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Abstract
LU and Cholesky factorizations for dense matrices are one of the most fundamental building blocks in a number of numeri-
cal applications. Because of the O(n3) complexity, they may be the most time consuming basic kernels in numerical linear 
algebra. For this reason, accelerating them on a variety of modern parallel processors received much attention. We in this 
paper implement LU and Cholesky factorizations on novel massively parallel artificial intelligence (AI) accelerators originally 
developed for deep neural network applications. We explore data parallelism of the matrix factorizations, and exploit neural 
compute units and on-chip scratchpad memories of modern AI chips for accelerating them. The experimental results show 
that our various optimization methods bring performance improvements and can provide up to 41.54 and 19.77 GFlop/s 
performance using single precision data type and 78.37 and 33.85 GFlop/s performance using half precision data type for 
LU and Cholesky factorizations on a Cambricon AI accelerator, respectively.

Keywords  LU factorization · Cholesky factorization · AI accelerator

1  Introduction

LU and Cholesky factorizations are one of the most com-
monly used matrix operations in solving systems of linear 
equations (Golub and van Loan 2013). LU factorization 
decomposes a square matrix A into the multiplication of two 
matrices L and U, where L is a lower triangular matrix, and 
U is an upper triangular matrix. Cholesky factorization can 
be seen as a special form of LU factorization. It decomposes 
a symmetric positive definite matrix A into LLT , where L is 
a lower triangular matrix, and LT is its transpose.

Over the past few decades, designing acceleration algo-
rithms and optimization techniques for LU and Cholesky 
factorizations has received extensive attention (Yamazaki 
et al. 2015; Haidar et al. 2017; Kurzak et al. 2016; Dorris 
et al. 2016). There have been a few major approaches to par-
allelize LU and Cholesky on a variety of parallel hardware 
architectures. On CPUs and GPUs, panel (Rothberg 1996) 
and tiling (Dongarra et al. 2014) methods are most used 
for exploiting parallelism. Besides, batched factorization 
methods for very small matrices (Haidar et al. 2018; Abdel-
fattah et al. 2016; Dong et al. 2014) have been developed 
as well. In addition, mixed precision solvers can use low 
precision LU or Cholesky for generating initial solution, and 
iterative refinement for giving high precision solution vector 
(Yamazaki et al. 2015). Many packages, such as LAPACK 
(Anderson et al. 1990), ScaLAPACK (Choi et al. 1996a, 
b), PLASMA (Agullo et al. 2009) and MAGMA (Agullo 
et al. 2009; Abdelfattah et al. 2017), can provide optimized 
parallel implementation of LU and Cholesky factorizations.

As the importance of artificial intelligence (AI) increases, 
building special purpose architectures for AI computations 
has became a hot topic in recent years (Chen et al. 2020; 
Reuther et al. 2019, 2020). Representative work such as 
Diannao family (Chen et al. 2014, 2016) and tensor process-
ing units (Jouppi et al. 2017, 2018) already showed higher 
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performance and lower energy consumption than general 
purpose processors, e.g., CPUs and GPUs. Because one of 
the most important functions of the AI chips is to acceler-
ate matrix-vector and matrix-matrix computations in deep 
neural networks, they have great potential to accelerate more 
numerical linear algebra operations. However, to the best of 
our knowledge, such research opportunity has been largely 
ignored.

In our work, we utilize BANG C programming language 
for implementing the two factorization methods and opti-
mize them on a Cambricon AI accelerator. Specifically, 
we first realize serial algorithm of LU and Cholesky using 
the Global-DRAM (GDRAM) of the Cambricon AI accel-
erator. Since GDRAM is an off-chip memory, we use its 
performance as a baseline of the subsequent optimizations. 
Then, we migrate the serial code to the on-chip Neural-RAM 
(NRAM) which has higher read and write throughput, and 
carry out tensor quantification. After this, we start to use 
multiple cores of the AI chip to scale out the algorithms. 
Algorithm-wise, we first treat each row as an independent 
task and hand it over to a core for execution, but this method 
in general causes lots of repeated calls to the core function, 
and degrades performance. So we further improve the par-
allelism to row block level, which reduces the number of 
calls of kernel function to a much lower degree. Finally, we 
carefully tune the size of the row blocks and the number of 
cores used through a large amount of experimental results.

