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Canonical Polyadic Decomposition (CPD) is one of the most popular tensor decomposition
methods and plays an important role in big data analysis. For sparse tensor, the major com-
putation procedure in CPD, which is known as matricized tensor times Khatri-Rao product
(MTTKRP), exhibits discontinuous memory access and turns to be the performance bottle-
neck from achieving high performance on emerging processor architectures. In this paper,
we propose swCPD, an efficient CPD implementation on the many-core Sunway processor.
The swCPD accelerates the optimization algorithms dominating the performance of
MTTKRP, including Alternating Least Squares (ALS), Gradient Descent (GD) and
Randomized Block Sampling (RBS), as well as the latest fast Levenberg–Marquardt (fLM+
+) and Generalized Canonical Polyadic Decomposition with Stochastic Gradient Descent
(GCP-SGD). The main idea adopted in swCPD is a hierarchical partitioning mechanism.
From the computation perspective, the 64 Computation Processing Elements (CPEs) in a
Sunway processor are divided into eight groups, with each group containing seven workers
and one controller. From the data perspective, we partition the sparse tensor into different
granularities, which are blocks, bands and tiles. Moreover, we develop a communication
mechanism through register communication for cooperation between CPEs. We evaluate
the implementation of swCPD with both synthesized and real-world datasets. The experi-
ment results show that each optimized algorithm in swCPD achieves better performance
than corresponding algorithms adopted in cutting-edge CPD implementations.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

With the evolution of big data analysis, tensors have been applied to various fields such as image processing [1], computer
vision [2], and recommendation system [3]. Therefore, tensor-based analytic techniques have gained popularity in HPC com-
munity for estimating relationships among huge quantities of multi-dimensional data. Within these techniques, tensor
decomposition aims to factorize high-order tensors into the sum of multiple rank-one tensors in order to understand the
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relationships embedded in the data better. Canonical Polyadic Decomposition (CPD) is one of the most widely-applied
schemes of tensor decomposition.

Although there are a large number of research works on how to apply CPD on dense tensors [4,5], they cannot be directly
applied to extremely large and sparse tensors. On the one hand, when using the conventional coordinate format (COO) [6],
the enormous dataset and corresponding factor matrices take up too large space to be stored in the cache, which increases
cache miss and degrades performance. On the other hand, due to different sparse patterns across different datasets, the con-
ventional CPD algorithm for dense tensors faces the challenge of discontinuous memory accesses that causes potential write
conflicts, thus can severely deteriorate the algorithm parallelism. Therefore, advanced researches focus on efficient parallel
CPD implementations for sparse and large tensors. For instance, Kang et al. utilized the MapReduce framework [7] to imple-
ment Gigatensor [8] on multicore CPUs, which also adopted Hadamard products for reducing memory footprint. In addition,
Li et al. proposed ParTI! [9] on both multicore CPUs and manycore GPU to support a variety of tensor operations including
CPD. However, the cutting-edge CPD libraries are only implemented on CPUs and GPUs.

Meanwhile, the Sunway many-core architecture has become an attractive architecture improve the performance of CPD
further. Ranking the first in the TOP500 list in 2015 [10], Sunway TaihuLight supercomputer system reaches peak perfor-
mance of 125PFLOPS [11]. The Sunway TaihuLight supercomputer has already been applied in a number of research fields,
including numerical algorithms [12], climatic simulation [13] and machine learing [14]. This China homegrown supercom-
puter system contains 40,960 pieces of Sunway SW26010 processors. Each of the Sunway processors consists of 4 core
groups (CGs). There are 64 Computation Processing Elements (CPEs) and one Management Processing Element (MPE) within
a CG. Each CPE equips with a 64 KB manually-controlled Local Device Memory (LDM). Moreover, DMA and register commu-
nication are enabled on CPEs to improve memory access and communication efficiency.

To implement CPD algorithm efficiently on Sunway, it is of great importance to re-design CPD algorithm to adapt to the
unique architectural features of Sunway. In this paper, we propose swCPD, an efficient CPD implementation on Sunway to
improve the performance of tensor decomposition. The swCPD contains five optimization algorithms for determining the fac-
tor matrices during CPD, including Alternating Least Squares (ALS), Gradient Descent (GD), and Randomized Block Sampling
(RBS), as well as the latest fast Levenberg–Marquardt (fLM++) and Generalized Canonical Polyadic Decomposition with
Stochastic Gradient Descent (GCP-SGD). These optimization algorithms dominate the performance of Matricized Tensor
Times Khatri-Rao Product (MTTKRP), whose performance suffers from discontiguous memory access pattern and synchro-
nization [15]. For the exact MTTKRP in CPD-ALS, CPD-GD and CPD-fLM++, to optimize the memory access, we leverage
the blocking mechanism and the CSF tensor format [16] to reduce irregular memory accesses. Specifically, we divide the
sparse tensor into eight blocks and CPEs into eight groups, each group computes MTTKRP on one block. We further partition
each block into several bands, and each band contains non-empty rows of the tensor. Besides, the bands are divided into tiles,
and each tile consists of several fibers. To optimize the synchronization, we divide the eight CPEs within a group into seven
workers and one controller. The worker is used for computing MTTKRP, and the controller is used for assigning tensor bands in
the blocks to workers and storing the updated parts of factor matrices back to main memory. The synchronization between
worker and controller is enforced through register communication with carefully-designed message scheme. Whereas, for the
sampled MTTKRP in CPD-RBS and CPD-GCP-SGD, we propose a randomization strategy on top of the exact MTTKRP through
shuffling among CPEs with register communication to derive the fully randomized sample.

We implement swCPD on the Sunway processor and compare each the performance of each algorithm in swCPD with cor-
responding algorithms adopted in cutting-edge CPD implementations. The experimental results show that our approach can
utilize Sunway’s architecture features efficiently and thus achieve significant speedup. Specifically, this paper makes the fol-
lowing contributions:

� We leverage the blocking mechanism that partitions the tensors and CPEs into eight blocks and eight groups, respectively.
The blocks are further divided into bands, which contain tiles when computing mode-n MTTKRP.
� We present a multi-role computation scheme for CPD that divides CPEs within a group as two roles, which are named as
worker and controller, respectively. This scheme enables efficient synchronization among CPEs within a group through
register communication.
� We implement swCPD that includes CPD-ALS, CPD-GD, CPD-RBS, CPD-fLM++ and CPD-GCP-SGD on Sunway processor, and
evaluate its performance by comparing with cutting-edge CPD implementations using both synthesized and real-world
datasets.

This paper is organized as follows. We introduce the background of CPD and Sunway architecture in Section 2. Section 3
describes our methodologies of swCPD, an efficient implementation of CPD including CPD-ALS, CPD-GD, CPD-RBS, CPD-fLM++
and CPD-GCP-SGD on Sunway processor. Section 4 presents the implementation details of swCPD. Section 5 describes the
performance auto-tuning approach adopted in swCPD to determine the optimal parameters. In Section 6, we present the
experimental results through comparison with cutting-edge CPD implementations. Section 7 presents the related works
and we conclude our work in Section 8.
222
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2. Background

2.1. Tensor decomposition

2.1.1. Notations and preliminaries
A tensor is a multi-dimensional array [4], with each dimension denoted as a mode and the number of dimensions is

denoted as order. An element in an N-th order tensor has N indices, and if a tensor has more than three indices, it is known
as a high-order tensor. For the ease of illustration, we use three-dimensional tensor as an example to describe the mathe-
matical details of tensor decomposition.

Before diving into the details, we first explain the notations used throughout this paper. A high-order tensor is denoted
with calligraphic letters like X , whose element with coordinate of ði; j; kÞ is denoted as xijk. Whereas matrix is denoted with
bold upper case letters as A with its element denoted as aij. Besides, a vector is denoted with bold lower case letters like a
whose element is denoted as ai. Moreover, a fiber of a tensor X means changing one of its indices while keeping others fixed,
which is denoted as Xði; j; :Þ for three-dimensional tensor, while a row of a tensor means changing two indices and keeping
others fixed. For mathematical operations, the mode-n tensor matricization of tensor X is denoted as XðnÞ, which refers to

fiber re-arrangement. The Frobenius norm of the matrix A is denoted as Ak k. Besides, the AT denotes the transpose of matrix
A. In addition, there are two fundamental operations in tensor decomposition, which are the Khatri-Rao product and Hada-
mard product. We use A� B to denote the Khatri-Rao product. Given two column-matching matrices A 2 RI�J and B 2 RM�J ,
the Khatri-Rao product is defined in Eq. (1), where ai and bi denote the column vector of the two matrices, respectively. We
use A � B to denote the Hadamard product, which is defined in Eq. (2). Note that both A and B need to be in the same
dimension.
A� B ¼ ½a1 � b1; . . . ; aj � bj� ð1Þ

