
Future Generation Computer Systems 114 (2021) 679–691

e
d
a
a
b
u
t
w
s
m
o

p
e
t
t
t
t
s

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Highly scalable parallel genetic algorithm on Sunwaymany-core
processors
Zhiyong Xiao a, Xu Liu a,b, Jingheng Xu b,c, Qingxiao Sun b,d, Lin Gan b,c,∗

a School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
b National Supercomputing Center in Wuxi, China
c Department of Computer Science and Technology, Tsinghua University, Beijing, China
d School of Computer Science and Engineering, Beihang University, Beijing, China

a r t i c l e i n f o

Article history:
Received 12 December 2019
Received in revised form 13 July 2020
Accepted 16 August 2020
Available online 28 August 2020

Keywords:
High performance computing
Genetic algorithm
Parallel optimization
Register communication
MPI communication

a b s t r a c t

As a heuristic method, the genetic algorithm provides promising solutions with impressive perfor-
mance benefits for large-scale problems. In this study, we propose a highly scalable hybrid parallel
genetic algorithm (HPGA) based on Sunway TaihuLight Supercomputer. First, the Cellular model is
presented on a thread level, so that each individual can be processed by a single computing unit which
is in charge of the parallel fitness calculation, crossover, and mutation operations. The information
exchange between individuals is realized by register communication. Second, the Island model is
assigned to a process level, so that each process accounts for a single sub-population, and the migration
among sub-populations is implemented using MPI communication. The proposed approach can fully
exploit the individual diversity of the genetic algorithm and reasonably maintain the communication
overhead. Based on the widely used CEC2013 benchmark, the experimental results show that the
algorithm presents a sound performance in terms of both accuracy and convergence speed.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

With the increasing complexity of optimization problems in
ngineering, solving large-scale problems is challenging with tra-
itional algorithms. Novel and sophisticated algorithmic schemes
re required [1]. The genetic algorithm (GA), a stochastic search
lgorithm based on the principle of natural selection and recom-
ination [2], has become a potential and promising option. GA
ses genetic operators such as crossover and mutation to find
he optimal chromosomes in the entire search space. Compared
ith traditional deterministic optimization algorithm, GA intrin-
ically has the advantages of parallelism and strong global opti-
ization ability, so that it is efficient for solving combinatorial
ptimization problems on large-scale parallel machines [3].
In recent decades, with the fast development of the high-

erformance computing (HPC) systems, genetic algorithms
volved from serial to parallel and can fit well with not only
raditional platforms (e.g. CPUs), but also some novel architec-
ures (e.g. GPUs). Although those optimization problems, such as
he knapsack problem [4], the shop scheduling problem [5], and
he traveling salesman problem [6], are easy to be resolved using
erial or original genetic algorithm, it is difficult to achieve the

∗ Corresponding author.
E-mail address: lingan@tsinghua.edu.cn (L. Gan).
ttps://doi.org/10.1016/j.future.2020.08.028
167-739X/© 2020 Elsevier B.V. All rights reserved.
desired result in a short time when the objective problem be-
comes more complex due to huge data volume and complicated
constraints. The parallel genetic algorithm is thereby attractive
because of its intrinsic advantages [7] of parallelism. For example,
Dorronsoro et al. [8] proposed a parallel genetic algorithm to
solve the capacitive vehicle routing problem more efficiently, and
Nitisiri et al. [9] reported a multi-threading technology to achieve
parallel individual computing so that passengers could obtain the
best railway scheduling solution in the shortest time. However,
the computing power of CPUs is usually limited, and it leads to
inadequate use of computing resources.

