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Abstract—The difficulty of deploying various deep learning (DL) models on diverse DL hardware has boosted the research and

development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as

Tensorflow XLA and TVM. Similarly, the DL compilers take the DL models described in different DL frameworks as input, and then

generate optimized codes for diverse DL hardware as output. However, none of the existing survey has analyzed the unique design

architecture of the DL compilers comprehensively. In this article, we perform a comprehensive survey of existing DL compilers by

dissecting the commonly adopted design in details, with emphasis on the DL oriented multi-level IRs, and frontend/backend

optimizations. We present detailed analysis on the design of multi-level IRs and illustrate the commonly adopted optimization

techniques. Finally, several insights are highlighted as the potential research directions of DL compiler. This is the first survey article

focusing on the design architecture of DL compilers, which we hope can pave the road for future research towards DL compiler.

Index Terms—Neural networks, deep learning, compiler, intermediate representation, optimization
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1 INTRODUCTION

THE development of deep learning (DL) has generated a
profound impact on various scientific fields. It has not

only demonstrated remarkable value in artificial intelli-
gence such as natural language processing (NLP) [1] and
computer vision (CV) [2], but also proved great success in
broader applications such as e-commerce [3], smart city [4]
and drug discovery [5]. With the emergence of versatile
deep learning models such as convolutional neural network
(CNN) [6], recurrent neural network (RNN) [7], long short-
term memory (LSTM) [8] and generative adversarial net-
work (GAN) [9], it is critical to ease the programming of
diverse DL models in order to realize their wide adoption.

With the continuous efforts from both industry and aca-
demia, several popular DL frameworks have been proposed
such as TensorFlow [10], PyTorch [11], MXNet [12] and
CNTK [13], in order to simplify the implementation of vari-
ous DL models. Although there are strengths and weak-
nesses among the above DL frameworks depending on the
tradeoffs in their designs, the interoperability becomes
important to reduce the redundant engineering efforts
when supporting emerging DL models across the existing
DL models. To provide interoperability, ONNX [14] has

been proposed, which defines a unified format for repre-
senting DL models to facilitate model conversion between
different DL frameworks.

Meanwhile, the unique computing characteristics such
as matrix multiplication have spurred the passion of chip
architects to design customized DL accelerators for higher
efficiency. Internet giants (e.g., Google TPU [15], Hisilicon
NPU [16], Apple Bonic [17]), processor vendors (e.g., NVI-
DIA Turing [18], Intel NNP [19]), service providers (e.g.,
Amazon Inferentia [20], Alibaba Hanguang [21]), and even
startups (e.g., Cambricon [22], Graphcore [23]) are inves-
ting tremendous workforce and capital in developing DL
chips in order to boost the performance for DL models.
Generally, the DL hardware can be divided into the follow-
ing categories: 1) general-purpose hardware with software-
hardware co-design, 2) dedicated hardware fully customized
for DL models, and 3) neuromorphic hardware inspired
by biological brain science. For example, the general-purpose
hardware (e.g., CPU, GPU) has added special hardware
components such as AVX512 vector units and tensor cores
to accelerate DL models. Whereas for dedicated hardware
such as Google TPU, application-specific integrated circuits
(e.g., matrix multiplication engine and high-bandwidth
memory) have been designed to elevate the performance
and energy efficiency to extreme. To the foreseeable fut-
ure, the design of DL hardware would become even more
diverse.

To embrace the hardware diversity, it is important to
map the computation to DL hardware efficiently. On gen-
eral-purpose hardware, the highly optimized linear algebra
libraries such as Basic Linear Algebra Subprograms (BLAS)
libraries (e.g., MKL and cuBLAS) serve as the basics for effi-
cient computation of DL models. Take the convolution oper-
ation for example, the DL frameworks convert the
convolution to matrix multiplication and then invoke the
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GEMM function in the BLAS libraries. In addition, the hard-
ware vendors have released specially optimized libraries tai-
lored for DL computations (e.g., MKL-DNN and cuDNN),
including forward and backward convolution, pooling, nor-
malization, and activation. More advanced tools have also
been developed to further speedupDL operations. For exam-
ple, TensorRT [24] supports graph optimization (e.g., layer
fusion) and low-bit quantization with large collection of
highly optimized GPU kernels. On dedicated DL hardware,
similar libraries are also provided [22], [23]. However, the
drawback of relying on the libraries is that they usually fall
behind the rapid development of DLmodels, and thus fail to
utilize the DL chips efficiently.

To address the drawback of DL libraries and tools, as well
as alleviate the burden of optimizing the DL models on each
DL hardware manually, the DL community has resorted to
the domain-specific compilers for rescue. Rapidly, several
popular DL compilers have been proposed such as TVM [25],
Tensor Comprehensions [26], Glow [27], nGraph [28] and
XLA [29], from both industry and academia. The DL com-
pilers take the model definitions described in the DL frame-
works as inputs, and generate efficient code implementations
on various DL hardware as outputs. The transformation
between model definition and specific code implementation
is highly optimized, targeting the model specification and
hardware architecture. Specifically, they incorporate DL ori-
ented optimizations such as layer and operator fusion, which
enables highly efficient code generation. Moreover, existing
DL compilers also leverage mature tool-chains from general-
purpose compilers (e.g., LLVM [30]), which provides better
portability across diverse hardware architectures. Similar to
traditional compiler, DL compilers also adopt the layered
design, including frontend, intermediate representation (IR),
and backend. However, the uniqueness of the DL compiler
lies in the design of multi-level IRs and DL specific
optimizations.

In this paper, we provide a comprehensive survey of exist-
ing DL compilers by dissecting the compiler design into

frontend, multi-level IRs and backend, with special emphasis
on the IR design and optimizationmethods. To the best of our
knowledge, this is the first paper that provides a comprehen-
sive survey on the design of DL compiler. Specifically, this
papermakes the following contributions:

� We dissect the commonly adopted design architec-
ture of existing DL compilers, and provide detailed
analysis of the key design components such as multi-
level IRs, frontend optimizations (including node-
level, block-level and dataflow-level optimizations)
and backend optimizations (including hardware-
specific optimization, auto-tuning and optimized ker-
nel libraries).

� We provide a comprehensive taxonomy of existing
DL compilers from various aspects, which corre-
sponds to the key components described in this sur-
vey. The target of this taxonomy is to provide
guidelines about the selection of DL compilers for
the practitioners considering their requirements, as
well as to give a thorough summary of the DL com-
pilers for researchers.

� We have provided the quantitative performance
comparison among DL compilers on CNN models,
including full-fledged models and lightweight mod-
els. We have compared both end-to-end and per-
layer (convolution layers since they dominate the
inference time) performance to show the effective-
ness of optimizations. The evaluation scripts and
results are open sourced1 for reference.

� We highlight several insights for the future develop-
ment of DL compilers, including dynamic shape and
pre-/post-processing, advanced auto-tuning, poly-
hedral model, subgraph partitioning, quantization,
unified optimizations, differentiable programming

Fig. 1. The overview of commonly adopted design architecture of DL compilers.

1. https://github.com/buaa-hipo/dlcompiler-comparison
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and privacy protection, which we hope to boost the
research in the DL compiler community.

The rest of this paper is organized as follows. Section 2
describes the common design architecture of DL compilers.
Section 3 discusses the key components of DL compilers,
including multi-level IRs, frontend optimizations and back-
end optimizations. Section 4 presents a comprehensive tax-
onomy. Section 5 provides the quantitative performance
comparison. Section 6 highlights the future directions for
DL compiler research.

2 COMMON DESIGN ARCHITECTURE OF DL
COMPILERS

The common design architecture of a DL compiler primarily
contains two parts: the compiler frontend and the compiler
backend, as shown in Fig. 1. The intermediate representation
(IR) is spread across both the frontend and the backend.
Generally, IR is an abstraction of the program and is used for
program optimizations. Specifically, theDLmodels are trans-
lated into multi-level IRs in DL compilers, where the high-
level IR resides in the frontend, and the low-level IR resides
in the backend. Based on the high-level IR, the compiler front-
end is responsible for hardware-independent transforma-
tions and optimizations. Based on the low-level IR, the
compiler backend is responsible for hardware-specific opti-
mizations, code generation, and compilation. Note that this
survey focuses on the design principles of DL compilers. For
functional and experimental comparisons of DL compilers,
the readers can refer to [31], [32].

The high-level IR, also known as graph IR, represents the
computation and the control flow and is hardware-indepen-
dent. The design challenge of high-level IR is the ability of
abstraction of the computation and the control flow, which
can capture and express diverse DL models. The goal of the
high-level IR is to establish the control flow and the depen-
dency between the operators and the data, as well as pro-
vide an interface for graph-level optimizations. It also
contains rich semantic information for compilation as well
as offers extensibility for customized operators. The detailed
discussion of high-level IR is presented in Section 3.1.

The low-level IR is designed for hardware-specific optimi-
zation and code generation on diverse hardware targets.
Thus, the low-level IR should be fine-grained enough to
reflect the hardware characteristics and represent the hard-
ware-specific optimizations. It should also allow the use of
mature third-party tool-chains in compiler backends such as
Halide [33], polyhedral model [34], and LLVM [30]. The
detailed discussion of low-level IR is presented in Section 3.2.