cij ¼ aijbij ð2Þ

Canonical Polyadic Decomposition (CPD) [17] and Tucker Decomposition [18] are the two most widely applied tensor

decomposition methods. We only provide a brief review of CPD here, which is the target algorithm of this paper. The tensor
in Canonical Polyadic Decomposition is expressed by the sum of rank-one tensors, as shown in Eq. (3) for three-dimensional
tensors X 2 RI�J�K . If the vectors ar ;br and cr in Eq. (3) are seen as the column vectors in objective dense factor matrices
A 2 RI�F ;B 2 RJ�F and C 2 RK�F respectively, where F denotes the rank of X , CPD can also be illustrated in Eq. (4). In this
paper, we implement five CPD optimization algorithms on Sunway architecture, including CPD-ALS, CPD-GD, CPD-RBS,
CPD-GCP-SGD and CPD-fLM++.
X ¼
XR
r¼1

ar � br � cr ð3Þ

X ¼
XR
r¼1

Að:; rÞ � Bð:; rÞ � Cð:; rÞ ð4Þ
2.1.2. CPD-ALS algorithm
The Alternating Least Squares (ALS) is the workhorse for CPD [4], whose pseudo-code is shown in Algorithm 1. Its primary

idea is to solve a least square problem for one factor matrix while keeping others fixed. Without losing generality, we only
discuss the mode-1 operation as an example. Eq. (5) describes the least square problem for factor matrix A and Eq. (6) pre-
sents the optimal solution. The CPD-ALS algorithm is an iterative algorithm and during each iteration, the mode-1 factor
matrix A is updated through Eq. (6), where the symbol I indicates pseudo-inverse operation.
Â ¼ arg min
Â

Xð1Þ � ÂðC� BÞT
��� ��� ð5Þ

Â ¼ Xð1ÞðC� BÞðCTC � BTBÞI ð6Þ
223
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Algorithm 1. CPD-ALS algorithm
224
1: Input: X ;Rank

2: while max iterations unreached or not converged do
3: Â ¼ Xð1ÞðB� CÞðCTC � BTBÞI
4: B̂ ¼ Xð2ÞðA� CÞðCTC � ATAÞI
5: Ĉ ¼ Xð3ÞðA� BÞðBTB � ATAÞI

6: Store column norms and normalize matrices to 1

7: end while
The sparse matricized tensor times Khatri-Rao product (MTTKRP) is identified as the main performance bottleneck of

CPD-ALS and CPD-GD [19], which can be expressed as Â ¼ Xð1ÞðB� CÞ, given X 2 RI�J�K ;A 2 RI�F ;B 2 RJ�F and C 2 RK�F .
We compute the exact MTTKRP through tensor-vector products using Algorithm 2. Meanwhile, from the definition of
MTTKRP and Algorithm 2, we can obtain that the computational time complexity of MTTKRP is OðNFnnzÞ, where nnz is
the number of nonzero elements in tensor X .
Algorithm 2. MTTKRP algorithm
1: Input: X 2 RI�J�K ;Rank R

2: A 0

3: for i 0 to I0 do

4: for j i pointer½i� to i pointer½iþ 1� do

5: s 0

6: for k j pointer½j� to j pointer½jþ 1� do

7: for r  0 to R do

8: s½r�þ ¼ value½k� 	 C½k index½k��½r�

9: end for

10: end for

11: for r  0 to R do

12: A½i index½i��½r�þ ¼ s½r� 	 B½j index½j��½r�

13: end for

14: end for

15: end for
2.1.3. CPD-GD algorithm
The Gradient Descent (GD) [19] is another widely used algorithm for CPD in addition to ALS. Similar to Section 2.1.2, we

take mode-1 operation as an example. The GD problem for factor matrix A can be expressed in Eq. (7). Next, the gradient of
Eq. (7) can be presented as Eq. (8).
f ¼ 1
2
min Xð1Þ � AðC� BÞT

��� ���2
ð7Þ

@

@A
f ¼ �Xð1ÞðC� BÞ þ AðCTC � BTBÞ ð8Þ
In GD, the gradient of A can be written as 5A ¼ vecð @
@A f Þ, where vecð:Þ operator denotes the matrix flattening. Then, we

can compute the factor matric Â ¼ A� a5 A. The pseudo-code of the general CPD-GD algorithm is shown in Algorithm 3. For
GD, the line search can be used to calculate the step size (Line 6), among which the backtracking line search is a simple but
effective method. It starts with a relatively large estimate of the step size for movement, and then iteratively shrinks the step
size (i.e., backtracking) until a decrease of the objective function is observed with no more than the expected threshold.
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Algorithm 3. CPD-GD algorithm
225
1: Input: X ;Rank

2: while max iterations unreached or not converged do
3: 5A ¼ �Xð1ÞðC� BÞ þ AðCTC � BTBÞ

4: 5B ¼ �Xð2ÞðA� CÞ þ BðATA � CTCÞ

5: 5C ¼ �Xð3ÞðB� AÞ þ CðBTB � ATAÞ

6: a ¼ linesearchðA;B;C;5A;5B;5CÞ

7: Â ¼ A� a5 A
8: B̂ ¼ B� a5 B
9: Ĉ ¼ C� a5 C

10: end while
As mentioned in Section 2.1.2, the performance bottleneck of CPD-GD is still MTTKRP. The difference is that the line
search may require multiple iterations to meet the Armoji condition. During each iteration, the MTTKRP needs to be per-
formed, which brings significant computational overhead. Similar to CPD-ALS in Section 2.1.2, the computational time com-
plexity of MTTKRP in CPD-GD is OðNFnnzÞ, where nnz is the number of nonzero elements in tensor X .

2.1.4. CPD-RBS algorithm
The Randomized Block Sampling (RBS) [20] is a combination of randomized Block Coordinate Descent (BCD) and Stochas-

tic Gradient Descent (SGD). Same as previous sections, we take a 3rd-order tensor as an example. The high-level overview of
the CPD-RBS algorithm is shown in Algorithm 4. A sampled block can be defined by the index sets B1;B2;B3.
Algorithm 4. CPD-RBS algorithm
1: Input: X ;Rank

2: while max iterations unreached or not converged do

3: Randomly generate sample indices

4: select Bn from In ¼ f1; . . . ; Ing where n ¼ 1;2;3

5: Let X sub ¼ XðB1;B2;B3Þ

6: Let Asub ¼ AkðB1; :Þ;Bsub ¼ BkðB2; :Þ;Csub ¼ CkðB3; :Þ

7: Asub ¼ updateðX sub; fAsubg;aÞ

8: Bsub ¼ updateðX sub; fBsubg;aÞ

9: Csub ¼ updateðX sub; fCsubg;aÞ

10: Set Akþ1 ¼ Ak and Akþ1ðB1; :Þ ¼ Asub
11: Set Bkþ1 ¼ Bk and Bkþ1ðB1; :Þ ¼ Bsub
12: Set Ckþ1 ¼ Ck and Ckþ1ðB1; :Þ ¼ Csub
13: k ¼ kþ 1

14: end while
As shown in Algorithm 4, there are no dependencies between different sample blocks. Thus, CPD-RBS can decompose the
sample blocks in parallel. It is obvious that the block size plays an important role in the algorithm as it influences the con-
vergence speed and the computation time. ALS can be used to compute the update process in Algorithm 4. The least square
problem has a precise solution, which is not inconsistent with the concept of CPD-RBS. Therefore, CPD-RBS introduces the

parameter a to control the step size. The updated factor matrix Â can be calculated via Eq. (9). When a is set to 1, the original
ALS is used for the update.
Â ¼ ð1� aÞAþ aXð1ÞðB� CÞðCTC � BTBÞI ð9Þ

The progress of the CPD-RBS algorithm can be divided into two phases: the search phase with unrestricted step size and

the converge phase with restricted step size. In the search phase, the algorithm can converge to a neighborhood of a local
optimum. In the converge phase, the accuracy of the solution is improved by a variance reduction strategy. For CPD-RBS,
proving convergence to an optimum is still an open problem. However, according to the evaluation of [20], the CPD-RBS algo-
rithm is capable of finding a good approximation. Meanwhile, the primary hotspot in CPD-RBS is the MTTKRP on sampled
blocks, and the computational time complexity of the sampled MTTKRP is also OðNFnnzÞ due to the fixed sampling ratio,
where nnz is the number of nonzero elements in tensor X .
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2.1.5. CPD-fLM++
CPD-fLM++ algorithm [21] is the optimized fast Levenberg–Marquardt (LM) algorithm [22] for CPD. Levenberg–Mar-

quardt algorithm, or damped Gauss–Newton algorithm, is developed to alleviate the short-comings of the traditional
Gauss–Newton algorithm [23], as the original Guass-Newton algorithm needs the initial point to be near the optimal solu-
tion and the Jacobian matrix to be strictly full-ranked. The Levenberg–Marquardt algorithm adds a proximal term in the
update rule of Guass-Newton algorithm, as shown in Eq. (10), where Jn is the Jacobian matrix of the nth iteration point xn
and / is the objective function. Meanwhile, the LM algorithm has super-linear convergence rate and can avoid the ‘‘swamp”
effect. However, the traditional LM algorithm is inefficient in terms of computation complexity, which is OðT3F3Þ for CPD,
where T is the summation of dimensions in tensor X . To reduce the computation complexity, [21] leveraged the structures
of Jacobian Gramian matrix in CPD. As a result, the computation complexity in CPD-fLM++ is reduced to OðNF6Þ as described
in Table 1, where N is the number of modes. The pseudo code of CPD-fLM++ is shown in Algorithm 5, where D is a commu-
tation matrix, An denotes the nth factor matrix, � denotes the Kronecker product and ø denotes the Hadamard division.
xnþ1 ¼ xn � ðJðnÞT Jn þ knIÞ�1Jn/ðxnÞ ð10Þ
Algorithm 5. CPD-fLM++ algorithm
Table 1
The time complexity of CPD with different optimization
methods.