Our experiments are carried out on an MLU270-S4 AI 
card. The performance of LU and Cholesky factorizations 
under different optimization algorithms is tested, and the 
matrix orders are from 128 to 8192. Compared with the 
basic serial LU factorization, the performance of the row 
level parallel algorithm is improved by up to 359.33% than 
that of the serial algorithm, and the row level parallel algo-
rithm of Cholesky factorization is up to 277.44% better than 
the serial algorithm. After analyzing the architecture of the 
AI card, we further optimized the algorithm to a row-block 
level version scheduling strategy. Compared with the row 
level versions, the best performance of LU and Cholesky 
factorizations is further increased up to 235% and 229% , 
respectively. Finally, our row-block level parallel LU and 
Cholesky using single precision data type reach 41.54 and 
19.77 GFlop/s, and half precision data type reach 78.37 and 
33.85 GFlop/s, respectively.

This work makes the following contributions:

–	 To our knowledge, this a very early work that implements 
and optimizes LU and Cholesky factorizations on mod-
ern AI accelerators.

–	 The factorization algorithms proposed are optimized 
according to AI architectures.

–	 The optimized factorization methods achieve good per-
formance on matrices of various sizes.

2 � Background

In this section, we give a background overview of the 
research. We first introduce the basic LU and Cholesky 
factorizations and their serial implementation, and then 
introduce the Cambricon AI architecture and its BANG C 
development language.

2.1 � LU Factorization

LU factorization is used for square matrix decomposition 
in linear systems. It is a variant of the Gaussian elimination 
method and belongs to the direct method for linear solvers. 
LU factorization decomposes a matrix A into the product of 
a lower triangular matrix L and an upper triangular matrix 
U by executing the following equations:

For a dense matrix, the time complexity of LU decom-
position is O(n3) , where n is the order of the input matrix. 
The pseudocode in Algorithm 1 shows a basic implementa-
tion of LU factorization, and Figure 1 plots the procedure of 
decomposing a matrix of size 5-by-5.

(1)Uij =Aij −

j−1
∑

k=0

LikUkj

{

i = 1, 2, ...,N

j = i, i + 1, ...,N

(2)Lij =
1

Ujj

(

Aij −

j−1
∑

k=1

LikUkj

)

{

i = 1, 2, ...,N

j = 1, 2, ..., i − 1

Fig. 1   Steps of serial LU fac-
torization
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Algorithm 1 A pseudocode of LU factorization.
1: for i = 0 : n− 1 do
2: for j = i+ 1 : n− 1 do
3: Aji = Aji/Aii

4: for x = i+ 1 : n− 1 do
5: Ajx = Ajx −Aji × Aix

6: end for
7: end for
8: end for

2.2 � Cholesky Factorization

Cholesky factorization can be seen as a special form of the 
LU factorization. It decomposes a symmetric positive defi-
nite matrix A into the product of a lower triangular matrix L 
and its transpose matrix LT . Because of using the symmetry 
of the input matrix, the Cholesky factorization is in general 
more efficient than LU factorization. It can be computed 
through

A serial pseudocode for Cholesky is shown in Algorithm 2.

Algorithm 2 A pseudocode of Cholesky factorization.
1: for i = 0 : n− 1 do
2: Aii =

√
Aii

3: for j = i+ 1 : n− 1 do
4: Aij = Aij/Aii

5: end for
6: for k = i+ 1 : n− 1 do
7: for j = k : n− 1 do
8: Akj = Akj − Aij ×Aik

9: end for
10: end for
11: end for

2.3 � AI Accelerator and BANG C Programming 
Language

As the growth of AI applications, designing domain specific 
architectures for accelerating key AI kernels such as matrix 
multiplication and convolution computations received much 
attention. Besides running multiple parallel threads, which is 
very similar to the multi- and many-core processors, the AI 
chips can also take some specific hardware-level optimiza-
tions for neural network compute units and memory systems. 