The frontend takes a DL model from existing DL frame-
works as input, and then transforms the model into the
computation graph representation (e.g., graph IR). The
frontend needs to implement various format transforma-
tions To support the diverse formats in different frame-
works. The computation graph optimizations incorporate
the optimization techniques from both general-purpose
compilers and the DL specific optimizations, which reduce
the redundancy and improve the efficiency upon the graph
IR. Such optimizations can be classified into node-level
(e.g., nop elimination and zero-dim-tensor elimination),
block-level (e.g., algebraic simplification, operator fusion,

and operator sinking) and dataflow-level (e.g., CSE, DCE,
static memory planning, and layout transformation). After
the frontend, the optimized computation graph is generated
and passed to the backend. The detailed discussion of the
frontend is presented in Section 3.3.

The backend transforms the high-level IR into low-level IR
and performs hardware-specific optimizations. On the one
hand, it can directly transform the high-level IR to third-
party tool-chains such as LLVM IR to utilize the existing
infrastructures for general-purpose optimizations and code
generation. On the other hand, it can take advantage of the
prior knowledge of both DL models and hardware charac-
teristics for more efficient code generation, with customized
compilation passes. The commonly applied hardware-spe-
cific optimizations include hardware intrinsic mapping,
memory allocation and fetching, memory latency hiding,
parallelization as well as loop oriented optimizations. To
determine the optimal parameter setting in the large optimi-
zation space, two approaches are widely adopted in existing
DL compilers such as auto-scheduling (e.g., polyhedral
model) and auto-tuning (e.g., AutoTVM). The optimized
low-level IR is compiled using JIT or AOT to generate codes
for different hardware targets. The detailed discussion of
the backend is presented in Section 3.4.

3 KEY COMPONENTS OF DL COMPILERS

3.1 High-Level IR

To overcome the limitation of IR adopted in traditional com-
pilers that constrains the expression of complex computa-
tions used in DL models, existing DL compilers leverage
high-level IR (as known as graph IR) with special designs
for efficient code optimizations. To better understand the
graph IR used in the DL compilers, we describe the repre-
sentation and implementation of graph IR as follows.

3.1.1 Representation of Graph IR

The representation of graph IR influences the expressive-
ness of graph IR and also decides the way the DL compilers
analyze the graph IR.

DAG-Based IR. DAG-based IR is one of the most tradi-
tional ways for the compilers to build a computation graph,
with nodes and edges organized as a directed acyclic graph
(DAG). In DL compilers [25], [26], [27], [28], [29], the nodes
of a DAG represent the atomic DL operators (convolution,
pooling, etc.), and the edges represent the tensors. And the
graph is acyclic without loops, which differs from the data
dependence graphs [35] (DDG) of generic compilers [30],
[36]. And with the help of the DAG computation graph, DL
compilers can analyze the relationship and dependencies
between various operators and use them to guide the opti-
mizations. There are already plenty of optimizations on
DDG, such as common sub-expression elimination (CSE)
and dead code elimination (DCE). By combining the
domain knowledge of DL with these algorithms, further
optimizations can be applied to the DAG computation
graph, which will be elaborated in Section 3.3. DAG-based
IR is convenient for programming and compiling due to its
simplicity, but it has deficiencies such as semantic ambigu-
ity caused by the missing definition of computation scope.
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Let-Binding-Based IR. Let-binding is one method to solve
the semantic ambiguity by offering let expression to certain
functions with restricted scope used by many high-level
programming languages such as Javascript [37], F# [38],
and Scheme [39]. When using the let keyword to define an
expression, a let node is generated, and then it points to the
operator and variable in the expression instead of just build-
ing computational relation between variables as a DAG. In
DAG-based compiler, when a process needs to get the
return value of one expression, it first accesses the corre-
sponding node and searches related nodes, also known as
recursive descent technique. In contrast, the let-binding
based compiler figures out all results of the variables in let
expression and builds a variable map. When a particular
result is needed, the compiler looks up this map to decide
the result of the expression. Among the DL compilers, the
Relay IR [40] of TVM adopts both DAG-based IR and let-
binding-based IR to obtain the benefits of both.

Representing Tensor Computation. Different graph IRs have
different ways to represent the computation on tensors. The
operators of diverse DL frameworks are translated to graph
IRs according to such specific representations. And the cus-
tomized operators also need to be programmed in such
representation. The representation of tensor computation
can be divided into the following three categories.

1) Function-based: The function-based representation just
provides encapsulated operators, which is adopted by
Glow, nGraph and XLA. Take High Level Optimizer
(HLO, the IR of XLA) for example, it consists of a set of
functions in symbolic programming, and most of
them have no side-effect. The instructions are orga-
nized into three levels, including HloModule (the
whole program), HloComputaion (a function), and
HloInstruction (the operation). XLA uses HLO IR to
represent both graph IR and operation IR so that the
operation of HLO ranges from the dataflow level to
the operator level.

2) Lambda expression: The lambda expression, an index
formula expression, describes calculation by vari-
able binding and substitution. Using lambda
expression, programmers can define a computa-
tion quickly without implementing a new func-
tion. TVM represents the tensor computation
using the tensor expression, which is based on the
lambda expression. In TVM, computational opera-
tors in tensor expression are defined by the shape
of output tensor and the lambda expression of
computing rules.

3) Einstein notation: The Einstein notation, also known
as the summation convention, is a notation to
express summation. Its programming simplicity is
superior to lambda expression. Taking TC for exam-
ple, the indexes for temporary variables do not need
to be defined. The IR can figure out the actual expres-
sion by the occurrence of undefined variables based
on Einstein notation. In Einstein notation, the opera-
tors need to be associative and commutative. This
restriction guarantees the reduction operator can be
executed by any order, making it possible for further
parallelization.

3.1.2 Implementation of Graph IR

The implementation of graph IR in DL compilers fulfills the
management of data and operation.

Data Representation. The data in DL compilers (e.g.,
inputs, weights, and intermediate data) are usually orga-
nized in the form of tensors, which are also known as multi-
dimensional arrays. The DL compilers can represent tensor
data directly by memory pointers, or in a more flexible way
by placeholders. A placeholder contains the size for each
dimension of a tensor. Alternatively, the dimension sizes of
the tensor can be marked as unknown. For optimizations,
the DL compilers require the data layout information. In
addition, the bound of iterators should be inferred accord-
ing to the placeholders.

1) Placeholder: Placeholder is widely used in symbolic
programming (e.g., Lisp [41], Tensorflow [10]). A
placeholder is simply a variable with explicit shape
information (e.g., size in each dimension), and it will
be populated with values at the later stage of the
computation. It allows the programmers to describe
the operations and build the computation graph
without concerning the exact data elements, which
helps separate the computation definition from the
exact execution in DL compilers. Besides, it is conve-
nient for the programmers to change the shape of
input/output and other corresponding intermediate
data by using placeholders without changing the
computation definition.

2) Unknown (Dynamic) shape representation: The unknown
dimension size is usually supported when declaring
the placeholders. For instance, TVMusesAny to repre-
sent an unknown dimension (e.g., TensorhðAny;
3Þ; fp32i); XLA usesNone to achieve the same purpose
(e.g., tf:placeholderð00float00; ½None; 3�Þ); nGraph uses
its PartialShape class. The unknown shape representa-
tion is necessary to support the dynamic model. How-
ever, to fully support dynamic model, the bound
inference and dimension checking should be relaxed.
In addition, extra mechanism should be implemented
to guaranteememory validity.

3) Data layout: The data layout describes how a tensor is
organized in memory, and it is usually a mapping
from logical indices to memory indices. The data lay-
out usually includes the sequence of dimensions
(e.g., NCHW and NHWC), tiling, padding, striding,
etc. TVM and Glow represent data layout as operator
parameters and require such information for compu-
tation and optimization. However, combining data
layout information with operators rather than ten-
sors enables intuitive implementation for certain
operators and reduces the compilation overhead.
XLA represents data layout as constraints related to
its backend hardware. Relay and MLIR are going to
add data layout information into their type systems
for tensors.

4) Bound inference: The bound inference is applied to
determine the bound of iterators when compiling
DL models in DL compilers. Although the tensor
representation in DL compilers is convenient to
describe the inputs and outputs, it exposes special
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challenges for inferring the iterator bound. The
bound inference is usually performed recursively or
iteratively, according to the computation graph and
the known placeholders. For example, in TVM the
iterators form a directed acyclic hyper-graph, where
each node of the graph represents an iterator and
each hyper-edge represents the relation (e.g., split,
fuse or rebase) among two or more iterators. Once
the bound of the root iterator is determined based
on the shapes of placeholders, other iterators can be
inferred according to the relations recursively.

Operators Supported. The operators supported by DL com-
pilers are responsible for representing the DL workloads,
and they are nodes of the computation graph. The operators
usually include algebraic operators (e.g., þ, �, exp and
topK), neural network operators (e.g., convolution and pool-
ing), tensor operators (e.g., reshape, resize and copy), broad-
cast and reduction operators (e.g., min and argmin), as well
as control flow operators (e.g., conditional and loop). Here,
we choose three representative operators that are frequently
used across different DL compilers for illustration. In addi-
tion, we discuss the case for customized operators.

1) Broadcast: The broadcast operators can replicate the
data and generate new data with compatible shape.
Without broadcast operators, the input tensor shapes
are more constrained. For example, for an add opera-
tor, the input tensors are expected to be of the same
shape. Some compilers such as XLA and Relay relax
such restriction by offering the broadcasting operator.
For example, XLA allows the element-wise addition
on a matrix and a vector by replicating it until its
shape matches the matrix.

