, Jun. 2018.

[32] J. H. Friedman, “Greedy function approximation: A gradient
boosting machine,” Ann. Statist., vol. 29, pp. 1189–1232, 2001.

[33] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting sys-
tem,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2016, pp. 785–794.

[34] A. S. Foulkes, “Classifcation and regression trees,” inApplied Statis-
tical GeneticsWith R. Berlin, Germany: Springer, 2009, pp. 157–179.

[35] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of
careful seeding,” Stanford Univ., Stanford, CA, 2006.

[36] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J.
Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.

[37] I. J. Goodfellow et al., “Generative adversarial networks,”Commun.
ACM, vol. 63, no. 11, pp. 139–144, 2020.

[38] A. Radford, L. Metz, and S. Chintala, “Unsupervised representa-
tion learning with deep convolutional generative adversarial
networks,” 2016, arXiv:1511.06434.

1980 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 8, AUGUST 2022

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:04:31 UTC from IEEE Xplore. Restrictions apply.

http://frostt.io/

[39] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1–25, 2011.

[40] C. Liu, B. Xie, X. Liu, W. Xue, H. Yang, and X. Liu, “Towards effi-
cient SpMV on Sunway manycore architectures,” in Proc. Int.
Conf. Supercomputing, 2018, pp. 363–373.

[41] J. C. Pichel and B. Pateiro-L�opez, “Sparse matrix classification on
imbalanced datasets using convolutional neural networks,” IEEE
Access, vol. 7, pp. 82 377–82 389, 2019.

[42] A. Gulli and S. Pal, Deep Learning With Keras. Birmingham, U.K.:
Packt Publishing Ltd, 2017.

[43] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol,
andL. Bottou, “Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising
criterion,” J. Mach. Learn. Res., vol. 11, no. 12, pp. 3371–3408, 2010.

[44] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt, “A
high memory bandwidth FPGA accelerator for sparse matrix-vec-
tor multiplication,” in Proc. IEEE 22nd Annu. Int. Symp. Field-Pro-
grammable Custom Comput. Mach., 2014, pp. 36–43.

[45] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embed-
ding for clustering analysis,” in Proc. 33rd Int. Conf. Mach. Learn.,
2016, pp. 478–487.

Qingxiao Sun is currently working toward the
PhD degree in the School of Computer Science
and Engineering, Beihang University, China. He
is currently working on GPU hardware extension
and performance optimization. His research inter-
ests include computer architecture, HPC and
deep learning.

Yi Liu received the PhD degree from the Depart-
ment of Computer Science, Xi’an Jiaotong Uni-
versity, China, in 2000. He is currently a professor
in the School of Computer Science and Engineer-
ing, and director of the Sino-German Joint Soft-
ware Institute (JSI) at Beihang University, China.
His research interests include computer architec-
ture, HPC and new generation of network
technology.

Hailong Yang received the PhD degree from the
School of Computer Science and Engineering,
Beihang University, China, in 2014. He is cur-
rently an associate professor in the School of
Computer Science and Engineering, Beihang
University, China. He has been involved in several
scientific projects such as performance analysis
for big data systems and performance optimiza-
tion for large scale applications. His research
interests include parallel and distributed comput-
ing, HPC, performance optimization and energy
efficiency.

Ming Dun received the BS degree in electrical
engineering from Beihang University, China, in
2019. She is currently working toward the MS
degree in the School of Cyber Science and Tech-
nology, Beihang University, China. Her research
interests include parallel computing, high-perfor-
mance computing, cloud computing and
bioinformatics.

Zhongzhi Luan received the PhD degree from
the School of Computer Science, Xi’an Jiaotong
University, China. He is currently an associate
professor of computer science and engineering,
and assistant director of the Sino-German Joint
Software Institute (JSI) Laboratory at Beihang
University, China, since 2003. His research inter-
ests including distributed computing, parallel
computing, grid computing, HPC and the new
generation of network technology.

Lin Gan (Member, IEEE) received the PhD
degree in computer science from Tsinghua Uni-
versity, China. He is currently an assistant
researcher with the Department of Computer Sci-
ence and Technology, Tsinghua University, China,
and the assistant director of the National Super-
computing Center in Wuxi. His research interests
include high-performance computing solutions
based on hybrid platforms such as GPUs,
FPGAs, and Sunway CPUs. He was the recipient
of 2016 ACM Gordon Bell Prize, 2017 ACM Gor-

don Bell Prize Finalist, 2018 IEEE-CS TCHPC Early Career Research-
ers Award for Excellence in HPC, and the Most Significant Paper Award
in 25 Years awarded by FPL 2015, etc.

Guangwen Yang (Member, IEEE) received the
PhD degree in computer science from Tsinghua
University, China. He is currently a professor with
the Department of Computer Science and Tech-
nology, Tsinghua University, China, and the direc-
tor of National Supercomputing Center in Wuxi.
His research interests include parallel algorithms,
cloud computing, and the earth system model.
He has received the ACM Gordon Bell Prize in
the year of 2016 and 2017, and the Most Signifi-
cant Paper Award in 25 Years awarded by FPL
2015, etc.

Depei Qian received the master’s degree from
the University of North Texas, Denton, Texas, in
1984. He is currently a professor at the Depart-
ment of Computer Science and Engineering, Bei-
hang University, China and also chief scientist of
China National High Technology Program (863
Program) on high productivity computer and ser-
vice environment. His research interests include
innovative technologies in distributed computing,
high-performance computing and computer
architecture. He is also a fellow of China Com-
puter Federation (CCF).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

SUN ETAL.: INPUT-AWARE SPARSE TENSOR STORAGE FORMAT SELECTION FOR OPTIMIZING MTTKRP 1981

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 14:04:31 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