(3)Lii =

√

√

√

√Aii −

i−1
∑

p=1

L2
ip
, i ∈ [2, n], and

(4)L
ji
=
A
ji
−
∑i−1

p=1
L
ip
L
jp

L
ii

, i ∈ [2, n − 1], j ∈ [i + 1, n]

Also, the cores with fixed function units can be simpler than 
the regular cores in general purpose processors.

Cambricon has developed a series of machine learning 
processors called MLU (Machine Learning Unit) to achieve 
good trade-off between flexibility and efficiency. A card 
named MLU270 is a representative accelerator of this series. 
Figure 2 shows a block diagram of the MLU270 AI card. As 
can be seen, each MLU270 has four compute clusters, and 
every cluster has four physical cores. Each core is mainly 
composed of a functional unit (FU), a general register group 
(GPR), a neuron storage unit NRAM, and a weight storage 
unit (Weight–RAM, WRAM). The Shared-RAM (SRAM) 
on the chip is shared by the four cores in the same cluster. In 
addition, all cores can access global shared memory called 
GDRAM using DDR technology, and each core has a sepa-
rate piece of memory called Local-DRAMs (LDRAMs).

BANG C language is a new language proposed by Cam-
bricon for programming MLU hardware. It brings general 
purpose programming capabilities to Cambricon chips and 
increases the freedom of user programming. Bang C lan-
guage provides a wealth of call APIs for vector function 
units (VFU) and matrix function units (MFU), through 
which computing performance can be greatly improved. For 
example, using the vector function unit API (__bang_add) 
instead of the vector addition implemented using the ordi-
nary for loop, the performance may have a gap of hundreds 
of times.

BANG C can support half precision data type of two 
bytes. In the experiments of this paper, we improve the per-
formance of the program by using half and float type, and 
the loss of accuracy may be endurable in mixed precision 
linear algebra routines (Yamazaki et al. 2015).

3 � LU and Cholesky Factorizations on AI 
Chips

3.1 � Baseline Implementation

We first implement the serial LU and Cholesky factorization 
algorithms based on Gaussian elimination to the Cambricon 
chip. At this time, the input matrix is loaded without any 
preprocessing, and the data is stored in the global mem-
ory GDRAM. The entire calculation process does not take 
advantage of the superiority of the MLU hardware architec-
ture at all. So the execution time can be pretty long for large 
matrices. Because all operations at this time are executed by 
one core, its load is too heavy to finish in a reasonably time. 
In order to improve performance, and also to handle larger-
scale matrices, it is very necessary to optimize the algorithm 
based the architecture advantages of the MLU270 device.
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3.2 � Optimizations Using On‑Chip Memories

On the Cambricon chip, on-chip memory is the storage unit 
closer to the compute unit, and it also has better efficiency in 
reading and writing. Therefore, we used NRAM instead of 
GDRAM when performing matrix factorization operations 
to increase the speed of the program. NRAM is a shared 
memory on each core. Although it has a smaller space than 

GDRAM, it can achieve higher read and write bandwidth 
and lower access latency. In actual operation, we first apply 
for a piece of NRAM space on the MLU terminal, then move 
the GDRAM data to the NRAM, and move the NRAM data 
back to the GDRAM after the calculation is completed. 
Because the space on NRAM is relatively small, when we 
are dealing with larger-scale matrices, we need to copy the 
data in batches.