CPD optimization methods Time complexity

CPD-ALS OðNFnnzÞ
CPD-GD OðNFnnzÞ
CPD-RBS OðNFnnzÞ
GCP-SGD OðNFnnzÞ
CPD-fLM++ OðNF6Þ

226
1: Input: X , Rank F

2: k 1

3: while max iterations unreached or not converged do

4: F ðN � 1ÞDF;F
5: v  0

6: for n ¼ 1; . . . ;N do

7: Cn  �Ni¼1;i–nAn
8: Mn = Diag(vec(Cn))

9: Nn = Diag( 1

vecAT
nAn

)

10: H1n  AnCn �MTTKRPðX ; fAg;nÞðCn þ kIÞ�1

11: Pn  ðCn þ kIÞ�1 � AT

nAn �M�1n DF;FN
�1
n

12: un  P�1n vec(AT
nH1n)
13: H2n  AnMat(un)ðCn þ kIÞ�1

14: v  vþvec(AT

nAn)�un
15: F Fþ B�1n Diag(AT
nAnøCn)
16: end for
17: v  F�1v

18: for n ¼ 1; . . . ;N do
19: un  P�1n ðvøvecðCnÞÞ

20: H3n  AnMat(un)ðCn þ kIÞ�1

21: ~An  An �H1n þH2n �H3n
22: end for

23: if objective function increase then

24: k 2k

25: else

26: update the factor matrices

27: k k

2

28: end if

29: end while
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2.1.6. CPD-GCP-SGD algorithm
Generalized Canonical Polyadic Decomposition algorithm [24] is the generalization of the standard CPD algorithm, which

contains more types of loss functions besides the standard square error, including logistic regression, gamma distribution,
Rayleigh distribution, Poisson distribution, and negative binomial. The details of the above loss functions can be found in
[24]. Given a tensor X 2 RI�J�K , Eq. (11) formulates the GCP algorithm, whereM is the low rank approximation calculated
using Eq. (4). Computing the gradient of the objective function is one of the main bottlenecks in GCP [24]. It also needs to
compute the MTTKRP routine as shown in Eq. (12), where Y is the element-wise derivative that is only computed at known
elements, and ZBC is the Khatri-Rao product of factor matrices B and C. To alleviate GCP’s computation overhead, SGD algo-
rithm is adopted to update the factor matrices [25], whose pseudo-code is presented in Algorithm 6. Table 1 shows the time
complexity of CPD-GCP-SGD.
min FðM;XÞ ¼
XI

i1

XJ

i2

XK
i3

f ðxi1 i2 i3 ;mi1 i2 i3 Þ ð11Þ

@F
@A
¼ YðkÞZBC ð12Þ
Algorithm 6. CPD-GCP-SGD algorithm
227
1: Input: X , Rank F

2: while max iterations unreached or not converged do

3: initialize tensor Y

4: sample the elements

5: for each sampled elements do

6: update corresponding Y

7: end for

8: for n ¼ 1; . . . ;N do

9: ~Gk  MTTKRP(Y;Ak; k)

10: end for

11: end while
2.2. CSF tensor storage format

Compressed Sparse Fiber (CSF) tensor storage format is first introduced by Smith and Karypis [16] and applied in SPLATT
[26], which is one of the state-of-the-art parallel CPD libraries. We apply and modify CSF format in our implementation to
reduce the data structure size and the amount of data movements during the computation of MTTKRP. We give a brief
description of the basic and modified CSF format in the following paragraph. We use the three-dimensional tensor for illus-
tration without losing generality.

There are five arrays in SPLATT [15], which store non-zero values in groups of mode-2 fibers. The names of the five arrays
are are i_pointer, k_pointer, k_index, j_index and value. For each row i in the ascending order, its i_pointer is computed using
Eq. (13), where inumber denotes the number of non-zero mode-2 fibers within the former row.
i pointer½i� ¼ 0 i ¼ 0
inumber þ i pointer½i� 1� i – 0

�
ð13Þ
The i_pointer is indexed by k_index and k_pointer. The k_index stores the mode-3 index of the mode-2 fiber (only one
mode-1 and one mode-3 index are needed to locate a non-zero mode-2 fiber), with the corresponding k_pointer computed
using Eq. (14), where knumber denotes the number of non-zero values within the former mode-2 fiber. The k_pointer is
indexed by j_index and value. The j_index stores the mode-2 index of non-zero elements in the fiber, whereas the value stores
the value of the elements.
k pointer½k� ¼ 0 k ¼ 0
knumber þ k pointer½k� 1� k– 0

�
ð14Þ



Fig. 1. The architecture of the Sunway SW26010 processor.
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Given a three-mode tensor X 2 RI�J�K with F non-zero mode-2 fibers and nnz non-zero elements, the amount of memory
occupied in CSF format is 16þ 8 	 I þ 16 	 F þ 16 	 nnz in bytes (indexes in uint64_t and values in double). We modify the CSF
to further compress the tensor when there is few non-empty rows. We add an array i_index for storing the indexes of non-
empty rows in addition to store the non-zero values in group of mode-3 fibers. Given the same tensor, if it has I0 non-empty
rows and F1 non-zero mode-3 fibers, then the amount of memory occupied is 16þ 16 	 I0 þ 16 	 F1 þ 16 	 nnz in bytes (where
I0 
 I).
2.3. Sunway many-core processor

Fig. 1 shows the architecture of Sunway SW26010 many-core processor. The processor is comprised of 4 core groups
(CGs). There is a Management Processing Element (MPE) and 64 Computation Processing Elements (CPEs) within a CG.
The MPE and CPEs within a CG share an 8 GB main memory. For each MPE, there is a 32 KB L1 data cache and 256 KB cache.
For each CPE, there is a 16 KB L1 instruction cache and a 64 KB programmable Local Device Memory (LDM). The CPE can
access main memory through either global load/store instructions (gld/gst) or DMA, of which DMA delivers much higher
bandwidth when accessing continuous memory space. The Sunway processor also provides register communication between
CPEs in the same row or column, which can send 128 bytes at a time and is of lower latency compared to the DMA. With all
these unique architectural features, a CG can achieve peak memory bandwidth of 34 GB/s and peak floating-point perfor-
mance of 756 GFLOPS in double precision [27].
2.4. Roofline model

The roofline model [28] offers insight on how to improve the performance of software and hardware. The roofline model
builds up relationships among peak floating-point performance, operational intensity, and memory bandwidth. Therefore, it
is quite illustrative to reveal the intrinsic characteristics of the application and provide guidance for performance optimiza-
tion. According to [28], the upper limit of the operational intensity (Imax) can be calculated from Eq. (15):
Imax ¼ Maximum Flops per Sec =Maximum Bandwidth ð15Þ

To better understand how effective our swCPD is when adapted to the Sunway architecture, we can build a roofline model

of a Sunway CG using the approach similar to [29]. In this paper, we do not need to measure the ideal operational intensity of
a Sunway CG, which has already been discussed in [29]. Instead, we only focus on whether swCPD exploits the computing
potential of a Sunway CG as much as possible.
3. Methodology

In this section, we mainly present our hierarchical partitioning scheme for efficient exact and sampled MTTKRP imple-
mentations on Sunway architecture, which are the primary hotspots of CPD. The section describes the design overview,
the tensor partitioning, multi-role assignment to CPEs, and the sampling scheme for CPD-RBS. In addition, we present the
parallelization strategies for other significant matrix operations in CPD algorithms. Moreover, the auto-tuning mechanism
for searching the optimal parameter configuration in CPD implementations is presented.
228



Fig. 2. The design overview of swCPD, which adopts hierarchical partitioning scheme for the computation of MTTKRP.
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3.1. Exact MTTKRP