2) Control flow: Control flow is needed when represent-
ing complex and flexible models. Models such as
RNN and Reinforcement learning (RL) depend on
recurrent relations and data-dependent conditional
execution [42], which requires control flow. Without
supporting control flow in graph IR of DL compilers,
these models must rely on the control flow support
of the host languages (e.g., if and while in Python) or
static unrolling, which deteriorates the computation
efficiency. Relay notices that arbitrary control flow
can be implemented by recursion and pattern, which
has been demonstrated by functional program-
ming [40]. Therefore, it provides if operator and
recursive function for implementing control flow.
On the contrary, XLA represents control flow by spe-
cial HLO operators such as while and conditional.

3) Derivative: The derivative operator of an operator Op
takes the output gradients and the input data of Op
as its inputs, and then calculates the gradient of Op.
Although some DL compilers (e.g., TVM and TC)
support automatic differentiation [43], they require
the derivatives of all operators in high-level IR
when the chain rule is applied. TVM is working
towards providing the derivative operators of both
algebraic operators and neural network operators.
The programmers can use these derivative opera-
tors for building the derivatives of customized oper-
ators. On the contrary, PlaidML can generate

derivative operators automatically, even for custom-
ized operators. Notably, DL compilers unable to
support derivative operators fail to provide the
capability of model training.

4) Customized operators: It allows programmers to define
their operators for a particular purpose. Providing sup-
port for customized operators improves the extensibility
of DL compilers. For example, when defining new oper-
ators in Glow, the programmers need to realize the logic
and node encapsulation. In addition, extra efforts are
needed, such as the lowering step, operation IR genera-
tion, and instruction generation, if necessary. Whereas,
TVM and TC require less programming efforts except
describing the computation implementation. Specifi-
cally, the users of TVMonlyneed to describe the compu-
tation and the schedule and declare the shape of input/
output tensors. Moreover, the customized operators
integrate Python functions through hooks, which fur-
ther reduces the programmers’ burden.

3.1.3 Discussion

Nearly all DL compilers have their unique high-level IRs.
However, they share similar design philosophies, such as
using DAG and let-binding to build the computation graph.
In addition, they usually provide convenient ways for pro-
grammers to represent tensor computation. The data and
operators designed in high-level IRs are flexible and extensi-
ble enough to support diverse DL models. More impor-
tantly, the high-level IRs are hardware-independent and
thus can be applied with different hardware backend.

3.2 Low-Level IR

3.2.1 Implementation of Low-Level IR

Low-level IR describes the computation of a DL model in a
more fine-grained representation than that in high-level IR,
which enables the target-dependent optimizations by pro-
viding interfaces to tune the computation and memory
access. In this section, we classify the common implementa-
tions of low-level IRs into three categories: Halide-based IR,
polyhedral-based IR, and other unique IR.

Halide-Based IR. Halide is first proposed to parallelize
image processing, and it is proven to be extensible and effi-
cient in DL compilers (e.g., TVM). The fundamental philoso-
phy of Halide is the separation of computation and schedule.
Rather than giving a specific scheme directly, the compilers
adopting Halide try various possible schedule and choose
the best one. The boundaries of memory reference and loop
nests in Halide are restricted to bounded boxes aligned to
the axes. Thus, Halide cannot express the computation with
complicated patterns (e.g., non-rectangular). Fortunately,
the computations in DL are quite regular to be expressed
perfectly by Halide. Besides, Halide can easily parameterize
these boundaries and expose them to the tuning mecha-
nism. The original IR of the Halide needs to be modified
when applied to backend of DL compilers. For example, the
input shape of Halide is infinite, whereas the DL compilers
need to know the exact shape of data in order to map the
operator to hardware instructions. Some compilers, such as
TC, require the fixed size of data, to ensure better temporal
locality for tensor data.
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TVM has improved Halide IR into an independent sym-
bolic IR by following efforts. It removes the dependency on
LLVM and refactors the structure of both the project mod-
ule and the IR design of Halide, pursuing better organiza-
tion as well as accessibility for graph IR and frontend
language such as Python. The re-usability is also improved,
with a runtime dispatching mechanism implemented to
add customized operators conveniently. TVM simplifies the
variable definition from string matching to pointer match-
ing, guaranteeing that each variable has a single define loca-
tion (static single-assignment, SSA) [44]).

Polyhedral-Based IR. The polyhedral model is an impor-
tant technique adopted in DL compilers. It uses linear pro-
gramming, affine transformations, and other mathematical
methods to optimize loop-based codes with static control
flow of bounds and branches. In contrast to Halide, the
boundaries of memory reference and loop nests can be poly-
hedrons with any shapes in the polyhedral model. Such
flexibility makes polyhedral models widely used in generic
compilers. However, such flexibility also prevents the inte-
gration with the tuning mechanisms. Nevertheless, due to
the ability to deal with deeply nested loops, many DL com-
pilers, such as TC and PlaidML (as the backend of nGraph),
have adopted the polyhedral model as their low-level IR.
The polyhedral-based IR makes it easy to apply various
polyhedral transformations (e.g., fusion, tiling, sinking, and
mapping), including both device-dependent and device-
independent optimizations. There are many toolchains that
are borrowed by polyhedral-based compilers, such as
isl [45], Omega [46], PIP [47], Polylib [48], and PPL [49].

TC has its unique design in low-level IR, which combines
the Halide and polyhedral model. It uses Halide-based IR to
represent the computation and adopts the polyhedral-based
IR to represent the loop structures. TC presents detailed
expressions through abstract instances and introduces spe-
cific node types. In brief, TC uses the domain node to specify
the ranges of index variables and uses the context node to
describe new iterative variables that are related to hard-
ware. And it uses the band node to determine the order of
iterations. A filter node represents an iterator combined
with a statement instance. Set and sequence are keywords to
specify the execution types (parallel and serial execution)
for filters. Besides, TC uses extension nodes to describe other
necessary instructions for code generation, such as the
memory movement.

PlaidML uses polyhedral-based IR (called Stripe) to rep-
resent tensor operations. It creates a hierarchy of paralleliz-
able code by extending the nesting of parallel polyhedral
blocks to multiple levels. Besides, it allows nested polyhe-
drons to be allocated to nested memory units, providing a
way to match the computation with the memory hierarchy.
In Stripe, the hardware configuration is independent of the
kernel code. The tags in Stripe (known as passes in other
compilers) do not change the kernel structure, but provide
additional information about the hardware target for the
optimization passes. Stripe splits the DL operators into tiles
that fit into local hardware resources.

Other Unique IR. There are DL compilers implementing
customized low-level IRs without using Halide and polyhe-
dral model. Upon the customized low-level IRs, they apply
hardware-specific optimizations and lowers to LLVM IR.

The low-level IR in Glow is an instruction-based expres-
sion that operates on tensors referenced by addresses [27].
There are two kinds of instruction-based functions in Glow
low-level IR: declare and program. The first one declares the
number of constant memory regions that live throughout
the lifetime of the program (e.g., input, weight, bias). The
second one is a list of locally allocated regions, including
functions (e.g., conv and pool) and temporary variables.
Instructions can run on the global memory regions or locally
allocated regions. Besides, each operand is annotated with
one of the qualifiers: @in indicates the operand reads from
the buffer; @out indicates that the operand writes to the
buffer; @inout indicates that the operand reads and writes
to the buffer. These instructions and operand qualifiers help
Glow determine when certain memory optimizations can
be performed.

MLIR is highly influenced by LLVM, and it is a purer
compiler infrastructure than LLVM. MLIR reuses many
ideas and interfaces in LLVM, and sits between the model
representation and code generation. MLIR has a flexible
type system and allows multiple abstraction levels, and it
introduces dialects to represent these multiple levels of
abstraction. Each dialect consists of a set of defined immu-
table operations. The current dialects of MLIR include Ten-
sorFlow IR, XLA HLO IR, experimental polyhedral IR,
LLVM IR, and TensorFlow Lite. The flexible transforma-
tions between dialects are also supported. Furthermore,
MLIR can create new dialects to connect to a new low-level
compiler, which paves the way for hardware developers
and compiler researchers.

The HLO IR of XLA can be considered as both high-level
IR and low-level IR because HLO is fine-grained enough to
represent the hardware-specific information. Besides, HLO
supports hardware-specific optimizations and can be used
to emit LLVM IR.

3.2.2 Code Generation Based on Low-Level IR

The low-level IR adopted by most DL compilers can be
eventually lowered to LLVM IR, and benefits from LLVM’s
mature optimizer and code generator. Furthermore, LLVM
can explicitly design custom instruction sets for specialized
accelerators from scratch. However, traditional compilers
may generate poor code when passed directly to LLVM IR.
In order to avoid this situation, two approaches are applied
by DL compilers to achieve hardware-dependent optimiza-
tion: 1) perform target-specific loop transformation in the
upper IR of LLVM (e.g., Halide-based IR and polyhedral-
based IR), and 2) provide additional information about the
hardware target for the optimization passes. Most DL com-
pilers apply both approaches, but the emphasis is different.
In general, the DL compilers that prefer frontend users (e.g.,
TC, TVM, XLA, and nGraph) might focus on 1), whereas
the DL compilers that are more inclined to backend devel-
opers (e.g., Glow, PlaidML, and MLIR) might focus on 2).