Fig. 2   Block diagram of Cambricon MLU270 AI accelerator

Algorithm 3 Cholesky Factorization Algorithm Using Tensor Quantization
Input: A : unfactorized matrix, n : integer
Output: A : factorized matrix
1: function cnrtInvokeKernel(A,n)
2: nAii[32] : NRAM float
3: nAij[32] : NRAM float
4: nAik[8192] : NRAM float
5: nAjk[8192] : NRAM float
6: nAjsum[8192] : NRAM float
7: for i = 0 : n− 1 do
8: Aii = sqrtf(Aii)
9: if i = n− 1 then
10: return
11: end if
12: memcpy(nAik , Aii , n− i− 1 , GDRAM2NRAM) // nAik ← Aii : Ain

13: memset(nAii , 1/Aii) // nAii ← 1/Aii

14: bang cycle mul(nAik, nAik, nAii, 8192, 32)
15: memcpy(Aii , nAik , n− i− 1 , NRAM2GDRAM) // Aii : Ain ← nAik
16: for j = i+ 1 : n− 1 do
17: memset(nAij , Aij) // nAij ← Aij

18: memcpy(nAjk , Ajj , n− j , GDRAM2NRAM) // nAjk ← Ajj : Ajn

19: bang cycle mul(nAjsum, nAik + j − i− 1, nAij, 8192, 32)
20: bang sub(nAjk, nAjk, nAjsum, 8192)
21: memcpy(Ajj , nAjk , n− j , NRAM2GDRAM) // Ajj : Ajn ← nAjk
22: end for
23: end for
24: end function
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3.3 � Optimizations Using Tensor Quantization

In the LU and Cholesky factorization algorithms, there are 
many scalar multiplication of vectors structures (Jia et al. 
2012; Kurzak et al. 2012). When processing this part, we 
need to perform the scalar multiplication operations repeat-
edly, which takes a long time. In the MLU architecture, there 
are arithmetic modules VFU (Vector Function Unit) and 
MFU (Matrix Function Unit) dedicated to tensor calcula-
tion on each core, which are used to complete vector opera-
tions and matrix operations, respectively. Bang C language 
provides developers with interface for tensor quantization 
calculation. Using this interface, a large number of scalar 
multiplication calculations are combined into tensor calcula-
tions, and the hardware tensor calculation unit can be better 
utilized. In general, it also improves the execution time of 
the program. In BANG C language, the data calculated using 
tensor quantization should be stored in NRAM.

Algorithm 3 is the Cholesky factorization algorithm of 
tensor quantization. We directly call the kernel function and 
transfer the entire matrix and matrix size to the MLU chip. 
Here we introduce in detail the operation steps of using on-
chip storage NRAM and tensor quantization: first, applying 
for NRAM space (lines 2-5), and then entering the for loop 
(line 7) to start the update of each layer. In the update of each 
layer, the first step is to calculate the value Aii on the diago-
nal, and then copy this value and the value of the entire row 
to NRAM; the second step is to use the tensor quantization 
interface provided by BANG C __bang_cycle_mul to per-
form vector multiplication calculation and update the value 
of the current row, and then return it to the matrix A; the 
third step is to enter the for loop (line 16), using the tensor 
quantization calculation interface and the addition and sub-
traction function to update the remaining rows, and finally 
returns the result to the matrix A. Until each layer is updated 
in turn, the factorization of the entire matrix is completed.

3.4 � Optimizations Using Row Level Parallelism

In the previous subsection, the factorization task of a 
matrix is performed by an MLU core, and its efficiency was 

relatively low. MLU270 is a multi-core heterogeneous plat-
form for acceleration. Using this feature, the performance of 
the factorization algorithm can be greatly improved. Taking 
the LU factorization algorithm as an example, because the 
current updating layer are dependent on the results of the 
previous layer, this determines that only the parallelism of 
the current panel update can be improved, and the update 
between panels needs to be executed sequentially. We use the 
“row parallel” approach to update each row as a task. When 
the current panel is updating all rows, all tasks are executed 
in parallel to improve the efficiency of the algorithm.

In row parallel LU factorization, we have implemented 
two algorithms: (1) updating the column vector and the 
panel separately (NRS) and (2) updating the column vec-
tor and panel combined (NRC). The former assigns column 
vector update and panel update to two kernel functions to 
execute respectively, while the latter combines the two steps 
into one kernel function. Note that the Cholesky factoriza-
tion algorithm has one more dependency than the LU fac-
torization algorithm. Thus, there is no such way of merge 
execution in Cholesky’s row parallel algorithm.