For CPD-ALS and CPD-GD, they share the common hotspot of exact MTTKRP. In this paper, the exact MTTKRP means the
MTTKRP without randomization and sampling. We describe the optimization strategies for implementing the exact MTTKRP
in this section.
3.1.1. Design overview
The main idea of our design is the hierarchical partitioning for both the sparse tensor and the hardware resources to alle-

viate the performance bottleneck of MTTKRP. As shown in Fig. 2, from the data perspective, the tensor is partitioned into
three levels: blocks, bands and tiles. Meanwhile, from the computation perspective, the CPEs are also divided into three levels:
groups, controllers and workers. Since the computation for all factor matrices is the same, we take the computation procedure
for matrice A for illustration. As shown in Fig. 2, the controllers load the corresponding block, and then assign the band to the
workers using specially designed message. The controllers are also in charge of storing the computed rows of A back to the
main memory. Meanwhile, theworkers load the tiles of the tensor as well as the rows from two factor matrices after receiving
the band assigned by the controller. When the computation is done, they send the results back to the controller. The above
procedure repeats within each CPE group until all the bands have been processed.
3.1.2. Partitioning the tensor
Given a sparse tensor X 2 RI�J�K , we apply a three-level hierarchical blocking technique on it, as shown in Fig. 3. As the

empty rows in the tensor can be removed trivially, we assume that there are no empty rows, and denote the number of non-
empty rows as I. In the first level, we partition the tensor into eight blocks, and each block has I0=8 non-empty rows and is
assigned to a CPE group. We partition the tensor along first dimension to avoid race condition as well as synchronization
229



Fig. 3. Three-level tensor partitioning scheme.
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between controller CPEs (refer to Section 3.1.3). For the second level, we further divide the block into bands, with each band
containing a single mode-1 row. Moreover, in the third level, we divide each band into several tiles, which is small enough to
fit in the limited LDM. A tile is set to contain at most N mode-3 Fibers, thus a band with J0 mode-3 Fibers can be divided into
J0=N tiles.
3.1.3. Assigning multiple roles to CPEs
Since the memory access from CPEs to main memory has a long latency, if the CPEs write the result back to the main

memory whenever a nonzero value in the tensor is processed, the performance of the CPD deteriorates significantly. Thus,
it is necessary to aggregate the computational results before writing back to the main memory in order to reduce the latency.
Moreover, as described in Section 3.1.2, the bands that are computed by CPEs may not contain the same number of nonzero
values. Therefore, if the number of bands is statically assigned to each CPE per iteration, there could be severe load imbalance
among CPEs. Therefore, it is necessary to develop a dynamic allocation scheme for assigning bands among CPEs to alleviate
the load imbalance. To address the above problems, we divide the 64 CPEs into eight groups, each group contains the CPEs in
the same row. The CPEs within a group are further divided into 1 controller and 7 workers as shown in Fig. 2.

The CPE controller is in charge of the assigning bands, aggregating intermediate results and writing the results of the cor-
responding part of the factor matrix back to the main memory. There is a reference array in the main memory, through
which the controller can recognize the number of bands in its block. Moreover, the controller keeps a loadcounter variable,
which records the number of bands assigned to the worker.

To assign the bands to the workers, the controller takes advantage of the unique register communication between CPEs on
Sunway and sends messages to the workers with the format shown in Fig. 4a. Once the worker finishes processing current
bands, it sends an ending message to the controller. If the loadcounter is less than the number of bands in the block, the con-
troller continues to assign the next band to the worker and loadcounter increases by 1. And if the loadcounter equals the num-
ber of bands in the block, the controller broadcasts an ending message to all its workers with the format shown in Fig. 4b.
Fig. 4. The format of messages.
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We utilize register communication to aggregate and write the results back to the main memory. During computation, the
workers send the results of band to controller in the message format shown in Fig. 4c, and the controller aggregates the inter-
mediate results to a specific message buffer in the LDM. After the entire band finishes computation, the worker sends the
controller an ending message in the format shown in Fig. 4d. And then, the controller writes the aggregated results that cor-
respond to a row of A to the main memory through DMA. The communication and memory access of controller is shown in
Fig. 2.

The CPEworker as shown in Fig. 2 conducts the computation of each band assigned by the controller. Once a worker loads

the data of the ith0 band, it performs the computation according to Algorithm 8. During the computation, a worker loads one
tile of the band at a time and uses a buffer to store multiple rows of factor matrices B and C in order to reuse the data as much
as possible. Besides, the workers exploit the vectorization units on Sunway to accelerate the computation. When the worker

finishes the computation of MTTKRP, it sends the results of ith0 row of factor matrix to controller through register communi-
cation with the message format shown in Fig. 4c. After that, the controller broadcasts an ending message to all workers with
the message format shown in Fig. 4d. When receiving the ending message from the controller, the worker leases the buffer
and exits the MTTKRP routine.
3.2. Sampled MTTKRP

For CPD-RBS, it needs the randomization and sampling strategy to reduce the computation of MTTKRP, which is denoted
as sampled MTTKRP in this paper. Here we describe the implementation methodology of the sampled MTTKRP since it is the
main challenge for CPD-RBS, which is also a modification of the exact MTTKRP.

As described in Section 2.1.4, one of the main differences between the CPD-RBS and the CPD-ALS is that the CPD-RBS algo-
rithm needs to sample several randomized blocks of a tensor to compute the MTTKRP process to reduce the computation.
However, in Sunway architecture, the global shuffling of all indices in a tensor proposed in the original CPD-RBS [20] is inef-
ficient for two reasons. First, the CPEs only have 64 KB local memory, which is too limited to store all the shuffled indices.
Second, the CPEs’ discrete memory access to the main memory leads to high latency. Therefore, we propose a distributive
sampling strategy for CPEs, which leverages the register communication between CPE groups and modifies the multiple role
scheme of exact MTTKRP as described in Section 3.1. Thus each CPE only needs to store a shorter shuffled array to avoid the
risk of LDM overflow and to reduce the potential memory access for acceleration. What’s more, since we only deal with
sparse tensor in this paper, we only consider sampling the nonzero elements in the tensor to avoid constant fit and
divergence.
3.2.1. Group cooperation
As the description of Section 3.1.1, there are eight groups in 64 CPEs within a CG which operate block in the CSF tensor. To

ensure every element is chosen at the same rate, we need to sample a random amount of bands in each block while the sum
of the bands does not exceed the limitation denoted as IBLOCK. Thus we propose a cooperation scheme which utilizes the
efficient register communication between the groups.

Before partitioning the tensors to the groups, the MPE shuffles an array which stores the indices of the groups, through
which the controller in each group can recognize its order in band sampling. For the group that has the highest priority, its
controller pickes out a random number betwwen 1 and its number of bands. Then it sends a message to the controller through
the register communication whose group has the second highest priority if there are residual numbers for sampling bands.
After receiving the messages, the corresponding controller will repeat the above process until there are no bands that need to
be sampled. If the number of sampling bands is equivalent to zero, then the controllerwill just abort the MTTKRP routine. This
cooperation scheme can assign the number of sampling bands to CPE groups, since the number of bands within the blocks are
evenly partitioned, this process can ensure that every bands can be selected at the same rate.
3.2.2. The shuffling role for CPEs
As presented in Section 3.1.3, there are seven workers and a controllerwhich are in the same row within a CPE group. After

the number of bands that need to be sampled within the group is assigned by the cooperation scheme, except for the dif-
ferent duties of computing the MTTKRP between the workers and the controller, they need to be responsible for sampling
in different dimensions of the tensor.

The CPE controller is responsible for shuffling the bands in its block and assigning the sampled bands to its workers
dynamically. After the controller obtains information of indices in its block from the main memory, it shuffles the indices
array which is much shorter than the array of all indices in the first dimension. If there are rowlength bands that need to
be processed, then it select the first rowlength elements in the shuffled indices array and assign them to its workers.

The CPE worker is responsible for shuffling the tiles in its band. Since a worker may need multiple tiles to finish the upda-
tion for a band, the worker needs to firstly allocate the number of fibers that need to be sampled in a tile. Then it shuffles the
indices of fibers in the loaded tile. Furthermore, for each fiber, theworker also shuffles its indices for the elements and samples
KBLOCK elements for MTTKRP computation.
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3.3. Matrix operations

Besides the MTTKRP routine, there are also matrix operations in the CPD algorithms as shown in Section 2.1.2, Sec-
tion 2.1.3 and Section 2.1.4. The parallelization of the matrix operations is based on Basic Linear Algebra Subprogram(BLAS)
[30], which has already been implemented on Sunway architecture. However, BLAS cannot be directly applied to perform
some of the operations such as the Frobenius norm and the normalization. Thus we develop the subprograms for those
matrix operations to achieve further acceleration.