Benefiting from the development of heterogeneous multi-core
supercomputers, Zhao et al. [10] proposed a parallel genetic algo-
rithm of CPU + GPU to solve the task scheduling problem. Rathomi
et al. [11] developed a two-level parallel algorithm of multi-core
CPU + many-core GPU. Hou et al. [12] described an enhanced
parallel genetic algorithm for hardware and software partition-
ing. However, none of the above algorithms considers the time
consuming caused by data communication. Liu et al. [13] reduced
the communication delay through the asynchronous migration
strategy. However, the effectiveness is severely affected by spe-
cific problems. Huang et al. [14] proposed a fast parallel genetic
programming framework by using the environment-vector-based
multipopulation mechanism and the hierarchical parallel com-

puting mechanism, but the data size of this method is small. Liu

https://doi.org/10.1016/j.future.2020.08.028
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2020.08.028&domain=pdf
mailto:lingan@tsinghua.edu.cn
https://doi.org/10.1016/j.future.2020.08.028


680 Z. Xiao, X. Liu, J. Xu et al. / Future Generation Computer Systems 114 (2021) 679–691
et al. [15] designed a Hybrid Parallel Genetic Algorithm with Dy-
namic Migration Strategy Based on Sunway Many-Core Processor,
but the convergence speed was still not ideal.

On the other hand, computing power has also been signifi-
cantly increased, and we are almost reaching the Exa-scale com-
puting era. However, the performance gap between the software
and hardware is still large, and lots of computing power is wasted.
Besides, the time complexity analysis of the genetic algorithm is
still the main index to judge the performance of a algorithm [16].
Therefore, it is necessary to figure out efficient algorithms with
good scalability to fit the architectures well.

The Sunway TaihuLight supercomputer was announced in June
2016, and it is the first system in the world that has a peak
performance of 125 PFlops. Sunway TaihuLight has been widely
applied in various applications, such as climate modeling [17,18],
earthquake simulation [19,20], and life science [21,22].

The parallelism and scalability of GA take full advantage of
heterogeneous many-core systems. We deploy GA on Sunway
TaihuLight and perform a series of wise operations for it to
reduce the gap between software and hardware performance,
such an implementation could be a guidance for other analogous
algorithms deployed on heterogeneous parallel machines.

In order to expand the individual diversity of GAs and reduce
the communication overhead, we propose a large-scale parallel
genetic algorithm for heterogeneous many-core processors. The
major contributions include:

1. Cellular model and Island model are wisely performed on
the lower and upper levels on Sunway processor, respectively,
to better deal with bottlenecks from communication overhead,
individual diversity, as well as premature convergence.

2. Fine-grained tuning mechanisms such as register commu-
nications are applied to further exploit the localities of the local
memory, while the underlying Cellular model well implements
the selection and crossover in a high parallel efficiency.

3. The hybrid parallel genetic algorithm can well handle a
variety of problems, including those with large-scale data and
simple fitness function, and also those with small-scale data and
complex fitness function.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the related work and briefly introduce the
development of genetic algorithms. Section 3 introduces the fea-
tures and structure of Sunway TaihuLight and some preliminary
knowledge of GA. Section 4 describes the proposed paralleliza-
tion method. The parallelism implementation, the experimental
results, and their analysis are in Sections 5 and 6, respectively.
Finally, we conclude this paper in Section 7.

2. Related work

GA searches the optimal solution according to specific rules,
and it has a straightforward executive process and strong com-
puting power, which is widely used in complex combinatorial
optimization problems.

GAs solved many optimization problems, such as the knapsack
problem [4], the shop scheduling problem [5], and the traveling
salesman problem [6]. In addition, prior data guidance and expan-
sion of population size are introduced to avoid local optimum [23,
24]. However, it is difficult to achieve the optimal result within
the desired time for GAs when the population size, the problem
constraints, and the computational complexity are increased.

The independent calculation of individuals makes GA have
natural adaptability to parallelization. Parallel genetic algorithm
[7] has been greatly researched and applied, and a series of new
methods are proposed according to the parallel computer archi-
tecture. For example, Bernab et al. [8] used two-stage parallel
strategies: Island + master–slave hybrid parallel genetic algo-
rithm. They performed individual parallel computing on a com-
puting platform that combines more than one hundred machines
to solve the large-scale capacitated vehicle routing problem. Us-
ing the multi-core CPU parallel computing, Tansel et al. [25]
proposed a highly scalable Island model, and effectively solve the
NP-hard packing problem. However, the multi-core processor is
not fully utilized because of the limitation of node resources and
CPU computing power. To summarize, multi-CPU parallel execu-
tion would alleviate the pressure of the single CPU at the com-
puting level. However, the CPU resources are not fully utilized
because the advantages of CPU are scheduling and management
abilities rather than computing.