The compilation scheme in DL compilers can be mainly
classified into two categories: just-in-time (JIT) and ahead-
of-time (AOT). For JIT compilers, it can generate executable
codes on the fly, and they can optimize codes with better
runtime knowledge. AOT compilers generate all executable
binaries first and then execute them. Thus they have a larger
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scope in static analysis than JIT compilation. In addition,
AOT approaches can be applied with cross-compilers of
embedded platforms (e.g., C-GOOD [50]) as well as enable
execution on remote machines (TVM RPC) and customized
accelerators.

3.2.3 Discussion

In DL compilers, the low-level IR is a fine-grained representa-
tion of DLmodels, and it reflects detailed implantation of DL
models on diverse hardware. The low-level IRs include
Halide-based IRs, polyhedral-based IRs, and other unique
IRs. Although they differ in designs, they leverage themature
compiler tool-chains and infrastructure, to provide tailored
interfaces of hardware-specific optimizations and code gen-
eration. The design of low-level IRs can also impact the
design of newDL accelerators (e.g., TVMHalideIR and Infer-
entia, as well as XLAHLO and TPU).

3.3 Frontend Optimizations

After constructing the computation graph, the frontend
applies graph-level optimizations. Many optimizations are
easier to be identified and performed at graph level because
the graph provides a global view of the computation. These
optimizations are only applied to the computation graph,
rather than the implementations on backends. Thus they are
hardware-independent and can be applied to various back-
end targets.

The frontend optimizations are usually defined by passes,
and can be applied by traversing the nodes of the computa-
tion graph and performing the graph transformations. The
frontend provides methods to 1) capture the specific fea-
tures from the computation graph and 2) rewrite the graph
for optimization. Besides the pre-defined passes, the devel-
opers can also define customized passes in the frontend.
Most DL compilers can determine the shape of both input
tensors and output tensors of every operation once a DL
model is imported and transformed as a computation
graph. This feature allows DL compilers to perform optimi-
zations according to the shape information. Fig. 2 shows an
example of computation graph optimizations with Tensor-
flow XLA.

In this section, we classify the frontend optimizations
into three categories: 1) node-level optimizations, 2) block-
level (peephole, local) optimizations, and 3) dataflow-level
(global) optimizations.

3.3.1 Node-Level Optimizations

The nodes of the computation graph are coarse enough to
enable optimizations inside a single node. And the node-
level optimizations include node elimination that eliminates
unnecessary nodes and node replacement that replaces
nodes with other lower-cost nodes.

In general-purpose compilers, Nop Elimination removes
the no-op instructions which occupy a small amount of
space but specify no operation. In DL compilers, Nop Elimi-
nation is responsible for eliminating the operations lacking
adequate inputs. For example, the sum node with only one
input tensor can be eliminated, the padding node with zero
padding width can be eliminated.

Zero-dim-tensor elimination is responsible for removing
the unnecessary operations whose inputs are zero-dimen-
sion tensors. Assume that A is a zero-dimension tensor, and
B is a constant tensor, then the sum operation node of A
and B can be replaced with the already existing constant
node B without affecting the correctness. Assume that C is
a 3-dimension tensor, but the shape of one dimension is
zero, such as {0,2,3}, therefore, C has no element, and the
argmin/argmax operation node can be eliminated.

3.3.2 Block-Level Optimizations

Algebraic simplification - The algebraic simplification optimi-
zations consist of 1) algebraic identification, 2) strength
reduction, with which we can replace more expensive oper-
ators by cheaper ones; 3) constant folding, with which we
can replace the constant expressions by their values. Such
optimizations consider a sequence of nodes, then take
advantage of commutativity, associativity, and distributiv-
ity of different kinds of nodes to simplify the computation.

In addition to the typical operators (þ, �, etc.), the alge-
braic simplification can also be applied to DL specific opera-
tors (e.g., reshape, transpose, and pooling). The operators can
be reordered and sometimes eliminated, which reduces

Fig. 2. Example of computation graph optimizations, taken from the HLO graph of Alexnet on Volta GPU using Tensorflow XLA.
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redundancy and improves the efficiency. Here we illustrate
the common cases where algebraic simplification can be
applied: 1) optimization of computation order, in such case, the
optimization finds and removes reshape/transpose opera-
tions according to specific characteristics. Taking the matrix
multiplication (GEMM) for example, there are two matrices
(e.g., A and B), both matrices are transposed (to produce AT

and BT , respectively), then AT and BT are multiplied
together. However, a more efficient way to implement
GEMM is to switch the order of the arguments A and B,
multiply them together, and then transpose the output of
the GEMM, which reduces two transpose to just one; 2) opti-
mization of node combination, in such case, the optimization
combines multiple consecutive transpose nodes into a single
node, eliminates identity transpose nodes, and optimizes
transpose nodes into reshape nodes when they actually move
no data; 3) optimization of ReduceMean nodes, in such case,
the optimization performs substitutions of ReduceMean
with AvgPool node (e.g., in Glow), if the input of the reduce
operator is 4D with the last two dimensions to be reduced.

Operator Fusion. Operator fusion is indispensable optimi-
zation of DL compilers. It enables better sharing of compu-
tation, eliminates intermediate allocations, facilitates
further optimization by combining loop nests [40], as well
as reduces launch and synchronization overhead [26]. In
TVM, the operators are classified into four categories: injec-
tive, reduction, complex-out-fusible, and opaque. When the
operators are defined, their corresponding categories are
determined. Targeting the above categories, TVM designs
the fusion rules across operators. In TC, fusion is per-
formed differently based on the automatic polyhedron
transformations. However, how to identify and fuse more
complicated graph patterns, such as blocks with multiple
broadcast and reduce nodes, remains to be a problem.
Recent works [51], [52] try to tackle this problem and pro-
pose a framework to explore and optimize aggressive
fusion plans. It supports not only element-wise and reduc-
tion nodes, but also other computation/memory intensive
nodes with complex dependencies.

Operator Sinking. This optimization sinks the operations
such as transposes below operations such as batch normaliza-
tion, ReLU, sigmoid, and channel shuffle. By this optimiza-
tion, many similar operations are moved closer to each other,
creatingmore opportunities for algebraic simplification.

3.3.3 Dataflow-Level Optimizations

Common Sub-Expression Elimination (CSE). An expression E
is a common sub-expression if the value of E is previously
computed, and the value of E has not to be changed since
previous computation [53]. In this case, the value of E is
computed once, and the already computed value of E can
be used to avoid recomputing in other places. The DL com-
pilers search for common sub-expressions through the
whole computation graph and replace the following com-
mon sub-expressions with the previously computed results.

Dead Code Elimination (DCE). A set of code is dead if its
computed results or side-effects are not used. And the DCE
optimization removes the dead code. The dead code is usually
not caused by programmers but is caused by other graph opti-
mizations. Thus, the DCE, as well as CSE, are applied after
other graph optimizations. Other optimizations, such as dead

store elimination (DSE), which removes stores into tensors
that are never going to be used, also belong toDCE.

Static Memory Planning. Static memory planning optimi-
zations are performed to reuse the memory buffers as much
as possible. Usually, there are two approaches: in-place
memory sharing and standard memory sharing. The in-
place memory sharing uses the same memory for input and
output for an operation, and just allocates one copy of mem-
ory before computing. Standard memory sharing reuses the
memory of previous operations without overlapping. The
static memory planning is done offline, which allows more
complicated planning algorithms to be applied. A recent
work [54] first designs and performs memory-aware sched-
uling to minimize the peak activation memory footprint on
edge devices, which presents new research directions of
memory planning on memory-constrained devices.

Layout Transformation. Layout transformation tries to find
the best data layouts to store tensors in the computation
graph and then inserts the layout transformation nodes to
the graph. Note that the actual transformation is not per-
formed here, instead, it will be performed when evaluating
the computation graph by the compiler backend.

In fact, the performance of the same operation in different
data layouts is different, and the best layouts are also different
on different hardware. For example, operations in the NCHW
format onGPUusually run faster, so it is efficient to transform
to NCHW format on GPU (e.g., TensorFlow). Some DL com-
pilers rely on hardware-specific libraries to achieve higher
performance, and the libraries may require certain layouts.
Besides, some DL accelerators prefer more complicated lay-
outs (e.g., tile). In addition, edge devices usually equip heter-
ogenous computing units, and different units may require
different data layouts for better utilization, thus layout
transformation needs careful considerations. Therefore, the
compilers need to provide a way to perform layout transfor-
mations across various hardware.

Not only the data layouts of tensors have a nontrivial
influence on the final performance, but also the transforma-
tion operations have a significant overhead. Because they
also consume the memory and computation resource.

A recent work [55] based on TVM targeting on CPUs
alters the layout of all convolution operations to NCHW[x]c
first in the computation graph, in which c means the split
sub-dimension of channel C and x indicates the split size of
the sub-dimension. Then all x parameters are globally
explored by auto-tuning when providing hardware details,
such as cache line size, vectorization unit size, and memory
access pattern, during hardware-specific optimizations.

3.3.4 Discussion

The frontend is one of the most important components in DL
compilers, which is responsible for transformation from DL
models to high-level IR (e.g., computation graph) and hard-
ware-independent optimizations based on high-level IR.
Although the implementation of frontend may differ in the
data representation and operator definition of high-level IR
across DL compilers, the hardware-independent optimiza-
tions converge at three levels: node-level, block-level, and
dataflow-level. The optimizationmethods at each level lever-
age the DL specific as well as general compilation optimiza-
tion techniques, which reduce the computation redundancy
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aswell as improve the performance of DLmodels at the com-
putation graph level.