3.3.1. Frobenius norm
Since the Frobenius norm of a vector is the sqaure root of the sum of absolute squares of all its elements, it’s equivalent to

the inner product of the vector itself as shown in Eq. (16). Hence we can leverage the inner product subprogram in the BLAS
to help computing the Frobenius norm.
ak k ¼
ffiffiffiffiffiffiffiffiffiffiffiX
i

ai
r

¼ ffiffiffiffiffiffiffiffiffi
a 	 ap ð16Þ
3.3.2. Normalization
As shown in Algorithm 1, normalization process is needed after the matrices are updated. The normalization is performed

after the norms such as Frobenius norm and infinite norm calculated. Since the normalization process needs to normalize all
the elements in a vector, we utilize the dscal routine in BLAS, which can multiply the normalization factor to a vector in par-
allel after the factor is calculated.

4. Implementation

In this section, we present the implementation details of CPD on Sunway architecture, which include the processing logics
of both controller and worker within the CPE group, as well as the cooperation among CPEs. We focus on elaborating on the
implementation details of the exact MTTKRP. Since the sampled MTTKRP can be implemented on top of the exact MTTKRP,
we only provide the implementation details of sampling for sampled MTTKRP. Besides, we also present the implementation
details of several matrix operations.

4.1. Exact MTTKRP

4.1.1. Processing logic of the ccontroller CPE
The processing logic of the controller for MTTKRP is elaborated in Algorithm 7. At the beginning of MTTKRP, the controller

identifies how many bands it needs to process based on the reference array blockref. Then the controller loads the i pointer
and i ids of the corresponding bands from the sparse CSF tensor. Next, the controller sends messages to the workers through
register communication. The controller records how many bands have been assigned through variable loadcounter. Once the
worker generates a new row of factor matrice or finishes the computation of one band, it sends messages to notify the con-
troller. If it is an ending message, and loadcounter does not reach the limit of loadref, the controller continues to assign a new
band to the worker, which achieves good load balance among workers. Otherwise, if the message contains computation
results, the controller updates the corresponding values of the factor matrix according to the message. When the buffer to
store the factor matrix is full or all the bands have been processed, the controller writes the updated part of the factor matrix
back to the main memory. After finishing the computation of the block, the controller sends an ending message to all its
workers.
Algorithm 7. The processing logic of the Controller
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1: Input: sparse tensorX 2 RI�J�K in CSF;Rank R

2: bl block size

3: lr  TOTAL BUFFER SIZE=R

4: if bl > 0 then

5: tt  bl=lr þ 1

6: if bl < lr then

7: last  bl

8: else

9: last  bl� ðtt � 1Þ � lr

10: end if

11: for m ¼ 0! tt � 1 do

12: ls bbþm � lr
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13: if m ¼ tt � 1 then
233
14: length last

15: else

16: length lr

17: end if

18: idbuffer  X :i id½bb : be�

19: ptrbuffer  X :i ptr½bb : beþ 1�

20: finishcounter 0

21: loadcounter  0

22: send computeInfo to workers

23:/*computeInfo in format shown in Fig. 4a*/

24: while finishcounter < loadlength do

25: RegRecvRowðresultInfoÞ

26: /*result in format shown in Fig. 4c or Fig. 4d*/

27: if resultInfo is in format shown in Fig. 4d then

28: finishcounter  finishcounter þ 1

29: if loadcounter <¼ length� 1 then

30: assign a new band to the worker

31: loadcounter  loadcounter þ 1

32: end if

33: Write the Abufferðresult½0� � ls; :Þ to main memory

34: else

35: UpdatetheAbufferelement

36: end if

37: end while

38: end for

39: end if

40: sendfinishInfotoallworkers

41: /*finishInfo in format shown in Fig. 4b*/
4.1.2. Processing logic of the worker CPE
The processing logic of theworker is shown in Algorithm 8. To improve the data re-use of B and C, theworker preloads the

first BL rows of B and the first CL rows of C into its LDM. After the controller assigns a band to the worker, the worker conducts
the computation of MTTKRP as shown in Algorithm 2. Before the computation, it partitions the bands into tiles and loads a tile
in the LDM each time. During the computation, it extracts the corresponding sub-arrays from j_pointer and j_ids in the CSF
tensor based on jl and jh, which are then loaded intomyjptr andmyjids respectively resided in LDM. For every j inmyj_ids, the
worker extracts the the corresponding sub-arrays from the k_ids and values in the CSF tensor based on (myjptr:j), which are
then loaded intomykids andmyvalues resided in LDM. Moreover, only when the jth row of matrix B does not be in the Bbuffer,
and its following BL rows are reloaded into the Bbuffer. The similar mechanism is also applied to Cbuffer.
Algorithm 8. The processing logic of the Worker
1: Input: sparse tensorX 2 RI�J�K in CSF;Rank R

2: tilesizeN /*a tile contains N Fibers*/

3: Bbuffers Bð0 : BL� 1; :Þ /*preload factor matrices*/

4: Cbuffers Cð0 : CL� 1; :Þ

5: while recvInfo½3�P 0 do

6: RegRecvRowðrecvInfoÞ

7: /*recvInfo in format shown in Fig. 4a or Fig. 4b*/

8: i position recvInfo½0�

9: i id recvInfo½1�

10: j ledge recvInfo½2�

11: j hedge recvInfo½3�

12: tn ðj hedge� j ledgeÞ=N /*tn:tile number*/

13: for t ¼ 1! tn do

14: jl j ledgeþ t � N
(continued on next page)
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15: jh jlþ N
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16: get myjptr from X :j pointer

17: get myjids fromX :j ids

18: for every j in tile do

19: j id myjids½j�

20: get mykids from X :k ids

21: get myvalue from X :value

22: if Bðj id; :Þ not in Bbuffer then

23: Bbuffers Bðj id : j idþ BL� 1; :Þ

24: end if

25: for every k in the mode-3 Fiber do

26: k id mykids½k�

27: if Cðk id; :Þ not in Cbuffer then

28: Cbuffers Cðk id : k idþ CL� 1; :Þ

29: end if

30:sum 0

31: for r ¼ 0! R� 1 do

32: tmp1 simd multiplyðmyvalue½k� � myCbuffer½r�Þ

33: sum½r�  simd addðsum½r�; tmp1Þ

34: end for

35: end for

36: for r ¼ 0! nfactors� 1 do

37: tmp1 simd multiplyðsum½r� � myBbuffer½r�Þ

38: Abuffer½r�  simd addðsum½r�; tmp1Þ

39: end for

40: end for

41: end for

42: send resultInfo to controller

43: /*resultInfo in format shown in Fig. 4c*/

44: send endingInfo to controller

45: /*endingInfo in format shown in Fig. 4d*/

46: end while
4.1.3. Cooperation among CPEs
Meanwhile, to cooperate betweenworkers and controllerwithin a group, we design a data transfer mechanism through the

register communication among CPEs. The register communication on Sunway can send a 128-bit message each time. In order
to improve the communication efficiency during the computation of MTTKRP, we design four message formats as shown
from Fig. 4a–d.

When assigning the band from the controller to the workers, the message format is shown in Fig. 4a, where i_pos denotes
the index of the band in the arrays of i_pointer and i_ids. The i_id denotes the index of the band in the original tensor. The last
two variables denote the index range of the mode-3 Fibers of the band in arrays of j_pointer and i_ids. When the computation
is done, the controller sets the last variable in the message to �1, as shown in Fig. 4b, which explicitly notifies the workers to
exit the MTTKRP routine.

Moreover, the worker sends the computation result for the row of the matrix A in message format shown in Fig. 4c. The
first and second variables denote the buffer’s location to store the result in the controller, and the last two variables are the
generated elements from A. When the computation of the band is done, theworker sets the second variable in the message to
�1, as shown in Fig. 4d. Besides, the i_pos indicates the row of Abuffer to be written back to main memory by the controller,
whereas the column_id indicates the next band to be assigned and i_id indicates the location where the data is written to in
main memory.

4.2. Sampled MTTKRP

4.2.1. Group cooperation
For sampling the bands among the CPE groups, once a controller in the group with highest priority selects its number of

bands to be sampled, it sends a message to inform the controller in the group with the second highest priority to continue
sampling with the message format shown in Fig. 5. The row_id is the indice of the sender’s row, and the g_order is the group’s
priority in sampling which is from 1 to 7 in one CG. Besides, the n_res denotes the number residual bands that needs to be
sampled. Moreover, the f_flag indicates that the sampling process finishes if it is negative, and vice versa.