With the development of heterogeneous multi-core super-
computers [26–29], Zhao et al. [10] proposed the parallel genetic
algorithm and applied to CPU + GPU platform to solve the task
scheduling problem in the physical simulation system. Under
the management and coordination of CPU, the GPU performed
parallel computations, effectively reduced the time cost from ex-
ponential level which was caused by the increasing data, to linear
level. Further, Muhamad et al. [11] proposed a two-stage par-
allel algorithm, which deployed in multi-core CPU + many-core
GPU architecture. One CPU processes a sub-population, and data
migration between CPUs is taken by MPI, which could be the-
oretically extended indefinitely. SIMT creates multiple threads,
and each thread processes an individual. Hou et al. [12] proposed
an enhanced parallel genetic algorithm for hardware and soft-
ware partitioning on Multi-Core CPU and Many-Core GPU. The
execution position of each operation is specifically generated by
graph division. However, the time consumption caused by data
communication is not considered in the above algorithms. Liu
et al. [13] proposed an asynchronous migration strategy, in which
the migration parameters are dynamically adjusted by buffer
communication and migration operations to reduce communica-
tion delay and overlap, however, it is still seriously affected by
specific problems.

The above methods show that GA is suitable for solving large-
scale optimization problems while it is affected by the data com-
munication delay. We implement a two-stage parallel genetic
algorithm for Sunway heterogeneous many-core processors. By
doing this, we take the full advantages of the parallel computing
capability of SW26010 heterogeneous multi-core processors and
effectively reduce communication overhead.

3. Background

In this section, we first describe the structural characteristics
of SW26010 heterogeneous multi-core processors which support
the parallel algorithm proposed in this paper. We then introduce
the process of various genetic algorithms as well as the advan-
tages and disadvantages of them to make this study could be
better understood.

3.1. Sunway TaihuLight and SW26010

The Sunway TaihuLight, as the world’s leading supercomputer,
is currently ranked third in the global supercomputer Top500 list.

The peak performance of Sunway system is 125 PFlops, and
the sustained Linpack performance is 93 PFlops. The power effi-
ciency is 6.05 GFlops/watt, which saving more than 60% energy
compared with other computers of the same magnitude [30].
Sunway TaihuLight is the world’s first supercomputer with a
peak performance of more than 100 PFlops. It is also the first
supercomputer built in China using domestic processors [31].

The Sunway TaihuLight is equipped with 40,960 ‘‘SW- 26010"
heterogeneous many-core processors. A two-level approach is



Z. Xiao, X. Liu, J. Xu et al. / Future Generation Computer Systems 114 (2021) 679–691 681

p
2
c
c
(
t
p
p
c
p
p
g
s
3
m
M
c
C
D
t
a
d
c
p
b
t

3

n
e
a
g
p
g
s
i
m

3

E

Fig. 1. The architecture of the many-core SW26010 CPU.

adopted by the machine to set up the network. Inside a supern-
ode, the customized network board is applied to fully connect
all the 256 processors. In addition, above the supernode, the
central network switches are utilized to deal with the commu-
nication packets. By this strategy, all the nodes can be efficiently
connected.