3.5 � Optimizations Using Row‑Block Level 
Parallelism

To further improve the performance, we propose a new par-
allel pattern to complete LU and Cholesky factorizations. 
The main idea is to divide the currently updated panel 
equally by rows to obtain row blocks, and each row block 
is handed over to a core for calculation. All row blocks are 
calculated in parallel. After the calculation is completed, the 
results are combined and returned to the matrix to achieve 
the current panel update work. Compared with the algo-
rithms proposed in this paper, although row-block level par-
allelism reduces the degree of parallelism, it actually reduces 
the overhead of repeatedly calling kernel functions.
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Algorithm 4 LU Factorization Algorithm of Row-Block-Level Parallelism
Input: A : unfactorized matrix, n : integer, workingKernelNum : integer
Output: A : factorized matrix
1: for i = 0 : n− 1 do
2: var rowBlockSz : integer
3: rowBlockSz = (n− i− 1)/workingKernelNum
4: function cnrtInvokeKernel(id = 0 : workingKernelNum)
5: nAji[32] : NRAM float
6: tmp[32] : NRAM float
7: nAjx[8192] : NRAM float
8: nAix[8192] : NRAM float
9: memcpy(nAix,Ai(i+1),n-i-1,GDRAM2NRAM)// nAix ← Ai(i+1) : Ain

10: for k = i : i+ rowBlockSz do
11: var j : integer
12: j = id × rowBlockSz + k + 1
13: if j >= n then
14: return
15: end if
16: Aji = Aji / Aii

17: memset(nAji , Aji) // nAji ← Aji

18: memcpy(nAjx,Aj(i+1),n-i-1,GDRAM2NRAM)// nAjx ← Aj(i+1) : Ajn

19: bang cycle mul(tmp, nAix, nAji, levelLen(n − i− 1), 32)
20: bang sub(nAjx, nAjx, tmp, levelLen(n − i− 1))
21: memcpy(Aj(i+1) ,nAjx,n-i-1,NRAM2GDRAM)// Aj(i+1) : Ajn ← nAjx
22: end for
23: end function
24: end for

Algorithm 4 is a row-block parallel algorithm of LU fac-
torization. The for loop (line 1) is running in the host, and 
the variable rowBlockSz represents the number of rows con-
tained in each block of the current layer, and is also the num-
ber of rows that each core needs to calculate. Line 4 calls 
the kernel function to start multi-core parallel computing, 
and the variable workingKernelNum is the number of cores 
participating in the calculation. The specific operation steps 
of each core are as follows: First, applying for NRAM spaces 
to temporarily store the variables used in the current core 
calculation (lines 5-8), and copying the value of the first row 
of the current layer to nAix (line 9). Then, starting to update 
the rows of the current core. The first value of the current 
row is calculated and copied to nAji, and then the remaining 
value of the current row is copied to nAjx. Next, using the 
tensor quantization interface to multiply nAix and nAji, and 
temporarily storing the calculated result in tmp (line 19). At 
last, using nAjx to subtract tmp to update the value of nAjx, 
and finally returning the value of nAjx to matrix A, which 
completes the update of the current rows. Until all cores 
have finished updating all rows, the update operation of the 
current layer is completed. Through the for loop on the host 
side, the factorization of the entire LU matrix is completed 
after all the layers are updated in sequence.

As can be seen in Figure 2, there are four clusters on the 
MLU270 chip, and four cores on each cluster. So we need to 
use the best combination of the clusters and cores (e.g., the 
performance of using 2 clusters × 4 cores and 4 clusters × 2 
cores may be different). Because when multiple cores on the 
same cluster are accessing global memory at the same time, 

there may be the contention of data transmission channel, 
which will affect performance to a certain extent. Figure 3 
shows the scheduling of computing cores when 8 cores are 
used for row-block parallel computing. The number of rows 
to be updated in the current layer is 16. So each core updates 
two rows. Specially, the red borders represent the part that 
a core needs to calculate. The color of the row block in the 
matrix is the same as the color of the core doing the calcula-
tion. In this case, eight cores come from four clusters.