Fig. 5. The message format of sampling between groups.
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4.2.2. Sampling logic of worker CPE
The processing logic of sampling in the workers is shown in Algorithm 9. Here we only focus on the sampling strategy in

the workers since the process of sampling the bands is similar to that for the tiles. After loading a tile in its LDM, if the sam-
pling does not finish as loadref_r does not equal to zero, then theworkerwill select a random number between 1 and loadref_r
to decide how many fibers in this tile will be sampled. However, if the tile is the last tile to be loaded, the loadref_t will be set
equivalent to loadref_r. For the sampled fiber, the worker will further shuffle the refarray_k whose elements are from 0 to the
number of nonzero in j_idth fiber. As we set the sampling size in the third dimension to be KBLOCK, the worker will sample
KBLOCK elements for computation.
Algorithm 9. The Sampling Logic of the Worker for a Tile
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1: Input: A Tile T

2: if loadref_r – 0 then

3: if loadtime –max_trans then

4: loadref_t = random(1, loadref_r)

5: else

6: loadref_t = loadref_r

7: end if

8: loadref_r = loadref_r - loadref_t

9: refarray_j = shuffle(T , length(T))

10: for i = 1!loadref_t do

11: j_id = myjids[refarray_j[i]]

12: refarray_k = shuffle(j_id, length(j_id))

13: for k = 1! KBLOCK do

14: k_id = mykids[refarray_k[k]]

15: end for

16: end for

17: end if
4.3. Matrix operations

4.3.1. Frobenius norm and normalization
The processing logic of computing Frobenius norm and the following normalization for the column vectors in the factor

matrices are shown in Algorithm 10, where the ddot routine is for the inner product between two vectors in parallel, while
the dscal is for scalar multiplication.
Algorithm 10. Frobenius norm and normalization
1: Input: A factor matrix A

2: for every column vector ai in A do

3: lambda[i] = cblas_ddot(ai,ai)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

4: lambda[i] = lambda½i�

5: cblas_dscal(1/lambda[i], ai)

6: end for
4.3.2. Infinite norm and normalization
The processing logic of computing the infinite norm as well as the following normalization process is described in Algo-

rithm 11. If the normalization factor lambda for a vector is not larger than 1, the original value will be replaced by 1.
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Algorithm 11. Infinite norm and normalization
Fig. 6. Multi-process auto-tuning pipeline for swCPD.
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1: Input: A factor matrix A

2: for every column vector ai in A do

3: lambda[i] = cblas_ddot(ai,ai)

4: lambda[i] = max(1, lambda[i])

5: cblas_dscal(1/lambda[i], ai)

6: end for
5. Performance auto-tuning for swCPD

5.1. Identifying the parameters

For swCPD, there are several parameters that could directly affect the performance of MTTKRP, including CALC_CORE_-
NUMBER, BL, CL, TILE_SIZE, NNZ_NUMBER and TOTAL_BUFFER_SIZE. The parameters control the adaptability of MTTKRP to
the Sunway architecture, including LDM usage, DMA transfer, CPE parallelism, and register communication. CALC_CORE_-
NUMBER is the number of busy CPEs and controls the tradeoff between delay of register communication and CPE utilization.
Since the size of LDM is quite limited, parameters other than CALC_CORE_NUMBER are used to control the amount of data
fetched to LDM each time. TOTAL_BUFFER_SIZE is used to set the LDM memory space reserved for MTTKRP. BL is the buffer
size of factor matrix B and CL is the buffer size of factor matrix C. TILE_SIZE is the buffer size of Fiber. NNZ_NUMBER is the
number of non-zero elements. In addition, these parameters do not affect the convergence of swCPD so that they can be
applied to all three algorithms in this paper.

As described above, it is prohibitive to obtain the optimal parameter settings through exhaustive search, which is imprac-
tical in reality. Therefore, we propose an auto-tuning scheme to identify the optimal parameter setting of swCPD. Firstly, we
need to determine the search space for each parameter. The valid range and constraint of each parameter is shown as
follows:

- CALC CORE NUMBER <¼ 7, and CALC CORE NUMBER 2 N.
- TOTAL BUFFER SIZE < LDMsize, and TOTAL BUFFER SIZE 2 N.
- ðNNZ NUMBERþ TILE SIZEÞ � 2þ ðBLþ CLþ 2Þ � nfactors < TOTAL BUFFER SIZE, and NNZ NUMBER; TILE SIZE;BL;CL 2 N.

5.2. Auto-tuning using genetic search

Based on the above analysis, we use genetic search [31] to determine the optimal settings of the parameters. To the best
of our knowledge, swCPD is the first CPD library that adopts the auto-tuning approach, such as genetic search, to automat-
ically determine the optimal parameters, whereas the existing cutting-edge libraries [19,26] setup the parameters empiri-
cally. We convert the value of each tuning parameter to a binary string named a gene. Multiple genes constitute an
individual, which represents a set of parameters. The length of the individual is based on the range requirements (Sec-
tion 5.1). Fitness is an indicator used to evaluate an individual. Many individuals constitute a population, which can be split
into several sub-populations. We use MPI communication to implement the migration among sub-populations. The pipeline
of multi-process genetic search is shown in Fig. 6. We choose the single-ring topology for the migration: each subpopulation
exchanges individuals with its two neighborhoods.

New individuals in the sub-population are bred through two parents uniform cross-over and mutation. As shown in Fig. 7,
the sub-population genetic algorithm consists of three steps: 1) each parent is selected from its four neighborhoods based on



Fig. 7. Sub-population genetic algorithm.
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their fitness, and the higher the fitness the higher the selection chance; 2) each gene in the individual is randomly selected
from the parents; 3) the new individuals are selected based on a low probability to undergo mutation. This probability is
called the mutation rate, and it controls the exploration versus exploitation tradeoff [32]. In genetic search, the mutation
is used to prevent the individuals from falling into local optimum. The genetic search terminates when 1) the maximum
number of iterations is reached or, 2) the fitness reaches the threshold. When the fitness converges, the optimal parameter
settings are found.
6. Evaluation

6.1. Experimental setup

We conduct our experiments on a CG of Sunway SW26010 processor. To evaluate the performance of our swCPD, we use
synthesized datasets with tensor data generated similar to [33], in addition to three real-world datasets: MovielensNew,
YELP [34] and BookCroosing (BX) [35]. The datasets of Movielens are derived from the data of movie ratings provided by
[36]. The detailed specifications of the datasets are shown in Table 2. We report the average execution time of a single iter-
ation. All experiments are conducted in double precision. All the initial values in the factor matrices are randomly generated.
Although the initial values may affect the number of iterations for the CPD algorithms, we report the performance in terms of
the average execution time of a single iteration, which will not be affected by the number of iterations and the initial values.

6.2. Evaluation criteria

6.2.1. CPD-ALS
We compare the performance of our swCPD-ALS algorithm with the CPD-ALS routine in the widely used MATLAB Tensor

Toolbox [6] and SPLATT [26], which is one of the cutting-edge parallel tensor decomposition libraries and is based on CPD-
ALS. We modify SPLATT so that it can utilize the 64 CPEs within a CG, which is denoted as SW-SPLATT-ALS. Compared to the
swCPD-ALS, the SW-SPLATT-ALS does not leverage the efficient DMA and register communication, as well as the hierarchical
blocking and role assignment strategies. The platform for MATLAB Tensor Toolbox is the Intel Xeon E5620 CPU with 8 GB
memory, which is the same as that in a SW26010 CG. We use the performance of Matlab Tensor Toolbox as the baseline.
We further test the sensitivity of significant parameters for swCPD-ALS.

6.2.2. CPD-GD
We compare the performance of our swCPD-GD algorithm with the CP-OPT routine in MATLAB Tensor Toolbox [5] which

is also based on gradient descent. CP-OPT is implemented using Poblano Toolbox in MATLAB [37], which is commonly used
for gradient-based optimization. The MATLAB Tensor Toolbox stores the tensor in COO format for the sparse tensors, which
has much larger memory footprint than CSF. For CP-OPT, the initial factor matrices are generated by the create_guess routine.
Table 2
The sparse tensor datasets.

Dataset I J K nnz

Dataset1 1 K 1 K 1 K 33 K
Dataset2 4.1 K 4.1 K 4.1 K 262 K
Dataset3 4.9 K 4.9 K 4.9 K 343 K
Dataset4 6.4 K 6.4 K 6.4 K 512 K
Dataset5 1 K 1.6 K 4 K 80 K
Dataset6 1 K 1.6 K 1.6 K 40 K
MovielensNew 610 9.7 K 1.8 K 101 K
YELP 70 K 15 K 108 334 K
BookCrossing (BX) 278 K 271 K 102 K 383 K
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In addition, we modify the ALS algorithm in SPLATT to the GD algorithm based on [19] in order to run on a CG of Sunway
architecture. The modified GD algorithm in SPLATT is named SW-SPLATT-GD. The platform for MATLAB Tensor Toolbox is
Intel Xeon E5620 CPU with 8 GB memory. We use the performance of SW-SPLATT-GD as the baseline since the CPD-OPT fails
to run when the tensor is extremely sparse or the rank is too large.
6.2.3. CPD-RBS
We compare the performance of our swCPD-RBS algorithm with the CPD-RBS algorithm and SW-RBS. The SW-RBS is the