3.4 Backend Optimizations

The backends of DL compilers have commonly included vari-
ous hardware-specific optimizations, auto-tuning techniques,
and optimized kernel libraries. Hardware-specific optimiza-
tions enable efficient code generation for different hardware
targets. Whereas, auto-tuning has been essential in the com-
piler backend to alleviate the manual efforts to derive the
optimal parameter configurations. Besides, highly-optimized
kernel libraries are also widely used on general-purpose pro-
cessors and other customizedDL accelerators.

3.4.1 Hardware-Specific Optimization

Hardware-specific optimizations, also known as target-
dependent optimizations, are applied to obtain high-perfor-
mance codes targeting specific hardware. One way to apply
the backend optimizations is to transform the low-level IR
into LLVM IR, to utilize the LLVM infrastructure to gener-
ate optimized CPU/GPU codes. The other way is to design
customized optimizations with DL domain knowledge,
leveraging the target hardware more efficiently. Since hard-
ware-specific optimizations are tailored for particular hard-
ware and cannot be included exhaustively in this paper, we
present five widely adopted approaches in existing DL com-
pilers. The overview of these hardware-specific optimiza-
tions is shown in Fig. 3, and the detailed descriptions are
provided as follows.

Hardware Intrinsic Mapping. Hardware intrinsic mapping
can transform a certain set of low-level IR instructions to ker-
nels that have already been highly optimized on the hard-
ware. In TVM, the hardware intrinsic mapping is realized in
the method of extensible tensorization, which can declare the
behavior of hardware intrinsic and the lowering rule for
intrinsicmapping. Thismethod enables the compiler backend
to apply hardware implementations as well as highly opti-
mized handcraft micro-kernels to a specific pattern of opera-
tions, which results in a significant performance gain.
Whereas, Glow supports hardware intrinsic mapping such as

quantization. It can estimate the possible numeric range for
each stage of the neural network and support profile-guided
optimization to perform quantization automatically. Besides,
Halide/TVM maps specific IR patterns to SIMD opcodes on
each architecture to avoid the inefficiency of LLVM IR map-
pingwhen encountering vector patterns.

Memory Allocation and Fetching. Memory allocation is
another challenge in code generation, especially for GPUs and
customized accelerators. For example, GPU contains primar-
ily shared memory space (lower access latency with limited
memory size) and local memory space (higher access latency
with large capacity). Suchmemory hierarchy requires efficient
memory allocation and fetching techniques for improving
data locality. To realize this optimization, TVM introduces the
scheduling concept of memory scope. Memory scope schedule
primitives can tag a compute stage as shared or thread-local. For
compute stages tagged as shared, TVM generates code with
shared memory allocation as well as cooperative data fetch-
ing, which inserts memory barrier at the proper code position
to guarantee correctness. Besides, TC also provides similar
features (known as memory promotion) by extending
PPCG [56] compiler. However, TC only supports limited pre-
defined rules. Particularly, TVM enables special buffering in
accelerators throughmemory scope schedule primitives.

Memory Latency Hiding. Memory latency hiding is also an
important technique used in the backend by reordering the
execution pipeline. As most DL compilers support paralleli-
zation on CPU and GPU, memory latency hiding can be nat-
urally achieved by hardware (e.g., warp context switching
on GPU). But for TPU-like accelerators with decoupled access-
execute (DAE) architecture, the backend needs to perform
scheduling and fine-grained synchronization to obtain cor-
rect and efficient codes. To achieve better performance as
well as reduce programming burden, TVM introduces vir-
tual threading schedule primitive, which enables users to
specify the data parallelism on virtualized multi-thread
architecture. Then TVM lowers these virtually parallelized
threads by inserting necessary memory barriers and inter-
leaves the operations from these threads into a single
instruction stream, which forms a better execution pipeline
of each thread to hide the memory access latency.

Fig. 3. Overview of hardware-specific optimizations applied in DL compilers.
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Loop Oriented Optimizations. Loop oriented optimizations
are also applied in the backend to generate efficient codes
for target hardware. Since Halide and LLVM [30] (inte-
grated with the polyhedral method) have already incorpo-
rated such optimization techniques, some DL compilers
leverage Halide and LLVM in their backends. The key
techniques applied in loop oriented optimizations include
loop fusion, sliding windows, tiling, loop reordering, and
loop unrolling.

1) Loop fusion: Loop fusion is a loop optimization tech-
nique that can fuse loops with the same boundaries
for better data reuse. For compilers such as PlaidML,
TVM, TC, and XLA, such optimization is performed
by the Halide schedule or polyhedral approach,
while Glow applies loop fusion by its operator
stacking.

2) Sliding windows: Sliding windows is a loop optimiza-
tion technique adopted by Halide. Its central concept
is to compute values when needed and store them
on the fly for data reuse until they are no longer
required. As sliding windows interleaves the com-
putation of two loops and make them serial, it is a
tradeoff between parallelism and data reuse.

3) Tiling: Tiling splits loops into several tiles, and thus
loops are divided into outer loops iterating through
tiles and inner loops iterating inside a tile. This trans-
formation enables better data locality inside a tile by
fitting a tile into hardware caches. As the size of a
tile is hardware-specific, many DL compilers deter-
mine the tiling pattern and size by auto-tuning.

4) Loop reordering: Loop reordering (also known as loop
permutation) changes the order of iterations in a
nested loop, which can optimize the memory access
and thus increase the spatial locality. It is specific to
data layout and hardware features. However, it is
not safe to perform loop reordering when there are
dependencies along the iteration order.

5) Loop unrolling: Loop unrolling can unroll a specific
loop to a fixed number of copies of loop bodies,
which allows the compilers to apply aggressive
instruction-level parallelism. Usually, loop unrolling
is applied in combination with loop split, which first
splits the loop into two nested loops and then unrolls
the inner loop completely.

Parallelization. As modern processors generally support
multi-threading and SIMD parallelism, the compiler back-
end needs to exploit parallelism to maximize hardware uti-
lization for high performance. Halide uses a schedule
primitive called parallel to specify the parallelized dimen-
sion of the loop for thread-level parallelization and supports
GPU parallelization by mapping loop dimensions tagged as
parallel with annotation of block and thread. And it replaces a
loop of size n with a n-wide vector statement, which can be
mapped to hardware-specific SIMD opcodes through hard-
ware intrinsic mapping. Stripe develops a variant of the
polyhedral model called nested polyhedral model, which intro-
duces parallel polyhedral block as its basic execution element
of iteration. After this extension, a nested polyhedral model
can detect hierarchy parallelization among levels of tiling
and striding. In addition, some DL compilers rely on

handcraft libraries such as Glow or optimized math libraries
provided by hardware vendors (discussed in Section 3.4.3).
In the meanwhile, Glow offloads the vectorization to LLVM
because the LLVM auto-vectorizer works well when the
information of tensor dimension and loop trip count is pro-
vided. However, exploiting the parallelism entirely by com-
piler backend allows to apply more domain-specific
knowledge of DL models, and thus leads to higher perfor-
mance at the expense of more engineering efforts.

3.4.2 Auto-Tuning

Due to the enormous search space for parameter tuning in
hardware-specific optimizations, it is necessary to leverage
auto-tuning to determine the optimal parameter configura-
tions. Among the studied DL compilers in this survey,
TVM, TC, and XLA support the auto-tuning. Generally, the
auto-tuning implementation includes four key components,
such as parameterization, cost model, searching technique,
and acceleration.

Parameterization. 1) Data and target: The data parameter
describes the specification of the data, such as input shapes.
The target parameter describes hardware-specific character-
istics and constraints to be considered during optimization
scheduling and code generation. For example, for the GPU
target, the hardware parameters such as shared memory
and register size need to be specified. 2) Optimization options:
The optimization options include the optimization schedul-
ing and corresponding parameters, such as loop oriented
optimizations and tile size. In TVM, both pre-defined and
user-defined scheduling, as well as parameters, are taken
into consideration. Whereas, TC and XLA prefer to parame-
terize the optimizations, which have a strong correlation
with performance and can be changed later at a low cost.
For example, the minibatch dimension is one of the parame-
ters that is usually mapped to grid dimensions in CUDA
and can be optimized during auto-tuning.

Cost Model. The comparison of different cost models
applied in auto-tuning are as follows. 1) Black-box model:
This model only considers the final execution time rather
than the characteristics of the compilation task. It is easy to
build a black-box model, but easily ends up with higher
overhead and less optimal solution without the guidance of
task characteristics. TC adopts this model. 2) ML-based cost
model: ML-based cost model is a statistical approach to pre-
dict performance using a machine learning method. It ena-
bles the model to update as the new configuration is
explored, which helps achieve higher prediction accuracy.
TVM and XLA adopt this kind of model, for example, gradi-
ent tree boosting model (GBDT) and feedforward neural
network [57] (FNN) respectively. 3) Pre-defined cost model:
An approach based on a pre-defined cost model expects a
perfect model built on the characteristics of the compilation
task and able to evaluate the overall performance of the
task. Compared to the ML-based model, the pre-defined
model generates less computation overhead when applied,
but requires large engineering efforts for re-building the
model on each new DL model and hardware.