In the row-block level parallel algorithm, we have also 
made some detailed optimizations. When using the tensor 
quantization interface, one of the parameters needs to be 
obtained by repeatedly calling a simple function. We definite 
a macro function which can make the calling part expanded 
by the macro expander to avoid calling the simple function 
repeatedly. At the same time, in the compilation process, the 
use of loop unrolling can also lift the speed.

4 � Experimental Results

4.1 � Experimental Setup

We used an MLU270-S4 AI card as the experimental plat-
form for testing the performance of LU and Cholesky fac-
torizations with various algorithm implementations. The test 
matrix sizes are from 128 × 128 to 8192 × 8192 . We store the 
matrices data with float type and half type separately. The 
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Fig. 3   An example of core allo-
cation in the LU factorization 
algorithm of row-block level 
parallelism. The left part indi-
cates that at the current layer, 
there are 16 rows of data to be 
updated, and we assume that 
we use eight cores for calcula-
tion. The right part of the figure 
is the architectural abstraction 
diagram of MLU270: the eight 
cores involved in the calculation 
are evenly distributed among 
four clusters

(b)(a)

Fig. 4   The performance of LU factorization using GDRAM only and NRAM with tensor quantization, respectively

(b)(a)

Fig. 5   The performance of Cholesky factorization using GDRAM only and NRAM with tensor quantization, respectively
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following parts will show the performance of our algorithms 
and analyze their performance.

When using GDRAM, because its MLU270 single-core 
scalar computing power is very weak, it can only support 
calculations of up to 600 × 600 matrix in our test. Also, 
when using NRAM with tensor quantization, we use the 
VFU inside the core. It can be calculated for larger scale 
matrices of size up to 4096 × 4096.

4.2 � Performance of Tensor Quantization

We firstly implement the serial Cholesky and LU factori-
zation algorithms on the off-chip memory GDRAM. We 
migrate the serial code to the on-chip storage NRAM with 
higher read and write throughput, and carry out tensor 

quantization. We test the two algorithms using the two data 
types separately, the performance comparison charts are 
shown in Figures 4 and 5.

As can be seen, the performance of the tensor quantiza-
tion code on NRAM is much better than that of serial code 
on GDRAM. The method on the GDRAM in the figures 
only shows the performance of the matrix size of up to 600. 
This is because when the matrix size is larger than 600, 
the program will end with time out. As for the code per-
formance on NRAM, the maximum display matrix size is 
4096 × 4096 . When the matrix size gets larger, the situation 
of time out will also occur. Both of these cases are because 
the serial algorithms take too long time on one core. From 
these figures, we can see that for the code on NRAM, as the 
matrix size increases, performance shows an scalable trend. 

(a) (b)

Fig. 6   The performance of NRC LU factorization and NRS LU factorization with row level parallelism, which (a) uses half data type and (b) 
uses float data type

(a) (b)

Fig. 7   The performance of Cholesky factorization with row level parallelism, which (a) uses half data type and (b) uses float data type
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In these figures, the peak performance of LU factorization 
on GDRAM reaches up to 0.02 GFlop/s, the peak perfor-
mance of Cholesky factorization reaches 0.01 GFlop/s. The 
peak performance of LU facorization on NRAM after tensor 
quantization reaches 4.91 GFlop/s using float type and 6.59 
GFlop/s using half type, and Cholesky peak performance 
reaches 3.11 GFlop/s using float type and 4.46 GFlop/s usign 

half type. From these data, we can get the code with tensor 
quantization achieved a preliminary performance improve-
ment. Also, the performance of LU and Cholesky factoriza-
tion using half data type is 134.15% and 143.22% higher than 
float data type, respectively.