RBS implementation in Tensorlab [38] ported to Sunway architecture by utilizing the gld/gst for memory access and adopting
the global shuffle and sampling strategy described in [20]. We use the performance of SW-RBS as the baseline. The sampling
size is set to the same for swCPD-RBS and SW-RBS, which varies under different settings of rank.
6.2.4. CPD-fLM++
We compare the performance of our swCPD-fLM++ algorithm with the SW-fLM++ algorithm. The SW-fLM++ is the fLM++

[21] implementation on Sunway processor that utilizes the gld/gst for memory access. We use the performance of SW-fLM++
as the baseline.
6.2.5. CPD-GCP-SGD
We compare the performance of our swCPD-GCPSGD algorithm with the GCP-SGD routine in MATLAB Tensor Toolbox [25]

and SW-GCPSGD algorithm. SW-GCPSGD is the CPD-GCP-SGD implementation in MATLAB Tensor Toolbox ported to Sunway
processor by utilizing the gld/gst for memory access and adopting the loss functions described in [24]. We use the perfor-
mance of GCP-SGD as the baseline. We choose five loss functions in the comparison, including standard square error (stan-
dard CPD), logistic regression, gamma distribution, Rayleigh distribution and Poisson distribution.
(a) Dataset1 (b) Dataset2 (c) Dataset3

(d) Dataset4 (e) Dataset5 (f) Dataset6

(g) MovielensNew (h) YELP (i) BookCrossing (BX)

Fig. 8. Performance comparison between CP-ALS in MATLAB Tensor Toolbox, SW-SPLATT-ALS and swCPD-ALS on Sunway SW26010 processor with the rank
of 16, 32, 64 and 128.
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6.3. Performance analysis

6.3.1. CPD-ALS
The performance comparison between MATLAB Tensor Toolbox, SW-SPLATT-ALS and swCPD-ALS is shown in Fig. 8. The

performance of SW-SPLATT and swCPD-ALS is normalized to the baseline. It is clear that swCPD achieves the best perfor-
mance under all datasets across different ranks. Our swCPD-ALS improves the performance of CPD by 12.97� on average,
with the maximum speedup of 25.5� with Dataset4. Moreover, we observe the performance of SW-SPLATT-ALS is worse
than the baseline. The reason is that SW-SPLATT relies on the global load/store (gld/gst) instructions on CPEs to access mem-
ory, which leads to long memory access latency and thus significantly deteriorates the performance of CPD. We also notice
that swCPD-ALS achieves less speedup on the two real-world datasets. This is due to the extreme sparsity of these two data-
sets. Even though the CPEs can buffer contiguous rows of B and C in LDM, the elements within a band are hardly continuous
and thus lead to frequent cache misses, which in turn deteriorates the speedup of swCPD-ALS.
6.3.2. CPD-GD
Fig. 9 presents the performance comparison results between SW-SPLATT-GD, CP-OPT in MATLAB Tensor Toolbox and

swCPD-GD. The performance of CP-OPT and swCPD-GD is normalized to the baseline SW-SPLATT-GD. If the CP-OPT crashes
because of memory overflow or large rank, its performance is denoted as zero. From Fig. 9, it is obvious that the swCPD-GD
obtains the best performance among those implementations across all the datasets. The highest acceleration rate is 37.21�
achieved on Dataset4, with the average acceleration rate of 16.27�. Similar to swCPD-ALS, swCPD-GD achieves lower accel-
eration rate in the real-world datasets for its sparsity. However, compared to swCPD-ALS, the swCPD-GD is more time-
consuming since it requires several iterations of the linear search.
(a) Dataset1 (b) Dataset2 (c) Dataset3

(d) Dataset4 (e) Dataset5 (f) Dataset6

(g) MovielensNew (h) YELP (i) BookCrossing (BX)

Fig. 9. Performance comparison between CP-OPT in MATLAB Tensor Toolbox, SW-SPLATT-GD and swCPD-GD on Sunway SW26010 processor with the rank
of 16, 32, 64 and 128. The missing bar indicates it fails to run with CP-OPT in MATLAB Tensor Toolbox.
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6.3.3. CPD-RBS
The comparison results between SW-RBS and swCPD-RBS are shown in Fig. 10. We can draw the conclusion that swCPD-

RBS’s performance exceeds that of SW-RBS across all the datasets. From Dataset4, the highest acceleration rate emerges,
which is at 37.44�. Moreover, the average acceleration rate is 7.81�. When compared with the former two optimized algo-
rithms in swCPD, it can be concluded that the swCPD-RBS achieves the least acceleration among most of the datasets since it
has the least requirements for computation.
6.3.4. CPD-fLM++
The performance comparison between swCPD-fLM++ and SW-fLM++ is shown in Fig. 11. Note that when the rank grows to

128 or the tensor is relatively large, the algorithms encounter memory overflow since computing CPD-fLM++ requires eleven
intermediate matrices in F2 � F2 as shown in Algorithm 5. For example, when the rank is 128, the size of the intermediate
matrices will be 2 GB each, whose total memory footprint exceeds the memory capacity of Sunway processor. It is obvious
that swCPD-fLM++ achieves better performance than SW-fLM++ across all datasets, with the highest speedup of 39.57� on
Dataset4 under rank 64. Moreover, the average speedup of swCPD-fLM++ is 22.77�. The speedup is due to that swCPD-fLM++
can significantly reduce the computation overhead of CPD-fLM++, and thus obtain better performance.
6.3.5. CPD-GCP-SGD
The results of the performance comparison among swCPD-GCPSGD, GCP-SGD and SW-GCPSGD with different loss func-

tions are shown from Figs. 12–16. It is clear that swCPD-GCPSGD achieves the best performance among most of the datasets,
with the highest speedup of 29.92� on Dataset4 under loss function following Poisson distribution. In addition, the speedup
of swCPD-GCPSGD on the same dataset under different loss functions is similar because the computation cost of different loss
functions on each element of the dataset is nearly the same.
(a) Dataset1 (b) Dataset2 (c) Dataset3

(d) Dataset4 (e) Dataset5 (f) Dataset6

(g) MovielensNew (h) YELP (i) BookCrossing (BX)

Fig. 10. Performance comparison between SW-RBS and swCPD-RBS on Sunway SW26010 processor with the rank of 16, 32, 64 and 128.
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6.4. Roofline analysis

To further analyze our implementation’s efficiency, we apply the roofline model [28] to swCPD on a CG of Sunway pro-
cessor. We focus on the theoretical analysis for exact MTTKRP in the roofline analysis. Given a tensor X 2 RI1�I2�I3 of rank R
with I; F and nnz denoting the number of non-zero rows, the number of non-zero Fibers and the number of non-zero values,
respectively. The tensor X is stored in CSF format. Let Q ;W , and I represent the amount of data accessed from memory, the
number of floating-point operations, and the arithmetic intensity respectively. The calculation of Q ;W and I is shown in Eq.
(17), Eq. (18) and Eq. (19), respectively.
Q ¼ ð2þ RÞðF þ nnzÞ ð17Þ
W ¼ 2RðF þ nnzÞ ð18Þ
I ¼ W
Q 	 8bytes ¼

R
8þ 4R

ð19Þ
From Eq. (19), it is clear that the arithmetic intensity of CPD is less than 1. Based on the roofline analysis in [29], the ridge
point of the Sunway processor is 8.46. Therefore, the CPD is severely memory-bound. As a result, the optimizations adopted
in our swCPD are effective in addressing the above bottleneck. Take Dataset4 for example, this dataset contains 262,144 non-
zero elements and fibers. When the rank is set to 128, without our proposed optimizations, the performance of CPD is 0.012
GFLOPS, and the arithmetic intensity is 0.246 FLOPS/BYTE. After applying the hierarchical partitioning scheme, the arith-
metic intensity of CPD improves to 0.46 FLOPS/BYTE, which indicates our approach is quite effective in alleviating the per-
formance bottleneck of memory access.
(a) Dataset1 (b) Dataset2 (c) Dataset3

(d) Dataset4 (e) Dataset5 (f) Dataset6

(g) MovielensNew (h) YELP (i) BookCrossing (BX)

Fig. 11. Performance comparison between swCPD-fLM++ and SW-fLM++ on Sunway processor with the rank of 16, 32, 64 and 128.
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6.5. Parameter sensitivity analysis

To understand the performance impact of the parameter settings, we study three parameters in the exact MTTKRP that
has a direct impact on the performance of CPD-ALS, including tile size N, buffer size BL of factor matrice B and buffer size
CL of factor matrice C in LDM. Regarding BL and CL, when they are set too large, the DMA transaction time increases. How-
ever, when they are set too small, the buffer hit rate decreases significantly and thus causes more DMA transactions. Due to
the compound performance impact of BL and CL on CPD is more complex, we measure the performance of swCPD under dif-
ferent settings of BL and CL. Fig. 17 presents the performance results under all datasets with rank ¼ 16. It is clear that when
the setting of BL and CL is too large, the performance deteriorates. We also notice that when the setting of BL and CL is mod-
erate, the performance is more sensitive to BL than CL. In our implementation, we set BL to 4 and CL to 4, which delivers the
best performance across all datasets.
6.6. Performance auto-tuning

In addition to Section 6.5, we expand the number of tuning parameters to 6 (Section 5.2). Here we take swCPD-ALS for an
example and set the mutation rate to 0.01. Other algorithm implementations of swCPD exhibit a similar tendency when
using the performance auto-tuning scheme. As shown in Fig. 18, three datasets (Dateset3, Dataset4, and YELP) are selected
to evaluate the efficiency of genetic search. There are 64 individuals in a sub-population, and sub-population number of 2, 4,
8, and 16 are evaluated. The results are recorded every four generations.