The basic architecture of the SW26010 is shown in Fig. 1. Each
rocessor contains 4 computing core groups (CGs) with a total of
60 computing cores. Each core group consists of one memory
ontroller (MC) and 65 computing cores, one 8*8 computing pro-
essing element (CPEs) and one management processing element
MPE). Both CPE and MPE are complete 64-bit RISC cores, but
hey handle different tasks in computing. MPE supports com-
lete interrupt functions, memory management and out-of-order
roblem execution for management, task scheduling, and data
ommunication; CPE is used for ultra-high performance and com-
utational tasks. The MPI and CPEs in the core group realize
arallel cooperation through the master and slave cores. The core
roups are connected through a network on chip (NoC), and the
ystem interface is used to connect with the off-chip system [32,
3]. The SW26010 many-core processor is different from other
ulti-core or many-core processors. In the memory hierarchy,
PE uses the traditional 32KB L1 instruction cache, 32KB L1 data
ache and 256 KB L2 cache for instruction and data. In contrast,
PE only has 16 KB L1 instruction cache, and uses 64 KB Local
ata Manager (LDM) as a fast buffer controlled by users. However,
his brings more programming challenge, but it can improve over-
ll performance. In addition, each CPE contains a control unit, a
ata transfer unit, an 8-row communication bus, and an 8-column
ommunication bus. The 8-row, 8-column communication bus
rovides conditions for register data communication between 8
y 8 CPEs, handling CPEs data sharing, reducing memory access
ime, and effectively increasing bandwidth [30,34].

.2. Genetic algorithm

The genetic algorithm is a metaheuristic algorithm based on
atural genetics and natural selection principles. The core el-
ments of the genetic search include reproduction, crossover,
nd mutation. Through continuous iterative evolution, the very
ood solutions is found throughout the search space. The specific
rocess is shown in Fig. 2. Compared with other evolutionary al-
orithms, GAs have the characteristics of natural parallelism and
trong global optimization ability, which is very useful for solv-
ng combinatorial optimization problems on large-scale parallel
achines.

.2.1. Traditional genetic algorithm
In the genetic algorithm, each problem parameter is encoded.

ach individual is composed of gene strings, indicating a feasible
Fig. 2. Traditional genetic algorithm.

solution to the problem. Randomly generating the initial popula-
tion has a significant impact on the results and efficiency of the
genetic algorithm. Therefore, the initial population needs to be
spread over the entire feasible solution.

Fitness is an indicator used to evaluate an individual and to
assess the degree of randomization of the individual. The fitness
function is often determined according to the objective function,
and directly determines the optimization performance of GA by
selecting individuals in population. Therefore, the fitness func-
tion is generally characterized to be continuous, non-negative,
reasonable, simple, and versatile.

The selection operator selects the father and mother to inherit
the gene to the next generation of individuals based on fitness.
Therefore, the choice of father and mother determines the pros
and cons of the offspring. In order to select individuals with
advantages, the standard selection methods are roulette-wheel
selection, optimal individual retention, and sorting selection.

The selected parents perform crossover with a certain prob-
ability to produce the next generation of individuals. The choice
of crossover needs to preserve the individual’s great genes and
produce descendants with diversity and extensiveness. Conven-
tional methods include single point crossing, two-point crossing,
and uniform crossing. In order to prevent falling into local opti-
mum, individuals are selected based on a probability to perform
mutation operations on their genes, such as the random selection
of mutations and inverse transformations.

After multiple generations of evolution, GA jumps out of the
loop by a defined threshold or iteration number and obtains an
solution whose quality is very good.

3.2.2. Master–slave model
The master–slave model is called the global parallel model.

In this model, the fitness function calculation part of genetic
algorithm is processed in parallel. In a simple implementation,
this model uses a node as the main thread and creates some
nodes as slave threads. The master thread performs the overall GA
and assigns individuals to the slave nodes, which independently
calculates the fitness in parallel without communicating with
other slave nodes. In detail, first, the master thread initializes
individuals and sends individuals to slave nodes. Then the slave
threads compute the fitness function of individuals in parallel
and send back to the master node. Finally, the master thread
performs selection, crossover, and mutation. As a result, this
model is commonly used in the situation of time-consuming
fitness calculation.

3.2.3. Island model
Granularity in parallel computing is measured by the ratio of

computation to communication [35]. The Island model is also
called the coarse-grained model. The population is divided into
multiple sub-populations (Islands), which independently perform
a large amount of computation to evolve. Migration is carried
out after a certain number of iterations in islands, and infor-
mation exchange in an island increases population diversity and
prevents premature convergence. The important factors affecting
the performance of migration in the Island model are migration
topology, migration scale, and migration strategy.