Searching Technique. 1) Initialization and searching space
determination: The initial option can either be set randomly
or based on the known configurations, such as

LI ET AL.: DEEP LEARNING COMPILER: A COMPREHENSIVE SURVEY 717

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on December 20,2021 at 02:21:47 UTC from IEEE Xplore.  Restrictions apply. 



configurations given by users or historical optimal configu-
rations. In terms of searching space, it should be specified
before auto-tuning. TVM allows developers to specify the
searching space with their domain-specific knowledge and
provides automatic search space extraction for each hard-
ware target based on the computational description. In con-
trast, TC relies on the compilation cache and the pre-
defined rules. 2) Genetic algorithm (GA) [58]: GA considers
each tuning parameter as genes and each configuration as a
candidate. The new candidate is iteratively generated by
crossover, mutation, and selection according to the fitness
value, which is a metaheuristic inspired by the process of
natural selection. And finally, the optimal candidate is
derived. The rate of crossover, mutation, and selection is
used for controlling the tradeoff between exploration and
exploitation. TC adopts GA in its auto-tuning technique. 3)
Simulated annealing algorithm (SA) [59]: SA is also a meta-
heuristic inspired by annealing. It allows us to accept worse
solutions in a decreasing probability, which can find the
approximate global optimum and avoid the precise local
optimum in a fixed amount of iterations. TVM adopts SA in
its auto-tuning technique. 4) Reinforcement learning (RL): RL
performs with learning to maximize reward given an envi-
ronment by the tradeoff between exploration and exploita-
tion. Chameleon [60] (built upon TVM) adopts RLRL in its
auto-tuning technique.

Acceleration. 1) Parallelization: One direction for accelerat-
ing auto-tuning is parallelization. TC proposes a multi-
thread, multi-GPU strategy considering that the genetic
algorithm needs to evaluate all candidates in each genera-
tion. First, it enqueues candidate configurations and com-
piles them on multiple CPU threads. The generated code is
evaluated on GPUs in parallel, and each candidate owns its
fitness used by the parent choosing step. After finishing the
whole evaluation, the new candidate is generated, and the
new compilation job is enqueued, waiting for compiling on
CPU. Similarly, TVM supports cross-compilation and RPC,
allowing users to compile on the local machine and run the
programs with different auto-tuning configurations on mul-
tiple targets. 2) Configuration reuse: Another direction for
accelerating auto-tuning is to reuse the previous auto-tun-
ing configurations. TC stores the fastest known generated
code version corresponding to the given configuration by
compilation cache. The cache is queried before each kernel
optimization during the compilation, and the auto-tuning is
triggered if cache miss. Similarly, TVM produces a log file
that stores the optimal configurations for all scheduling
operators and queries the log file for best configurations
during compilation. It is worth mentioning that TVM per-
forms auto-tuning for each operator in Halide IR (e.g.,
conv2d), and thus the optimal configurations are deter-
mined for each operator separately.

3.4.3 Optimized Kernel Libraries

There are several highly-optimized kernel libraries widely
used to accelerate DL training and inference on various
hardware. DNNL (previously MKL-DNN) from Intel,
cuDNN from NVIDIA, and MIOpen from AMD are widely
used libraries. Both computation-intensive primitives (e.g.,
convolution, GEMM, and RNN) and memory bandwidth
limited primitives (e.g., batch normalization, pooling, and

shuffle) are highly optimized according to the hardware fea-
tures (e.g., AVX-512 ISA, tensor cores). And customizable
data layouts are supported to make it easy to integrate into
DL applications and avoid frequent data layout transforma-
tions. Besides, low-precision training and inference, includ-
ing FP32, FP16, INT8, and non-IEEE floating-point format
bfloat16 [61] are also supported. Other customized DL accel-
erators also maintain their specific kernel libraries [22], [23].

Existing DL compilers, such as TVM, nGraph, and TC,
can generate the function calls to these libraries during code
generation. However, if DL compilers need to leverage the
existing optimized kernel libraries, they should first trans-
form the data layouts and fusion styles into the types that
are pre-defined in kernel libraries. Such transformation may
break the optimal control flow. Moreover, the DL compilers
treat the kernel libraries as a black box. Therefore they are
unable to apply optimizations across operators (e.g., opera-
tor fusion) when invoking kernel libraries. In sum, using
optimized kernel libraries achieves significant performance
improvement when the computation can be satisfied by spe-
cific highly-optimized primitives, otherwise it may be con-
strained from further optimization and suffer from less
optimal performance.

3.4.4 Discussion

The backend is responsible for bare-metal optimizations
and code generation based on low-level IR. Although the
design of backends may differ due to various low-level
IRs, their optimizations can be classified into hardware-
specific optimizations: auto-tuning techniques, and opti-
mized kernel libraries. These optimizations can be per-
formed separately or combined, to achieve better data
locality and parallelization by exploiting the hardware/
software characteristics. Eventually, the high-level IR of
DL models is transformed into efficient code implementa-
tion on different hardware.

4 TAXONOMY OF DL COMPILERS

The DL compilers studied in this survey include TVM,
nGraph, Tensor Comprehensions (TC), Glow, and XLA. We
select these compilers since they are well-known, well main-
tained, and most importantly, widely used. Thus, we can
find enough papers, documents, and discussions from both
industry and academia in order to study their designs and
implementations in-depth. Table 1 illustrates the taxonomy
of the selected DL compilers from four perspectives, includ-
ing frontend, backend, IR, and optimizations, which corre-
sponds with the key components described in this survey.

Specifically, we provide more information about the
compilers to the best of our knowledge. We not only pro-
vide whether a compiler supports a specific feature, but
also describe how to use this feature through its program-
ming interface. In addition, we also describe the developing
status of specific features and the reasons why specific fea-
tures are not supported in particular compilers. The target
of this taxonomy is to provide guidelines about the selection
of DL compilers for the practitioners considering their
requirements, as well as to give a thorough summary of the
DL compilers for researchers.
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In Table 1, we present the features of each DL compiler,
including developer, programming language, ONNX/frame-
work support, training support, and quantization support in
the frontend category, and we present the compilation meth-
ods and supported devices in the backend category. These
features are summarized because they strongly affect the
usage of DL compilers in particular scenarios. Based on these
features, practitioners or researchers can easily decide which
DL compiler theywould like towork upon.

Table 1, together with Fig. 1 can serve as a systematic
summary of this survey. Through them, readers can identify
the features each compiler supports as well as the key com-
ponents of each compiler. More detailed information is pre-
sented in the following sections.

5 EVALUATION

5.1 Experimental Setup

Our experiments are conducted on two GPU-equipped
machines, and the hardware configuration is shown in
Table 2. We evaluate the performance of TVM (v0.6.0),
nGraph (0.29.0-rc.0), TC (commit fd01443), Glow (commit
7e68188) and XLA (TensorFlow 2.2.0) on CPU and GPU. We
select 19 neural network models in ONNX format as our
datasets, which are converted from the Torchvison2 model
zoo and the GluonCV3 model zoo. These models include

TABLE 1
The Comparison of DL Compilers, Including TVM, nGraph, TC, Glow, and XLA

2. https://pytorch.org/docs/stable/torchvision/models.html
3. https://gluon-cv.mxnet.io/model_zoo/index.html
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full-fledged models: ResNet, DenseNet and VGG series,
and lightweight models: MobileNet and MNASNet series.
To import the ONNX models, as shown in Table 1, we use
the built-in tvm.relay.frontend.from_onnx interface of TVM,
the ngraph-onnx Python package of nGraph, the built-in
ONNXModelLoader of Glow, and the tensorflow-onnx Python
package of XLA. Notably, TC lacks the support of ONNX,
so we only evaluate it in the following per-layer perfor-
mance comparison. Each model is executed for 15 times,
and we report the average execution time of the last 10 exe-
cutions for each compiler, because we regard the first 5 exe-
cutions as the warm-up to eliminate the overhead of JIT
compilation.

5.2 End-to-End Performance Comparison

As shown in Fig. 4, we compare the performance of end-to-
end inference across TVM, nGraph, Glow, and XLA. We
evaluate these compilers on both CPUs (Broadwell and

Skylake) and GPUs (V100 and 2080Ti). Note that, we omit
the comparison of TC here. Because TC is more similar to
a kernel library other than fully functional DL compiler,
and it requires the users to implement all layers of a model
with its Einstein notion manually, which leads to heavy
engineering efforts for a fair comparison. Another reason
is that TC only supports running on GPU, thus we cannot
obtain its performance results on CPU. However, for
detailed comparisons (Figs. 5 and 7), we still implement
several ResNet and MobileNetV2 models in TC. In sum,
we compare and analyze the performance results from the
following perspectives.

Compatibility. Although nGraph and XLA claims to sup-
port ONNX, there are still compatibility problems. 1)
nGraph fails to run the DenseNet121, VGG16/19 and
MNASNet0_5/1_0 models due to tensors with dynamic
shapes. Alternatively, we replace the DenseNet121,
VGG16/19 models with the corresponding models from the
ONNX model zoo,4 while MNASNet0_5/1_0 models are
not available. Besides, when we set PlaidML as the backend
of nGraph on GPU, we fail to run all MobileNet models.
Because PlaidML cannot handle the inconsistent definition
of operators across different DL frameworks. 2) XLA can
run all selected models, however, the performance is quite

Fig. 4. The performance comparison of end-to-end inference across TVM, nGraph, Glow, and XLA on CPU and GPU.