In Fig. 18, as the generation increases, the performance of swCPD-ALS gradually converges to the optimal, which means
the genetic search has found the optimal setting of the parameters. Furthermore, the larger the total number of individuals is,
the faster the convergence speed is. Besides, when the population size is too small, the genetic search may fall into a local
optimum (e.g., 2-Processes in Dataset4). The highly irregular structure of YELP constrains the parameter search space on
Sunway architecture, which is faster to converge than Dataset3 and Dataset4.
(a) Dataset1 (b) Dataset2 (c) Dataset3

(d) Dataset4 (e) Dataset5 (f) Dataset6

(g) MovielensNew (h) YELP (i) BookCrossing (BX)

Fig. 12. Performance comparison among swCPD-GCPSGD, CPD-GCP-SGD and SW-GCPSGD on Sunway processor with the rank of 16, 32, 64 and 128. The loss
function is standard square error (standard CPD).
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(d) Dataset4 (e) Dataset5 (f) Dataset6

(g) MovielensNew (h) YELP (i) BookCrossing (BX)

Fig. 13. Performance comparison among swCPD-GCPSGD, GCP-SGD and SW-GCPSGD on Sunway processor with the rank of 16, 32, 64 and 128. The loss
function is logistic regression.
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7. Related work

7.1. Tensor decomposition

There are plenty of researches about sparse-and-large tensor decomposition on architectures such as CPU and GPU.
Gigatensor [8] developed the CPD algorithm on CPU based on MapReduce [7] paradigm. Moreover, Gigatensor applied Hada-
mard product in MTTKRP to avoid intermediate data construction. Smith et al. [26] proposed SPLATT on CPUs. This algorithm
computes CPD-ALS efficiently through data tilting and CSR-like tensor reordering. ParTI! [9] supported essential sparse ten-
sor operations and CPD on multicore CPU and GPU.

Furthermore, as MTTKRP is the primary hotspot in CPD algorithm [15], there are many efforts towards accelerating
MTTKRP. Choi and Vishwanathan [19] introduced an efficient MTTKRP algorithm named DFacto that reformulates MTTKRP
to a sequence of sparse matrix–vector multiplications (SpMVs). Based on SPLATT [26], Smith, Choi et al. [15] utilized fine-
grained blocking techniques named rank blocking and multi-dimensional blocking for tensors and matrixes to obtain a bet-
ter acceleration rate of MTTKRP than SPLATT. Besides, HyperTensor [39] also applied a fine-grained partition scheme that
divides the nonzero elements separately. Cheng et al. [40] implemented a novel CPD algorithm based on orthogonality struc-
ture in factor matrices to improve the robustness and accuracy.

Randomized or sampling tools have been widely adopted in numerical algorithms. However, the randomized numerical
linear algebra used to focus on low-rank matrices. The incorporation of such tools into tensor operations was fairly recent
[41,20,42,43,25]. Wang et al. [41] proposed randomized methods for tensor contractions via FFTs. Such tensor contractions
are encountered in CPDmethods (e.g., ALS). Vervliet et al. [20] proposed a randomized block sampling CPDmethod that com-
bined randomization and stochastic optimization. Cheng et al. [42] proposed SPALS, which speeded up sparse ALS via lever-
age scores sampling. Battaglino et al. [43] extended randomized ALS to tensors and reduced the workload of CPD-ALS by
checking the stopping condition via sampling-based techniques. Kolda et al. [25] proposed using stochastic gradients formed
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(a) Dataset1 (b) Dataset2 (c) Dataset3

(d) Dataset4 (e) Dataset5 (f) Dataset6

(g) MovielensNew (h) YELP (i) BookCrossing (BX)

Fig. 14. Performance comparison among swCPD-GCPSGD, GCP-SGD and SW-GCPSGD on Sunway processor with the rank of 16, 32, 64 and 128. The loss
function is gamma distribution.
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from randomly sampled elements for generalized canonical polyadic (GCP) tensor decomposition. The reason why GCP uses
SGD is that after generalizing the objective function, the amount of calculation will increase exponentially.

In e-commerce, matrix factorization is used to provide personalized recommendations for products that suit users taste
[44]. Similar ideas can be applied to tensor completion [45–47]. Tensor completion is used to recover a tensor by filling in
missing values (i.e., the zeros). Gandy et al.[45] proposed an algorithm based on the Douglas-Rachford splitting technique to
solve the low-rank tensor recovery problem numerically. Liu et al. [46] proposed HaLRTC that applies the alternating direc-
tion method of multipliers (ADMM) to estimate missing values in tensors. Smith et al.[47] studied three algorithms (i.e., ALS,
SGD and CCD++) to explore opportunities for parallelism accomplished in tensor completion. Besides, Zhang et al. [48] uti-
lized CPD algorithm to compress the parameters of the large weight tensors in a large deep computation model.
7.2. Performance optimization on sunway architecture

Many researchers have paid attention to adapt and optimize algorithms and applications on Sunway system. In terms of
linear algebra algorithm, Wang et al. [27] implemented a sparse triangular solver (SpTRSV) to Sunway architecture by
proposing a brand new Sparse Level Tile layout and utilizing Producer–Consumer pairing methodology. What’s more, Liu
et al. [12] introduced an efficient SpMV algorithm which partitions CPEs into different roles and takes advantage of fast com-
munication between CPEs and this partition scheme was also adopted by Li et al. [49] for SpTRSV. Li et al. [50] proposed swC-
holesky, which highly optimized sparse Cholesky factorization on Sunway processor. Zhong et al. [51] proposed swTensor that
adapted the CP decomposition to Sunway processor by leveraging the MapReduce framework for automatic parallelization.
Xiao et al. [52] developed CASpMV on Sunway architecture, which contains a four-way auto-tuning partition scheme based
on a statistical model that describes the characteristics of the sparse matrix structure. Meanwhile, ahSpMV [53] is an auto-
tuning hybrid computing scheme for Sunway processor, which adopts the Hybrid (HYB) sparse matrix format.

Many scientific computing and deep learning parallel applications have been adapted to Sunway architecture. Fu et al.
[13] adapted the widely-used climatic simulation application CAM to Sunway architecture. Zhong et al. [54] proposed swMR,
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Fig. 15. Performance comparison among swCPD-GCPSGD, GCP-SGD and SW-GCPSGD on Sunway processor with the rank of 16, 32, 64 and 128. The loss
function is Rayleigh distribution.
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which implemented MapReduce on Sunway many-core processor. Hu et al. [55] implemented large-scale seismic processing
and improved the signal-to-noise ratio. Fang et al. [56] proposed swDNN that mapped the convolutional neural networks
(CNNs) onto the four CGs within the chip. Li et al. [14] transferred the deep learning framework Caffe to Sunway TaihuLight.
Those researches inspired us on how to improve the performance of the CPD algorithm on Sunway architecture.
8. Conclusion

In this paper, we have provided efficient CPD implementations with optimization algorithms including Alternating Least
Squares, Gradient Descent, Randomized Block Sampling, fast Levenberg–Marquardt, and Generalized Canonical Polyadic
Decomposition with Stochastic Gradient Descent on the Sunway processor. We have proposed a hierarchical partitioning
scheme that partitions both CPEs and sparse tensors into three levels. The partitioning scheme improves the data locality
and communication efficiency by utilizing DMA, LDM, and register communication. Moreover, for the randomized MTTKRP
process, we have proposed a cooperative and efficient sampling scheme among the CPEs. Our implementation has achieved
better performance than the widely adopted Matlab Tensor Toolbox, Matlab Tensorlab, and SPLATT across both synthesized
and real-world datasets.
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Fig. 16. Performance comparison among swCPD-GCPSGD, GCP-SGD and SW-GCPSGD on Sunway processor with the rank of 16, 32, 64 and 128. The loss
function is Poisson distribution.

Fig. 17. Parameter sensitivity analysis of CPD on the buffer size of factor matrice B (BL) and C (CL).

M. Dun, Y. Li, Q. Sun et al. Information Sciences 549 (2021) 221–248

246



Fig. 18. Convergence of genetic search with 2, 4, 8 and 16 processes. The y-axis is the average execution time of a single iteration in swCPD-ALS.
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