Fig. 8   The performance of calling clusters with unbalanced strategy and balanced strategy

(a) (b)

Fig. 9   The best performance of LU factorization with row-block level parallelism
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4.3 � Performance of Row Level Parallelism

In section 3.4, we proposed two LU factorization algorithms 
named NRS and NRC. In the experiment, we tested the two 
algorithms, and the results showed in Figure 6 match our 
prediction. The performance of the two LU algorithms 
reaches the best performance at a matrix size of 7936 × 7936 
when using half type and 7800 × 7800 when using float type. 
The maximum performances of NRC with the two data type 
reach 27.98 and 17.65 GFlop/s, the maximum performance 
of NRS with the two data type reach 2.38 and 15.01 GFlop/s. 
The former avoids repeated copying of data from GDRAM 
to NRAM and reduces the number of calls to MLU func-
tions, so the performance of NRC is better than that of NRS. 
Also, changing from float type to half type can improve per-
formance by about 1.5 times.

Similarly, we also test the row level parallel algorithm 
of Cholesky factorization, and get performances as shown 
in Figure 7. Comparing the two parallel factorization algo-
rithms with the two serial factorization algorithms, it can be 
obtained that the performance of LU row level parallel algo-
rithm is up to 359.33% higher than the serial algorithm, and 
the performance of Cholesky factorization row level parallel 
algorithm is up to 277.44% higher than the serial algorithm.

4.4 � Performance of Row‑Block Level Parallelism

We compare the two scheduling strategies of calling cluster 
normally (clusters load unbalanced) and calling more clus-
ters preferentially (clusters load balanced) for LU factoriza-
tion on a matrix with a size of 8192 × 8192 . In Figure 8, the 
blue dots are the performance when the unbalanced sched-
uling strategy updating each layer of panel, and the yellow 
dots are the performance of the balanced scheduling strategy. 

When the numbers of cores are 1 and 16, there is almost no 
difference in performance between the two; when the num-
bers of cores are 2, 4, and 8, different numbers of clusters 
bring significant different performance. In particular, when 
using eight cores, balanced strategy can be 2 GFlop/s higher 
than unbalanced strategy.

As for the scaling test, we measure LU and Cholesky 
with matrices of size ( 128 × 128 − 8192 × 8192 ) using 
two data types, and obtained the performance in Figures 9 
and 10. Except the LU factorization algorithm with float 
data type, the performances of other algorithms are com-
pletely positively correlated with the number of cores. In 
the Figure 9(b), when the matrix size exceeds 5000 × 5000 , 
the performance of eight cores exceeds the performance 
of 16 cores. This is because that when the matrix size 
becomes larger, the cluster’s internal cores copy more data 
from GDRAM at the same time, causing data transmission 
congestion. So reducing the number of active cores in the 
cluster at this time can further improve performance. Like 
Figure 9, the performance of row-block level parallel LU 
algorithm with half data type is 2.54 times higher than float 
data type. Using the half type row block parallel LU algo-
rithm to factorize the 8192 × 8192 matrix on 16 cores can 
achieve the highest performance 78.37 GFlop/s and using 
float type gets the best performance 41.53 GFlop/s when 
using eight cores. As for Cholesky, the performance is 
always positively correlated with the number of cores. This 
is because that of the memory copy required for Cholesky 
factorization is much less than LU. Using the half type and 
float type row block parallel Cholesky algorithm to factorize 
the 8192 × 8192 matrix on 16 cores can achieve up to 33.85 
and 19.77 GFlop/s, respectively.

Moreover, we especially try to decompose a matrix of 
16384 × 16384 with Cholesky. The 8-core performance with 

(b)(a)

Fig. 10   The best performance of Cholesky factorization with row-block level parallelism
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float type is 13.89 GFlop/s, and the 16-core performance is 
12.32 GFlop/s, which are lower than that of 8192 × 8192 
size.

5 � Conclusion

To the best of our knowledge, this is the first work that has 
implemented LU and Cholesky factorizations on modern 
AI chips, and developed a series of optimization techniques 
for utilizing the specific architectures originally designed 
for deep neural network computations. The experimen-
tal results show that LU and Cholesky factorizations can 
obtain 78.37 and 33.85 GFlop/s with half data type, 41.53 
and 19.77 GFlop/s with float data type on a Cambrican AI 
chip, respectively, and a variety of optimizations demon-
strated their effectiveness.
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