Fig. 5. The performance comparison of convolution layers in MobileNetV2 1.0 across TVM, TC, Glow, and XLA on V100 GPU.

TABLE 2
The Hardware Configuration

4. https://github.com/onnx/models
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low. Thus, we replace the selected ONNX models with the
savedmodels from the Tensorflow Hub,5 while the MNAS-

Net0_5/1_0 models are not available. With models from
Tensorflow Hub, XLA becomes two orders of magnitude
faster, and the performance of XLA becomes competitive
with other compilers.

Performance. From Fig. 4, we have several observations
about the performance illustrated as follows.

1) On CPU, the performance of Glow is worse than other com-
pilers. This is because Glow does not support thread parallel-
ism. Thus it cannot fully utilize the multi-core CPU. Whereas
TVM, nGraph, andXLA can leverage all CPU cores.

2) XLA has the similar end-to-end inference performance for
both full-fledged models ( ResNet , DenseNet and VGG series)
and lightweight models ( MobileNet and MNASNet series).
Besides, its inference performance on CPU and GPU is almost the
same. It is known that XLA is embedded in the Tensorflow
framework. Tensorflow contains a complicated runtime
compared to TVM, nGraph, and Glow, which introduces
non-trivial overhead to XLA. In addition, if we increase the
batch size (set to one by default in our evaluation) and focus
on the throughput of DL compilers, then the overhead of
XLA can be ignored with higher throughput.

3) In general, on CPU, TVM and nGraph achieve better
performance across all models than other DL compilers, due
to the limitations of Glow and XLA described above.
TVM has comparable performance with nGraph on full-
fledged models, while it is better than nGraph on light-
weight models. nGraph relies on the DNNL (previously
MKL-DNN) library for acceleration. Thus, nGraph can
offload the optimized subgraphs to DNNL and benefit
from DNNL’s fine-grained instruction-level JIT optimiza-
tions tailored for Intel CPU.

4) The tuned TVM (tuned with 200 trials) almost achieves
the best performance on both CPU and GPU across all models,
especially on lightweight models (MobileNet, MNASNet

series). Based on our investigation, this is because the
schedules of classic operators inside these models have
already been well designed by TVM developers, with the
default parameters provided in TVM tophub. The default
schedules and parameters can help TVM to achieve similar
performance compared to other DL compilers. In addition,
the performance difference between the tuned TVM and
untuned TVM is negligible on CPU but quite significant on
GPU (41.26� speedup on average). This is because the

GPU has more complicated thread and memory hierarchy
than CPU, thus to exploit the computation power, GPU
requires more fine-grained scheduling (e.g., tile, split, and
reorder in TVM). Therefore, it is crucial to determine the
optimal scheduling parameters on GPU, where the auto-
tuning exhibits its effectiveness.

5.3 Per-Layer Performance Comparison

To further compare the capability of backend optimizations
of DL compilers, we evaluate the per-layer (convolution
layers since they dominate the inference time) performance
of the ResNet50 and MobileNetV2 1.0 on V100 GPU
and Broadwell CPU (single-threaded since Glow lacks
multi-threading support).

Methodology. To measure the execution time of individual
layers, we adopt different methods considering the DL com-
pilers, the hardware (CPU/GPU), and the CNN models.
Specifically, 1) On TVM, we re-use the logs of autotuning to
extract the kernel shapes and the optimal schedule. Then
we rebuild the individual convolution layers and use the
time_evaluator for evaluation. 2) We extract the execution
time through the tracing files of Glow. 3) And we measure
the execution time of hand-written kernels on TC. 4) As for
nGraph, we make use of the timeline to measure the execu-
tion time on CPU. However, the timeline is not supported by
its PlaidML backend (which provides GPU support through
OpenCL). Besides, there are no available methods to profile
the command queues within OpenCL. Therefore, we leave
the profiling of the per-layer performance of nGraph on
GPU for future work. 4) As for XLA, we leverage the built-
in tf.profiler.experimental method for CPU performance and
the DLProf [62] toolkit from Nvidia for GPU performance.

Performance. From Figs. 5, 6, 7, and 8, we have several
observations about the performance illustrated as follows.

1) nGraph achieves a better performance of the convolution
layers on CPU, which benefits from the co-design of hard-
ware (Intel CPU) and software (compiler, library, and run-
time). Whereas, TVM performs better on GPU across these
compilers. On MobileNetV2 1.0, the performance of TVM
is not stable, especially on conv1 layer. This is because the
autotuning process is affected by other processes on the
same machine, and thus it tends to derive the imprecise,
even negative scheduling parameters.

2) TC allows users to define a tensor computation kernel
(e.g., convolution) by the Einstein notion without specifying
the shape of input/output tensors (e.g., kernel size). Then
the kernel is autotuned and stored in its compilation cache

Fig. 6. The performance comparison of convolution layers in MobileNetV2 1.0 across TVM, nGraph, and Glow on Broadwell CPU.

5. https://tfhub.dev/

LI ET AL.: DEEP LEARNING COMPILER: A COMPREHENSIVE SURVEY 721

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on December 20,2021 at 02:21:47 UTC from IEEE Xplore.  Restrictions apply. 

https://tfhub.dev/


to accelerate further autotuning and compilation. However,
in our evaluation, we find the performance of TC heavily relies on
the initially compiled kernels. Take MobileNetV2 1.0 for exam-
ple, if we initialize the autotuning with layer c1, then c1 can
perform well. But the following c� b� � layers become
much slower as the layers go deeper (far away from c1
layer). To derive a consistent performance, we need to tune
each kernel separately.

3) Glow falls behind other compilers to optimize the 1� 1 con-
volutions (e.g., the b� linear layers) of MobileNetV2 1.0 as
well as the depth-wise separable convolutions (e.g., c� b� 2
layers) of ResNet50. It takes a longer time to compute these
convolutions both on GPU and CPU. We notice the convolu-
tions are usually fused with other layers (e.g., ReLU, Batch-
Norm) on Glow, which could be why the lower
performance compared to other compilers. Moreover, on
CPU, the convolutions at the end of MobileNetV2 1.0

take a quite shorter time than convolutions at the beginning.
According to the tracing log, we notice these convolutions
are accelerated by the CPUConvDKKC8 optimization [27],
which applies tiling, layout transformation, and vectoriza-
tion to convolutions with specific patterns.

4) As for XLA, it can automatically compile (_XlaCompile)
the eligible subgraphs from Tensorflow and replace the sub-
graphs with the resultant binaries (_XlaRun). In addition,
the convolution layers may be clustered with other kernels,
and thus their performance is not easy to measure individu-
ally. Therefore, we have counted the clustered and the non-
clustered convolutions, and the data is shown in Table 3.
Note that the MobileNetV2 1.0 model in Tensorflow is a
little bit different from the ONNX model for the beginning
and ending layers, however, the linearbottleneck layers are
the same. Moreover, if a convolution is to be clustered, it
could be measured at most twice till the finishing of

_XlaCompile. Therefore, there are five extreme value in
Fig. 5 (corresponding with 5 clustered convolutions in
MobileNetV2 1.0). Actually, only the clustered kernels
are optimized by XLA, while the non-clustered ones are
optimized by Tensorflow. Therefore, it is impossible to mea-
sure the execution time of a standalone convolution layer
optimized by XLA. Consequently, we decide not to include
the performance of XLA in Figs. 6, 7, and 8.

5.4 Discussion

Through the above quantitative performance comparison
across DL compilers, we can in-depth analyze the coarse-
grained end-to-end performance with both frontend
(graph-level) and backend (operator-level) optimizations, as
well as the fine-grained per-layer performance about the
convolutions with backend optimizations. However, there
are still open challenges to accurately measure the effective-
ness of the optimizations adopted by different DL com-
pilers. One particular difficulty during our evaluation is
that the frontend and backend optimizations are usually
tightly coupled in existing DL compilers, because 1) the
frontend optimizations usually affect a series of operators.
Thus the optimized operators as the inputs to the backend
optimizations differ across different compilers; 2) these

Fig. 7. The performance comparison of convolution layers in ResNet50 across TVM, TC, and Glow on V100 GPU.

Fig. 8. The performance comparison of convolution layers in ResNet50 across TVM, nGraph, and Glow on Broadwell CPU.

TABLE 3
The Number of the Clustered and Non-Clustered Convolutions

of XLA on V100 GPU and Broadwell CPU

MobileNetV2_1.0 ResNet50

Clustered Non-clu- Clustered Non-clu-

V100 5 47 0 53
Broadwell 17 35 53 0
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optimizations tend to be co-designed for further exploit the
performance opportunities (e.g., clustering in XLA and
more advanced optimizations [52], [55]). Therefore, it is dif-
ficult if not impossible to evaluate and compare specific
optimizations across DL compilers individually.

To tackle this problem, we have been working on build-
ing a universal benchmarking framework for existing DL
compilers to measure the per-layer performance. The funda-
mental idea is to extract the necessary structures and
parameters of the target layers (we name them as model frag-
ments), and rebuild the layers as acceptable inputs to a par-
ticular DL compiler, which allows the compiler to apply
corresponding frontend and backend optimizations faith-
fully. We can then measure the performance of these opti-
mized model fragments to understand the effectiveness of DL
compilers at layers of interests. The benchmarking frame-
work using model fragments is scalable to customized layers
(e.g., fused layers) of interest. With such benchmarking
framework available, we can derive both coarse-grained
(e.g., end-to-end) and fine-grained (e.g., per-layer) perfor-
mance metrics for each DL compiler, and thus compare the
effectiveness of optimizations across different DL compilers
at the level of interest. Currently, we have successfully
experimented by extracting the target layers from the state-
of-the-art CNN models, such as the bottleneck of ResNet50
and the linearbottleneck of MobileNetV2_1.0. Our bench-
marking framework is still under rapid development, and
we hope to make it available to the community soon.

6 CONCLUSION AND FUTURE DIRECTIONS

In this survey, we present a thorough analysis of the existing
DL compilers targeting the design principles. First, we take a
deep dive into the common architecture adopted in the exist-
ing DL compilers including the multi-level IR, the frontend
and the backend.We present the design philosophies and ref-
erence implementations of each component in detail, with the
emphasis on the unique IRs and optimizations specific to DL
compilers. We provide a comprehensive taxonomy as well as
the quantitative performance comparison among DL com-
pilers. And we summarize the findings in this survey and
highlight the future directions in DL compiler as follows:

Dynamic Shape and Pre/Post Processing. Dynamic model
becomes more and more popular in the field of DL, whose
input shape or even model itself may change during execu-
tion. Particularly, in the area of NLP, models may accept
inputs of various shapes, which is challenging for DL com-
pilers since the shape of data is unknown until runtime. Exist-
ing DL compilers require more research efforts to support
dynamic shape efficiently for emerging dynamicmodels.

In addition, as future DL models become more complex,
their entire control flow may inevitably include complicated
pre/post-processing procedures. Currently, most DL com-
pilers use Python as their programming language, the pre/
post-processing could become a performance bottleneck
when it is executed by the Python interpreter. Such potential
performance bottleneck has not yet been considered by exist-
ing DL compilers. Supporting the entire control flow in DL
compiler enables express and optimize the pre/post-process-
ing alongwithDLmodels,which opens upnew opportunities
for performance acceleration inmodel deployment.

Advanced Auto-Tuning. Existing auto-tuning techniques
focus on the optimization of individual operators. However,
the combination of the local optimal does not lead to global
optimal. For example, two adjacent operators that apply on
different data layouts can be tuned together without intro-
ducing extra memory transformations in between. Besides,
with the rise of edge computing, execution time is not only
the optimization objective for DL compilers. New optimiza-
tion targets should also be considered in the auto-tuning
such as memory footprint and energy consumption.

Particularly, for the ML-based auto-tuning techniques,
there are several directions worth further exploring. First,
the ML techniques can be applied in other stages of auto-
tuning, other than the cost model. For example, in the stage
of selecting compiler options and optimization schedules,
ML techniques can be used to predict the possibility directly
and develop algorithms to determine the final configura-
tions. Second, the ML-based auto-tuning techniques can be
improved based on the domain knowledge. For example,
incorporating the feature engineering (selecting features to
represent program) [63] in auto-tuning techniques could be
a potential direction for achieving better tuning results.

Polyhedral Model. It is a promising research direction to
combine polyhedral model and auto-tuning techniques in
the design of DL compilers for efficiency. On one hand, the
auto-tuning can be applied to minimize the overhead of
polyhedral JIT compilation by reusing the previous configu-
rations. On the other hand, the polyhedral model can be
used to perform auto-scheduling, which can reduce the
search space of auto-tuning.

Another challenge of applying polyhedral model in DL
compilers is to support the sparse tensor. In general, the for-
mat of a sparse tensor such as CSF [64] expresses the loop
indices with index arrays (e.g., a½b½i��) that is no longer lin-
ear. Such indirect index addressing leads to non-affine sub-
script expressions and loop bounds, which prohibits the
loop optimization of the polyhedral model [65], [66]. Fortu-
nately, the polyhedral community has made progress in
supporting sparse tensor [67], [68], and integrating the latest
advancement of the polyhedral model can increase the per-
formance opportunities for DL compilers.

Subgraph Partitioning. DL compilers supporting sub-
graph partitioning can divide the computation graph into
several subgraphs, and the subgraphs can be processed in
different manners. The subgraph partitioning presents
more research opportunities for DL compilers. First, it
opens up the possibility to integrate graph libraries for
optimization. Take nGraph and DNNL for example,
DNNL is a DL library with graph optimizations leveraging
vast collection of highly optimized kernels. The integration
of DNNL with nGraph enables DNNL to speedup the exe-
cution of the subgraphs generated by nGraph. Second, it
opens up the possibility of heterogeneous and parallel exe-
cution. Once the computation graph is partitioned into
subgraphs, the execution of different subgraphs can be
assigned to heterogeneous hardware targets at the same
time. Take the edge device for example, its computation
units may consist of ARM CPU, Mail GPU, DSP, and prob-
ably NPU. Generating subgraphs from the DL compilers
that utilizes all computation units efficiently can deliver
significant speedup of the DL tasks.
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Quantization. Traditional quantization strategies applied
in DL frameworks are based on a set of fixed schemes and
datatypes with little customization for codes running on dif-
ferent hardware. Whereas, supporting quantization in DL
compilers can leverage optimization opportunities during
compilation to derive more efficient quantization strategies.
For example, Relay [40] provides a quantization rewriting
flow that can automatically generate quantized code for var-
ious schemes.

To support quantization, there are several challenges to
be solved in DL compilers. The first challenge is how to
implement new quantized operators without heavy engi-
neering efforts. The attempt from AWS points out a possible
direction that uses the concept of dialect to implement new
operators upon basic operators, so that the optimizations at
graph level and operator level can be reused. The second
challenge is the interaction between quantization and other
optimizations during compilation. For example, determin-
ing the appropriate stage for quantization and collaborating
with optimizations such as operator fusion require future
research investigations.

Unified Optimizations. Although existing DL compilers
adopt similar designs in both computation graph optimiza-
tions and hardware-specific optimizations, each compiler
has its own advantages in certain aspects. There is a missing
way to share the state-of-the-art optimizations, as well as
support of emerging hardware targets across existing com-
pilers. We advocate unifying the optimizations from exist-
ing DL compilers so that the best practices adopted in each
DL compiler can be reused. In addition, unifying the optimi-
zations across DL compilers can accumulate a strong force
to impact the design of general-purpose and dedicated DL
accelerators, and provide an environment for efficient co-
design of DL compiler and hardware.

Currently, Google MLIR is a promising initiative towards
such direction. It provides the infrastructure of multi-level
IRs, and contains IR specification and toolkit to perform
transformations across IRs at each level. It also provides
flexible dialects, so that each DL compiler can construct its
customized dialects for both high-level and low-level IRs.
Through transformation across dialects, optimizations of one
DL compiler can be reused by another compiler. However,
the transformation of dialects requires further research
efforts to reduce the dependency on delicate design.

Differentiable Programming. Differentiable programming
is a programming paradigm, where the programs are differ-
entiable thoroughly. Algorithms written in differentiable
programming paradigm can be automatically differenti-
ated, which is attractive for DL community. Many compiler
projects have adopted differentiable programming, such as
Myia [69], Flux [70] and Julia [71]. Unfortunately, there is lit-
tle support for differential programming in existing DL
compilers.

To support differential programming is quite challeng-
ing for existing DL compilers. The difficulties come from
not only data structure, but also language semantic. For
example, to realize the transformation from Julia to XLA
HLO IR, one of the challenges [72] is that the control flow
is different between the imperative language used by Julia
and the symbolic language used by XLA. In order to use
HLO IR efficiently, the compiler also needs to provide

operation abstraction for Julia in order to support the par-
ticular semantic of XLA, such as MapReduce and broadcast.
Moreover, the semantic difference of differentiation
between Julia and XLA, also requires significant changes
of compiler designs.

Privacy Protection. In edge-cloud system, the DL models
are usually split into two halves with each partial model
running on the edge device and cloud service respectively,
which can provide better response latency and consume
less communication bandwidth. However, one of the draw-
backs with the edge-cloud system is that the user privacy
becomes vulnerable. The reason is that the attackers can
intercept the intermediate results sent from the edge devices
to cloud, and then use the intermediate results to train
another model that can reveal the privacy information devi-
ated from the original user task.

To protect privacy in edge-cloud system, existing
approaches [73], [74], [75] propose to add noise with special
statistic properties to the intermediate results that can
reduce the accuracy of the attacker task without severely
deteriorating the accuracy of the user task. However, the
difficulty is to determine the layer where the noise should
be inserted, which is quite labor intensive to identify the
optimal layer. The above difficulty presents a great opportu-
nity for DL compilers to support privacy protection,
because the compilers maintain rich information of the DL
model, which can guide the noise insertion across layers
automatically.

Training Support. In general, the model training is far
less supported in current DL compilers. As shown in
Table 1, nGraph only supports training on the Intel NNP-T
accelerator, TC only supports the auto differentiation of a
single kernel, Glow has experimental training support for
limited models, the training support of TVM is under
development, while XLA relies on the training support of
TensorFlow. In sum, current DL compilers mainly focus on
bridging the gap of deploying DL models onto diverse
hardware efficiently, and thus they choose inference as
their primary optimization targets. However, expanding
the capability of DL compilers to support model training
would open up a large body of research opportunities
such as optimization of gradient operators and high-order
auto differentiation.
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