682 Z. Xiao, X. Liu, J. Xu et al. / Future Generation Computer Systems 114 (2021) 679–691

s
t
F
i
m

r
i
o
m
p

e
i
s
(
b
t
s

3

I
a
T
t
t
t
n
h
F

t
t
o
t
t
c
a

e
d
b
B
m
e
m
t
t
c

Fig. 3. Common migration topology: The migration topology is the individual
migration path of each island. Common topologies include entirely isolated,
single-ring, broadcast, bidirectional, hypercube, and mesh.

The migration topology is related to the parallel computer
tructure, which determines the migration path of individuals on
he island and has a severe impact on communication events.
ig. 3 shows some commonly used topologies, such as entirely
solated, single-ring, broadcast, bidirectional, hypercube, and
esh.
The migration scale includes migration cycle and migration

ate, among them; the migration cycle refers to the migration
nterval of communication between islands, which can be fixed
r not fixed. The migration rates determine the amount of com-
unication between islands, typically choosing a specific value or
ercentage of sub-populations.
The migration strategies identify migrating individuals. Gen-

rally, three strategies are commonly used to select the best
ndividuals: (1) the optimal individual is selected directly, (2) the
ub-population with high fitness value is selected proportionally,
3) the migrating individual is randomly selected. The selected
est individuals then replace the worst individuals in the migra-
ion topology, and the worst individuals can be selected by similar
trategies.

.2.4. Cellular model
The sub-population in the Cellular model is divided finely.

deally, one processor processes an individual, and the selection
nd crossover are performed within the domain of the individual.
he neighborhood structure of the Cellular model, which includes
he neighborhood topology and the neighborhood radius, affects
he performance of GA. The commonly used neighborhood struc-
ures are shown in Fig. 4. In general, large-scale communication
eighborhood like Fig. 4(e) is often used in small population, and
yper-ring meshes of 4 and 8 communication neighborhoods like
ig. 4(a) and (b) are often used in large-scale population.
According to the topology of the Cellular model, the compu-

ation work between communication events is relatively small in
he design of the Cellular model. Also, handling a large number
f communication events ensures workload balancing, allowing
he Cellular model to further facilitate load balancing. However,
his design also causes the model to be severely affected by
ommunication overhead and tie down the overall speed of the
lgorithm [11].
From the above cases, we can see that genetic algorithms can

ffectively solve various NP problems. The increase of individual
iversity is beneficial to the performance of genetic algorithms
ut also brings more communication and computing overhead.
esides, the implementation of the genetic algorithm itself has
any problems, such as complicated strategy, numerous param-
ters, and a large amount of computation. Also, heterogeneous
ulti-core processors have complex structures, among which

he cost of accessing memory is prohibitive. How to balance
he load and control the communication overhead is the main
hallenge of highly scalable parallel genetic algorithm. To counter
Fig. 4. Cellular model neighborhood structure: Neighborhood structure re-
stricts the interaction between individuals. There are five commonly used
domain structures, (a) four neighborhood (Von Neumann), (b) eight neighbor-
hood, (c) Moore neighborhood, (d) diamond neighborhood, and (e) Compact
neighborhood.

Fig. 5. Island-Cellular hybrid parallel genetic algorithm structure: In the upper
layer, the population is divided into n sub-populations according to the number
of processors, and one MPE processes one sub-population. In the lower layer,
one MPE corresponds to 64 CPEs, and one CPE processes one individual.

the problems above, a large-scale hierarchical hybrid parallel
genetic algorithm for Sunway many-core Processors is proposed.
This hybrid parallel genetic algorithm makes full use of the char-
acteristics of heterogeneous multi-core processors and realizes
the communication of upper MPEs and information exchange
of lower CPEs by using MPI and register communication, re-
spectively. Theoretically speaking, the individual scale of this
method is infinitely expanding, and the communication overhead
is considerable.

4. Memory layout of the HPGA

For heterogeneous many-core processors, we propose a large-
scale hybrid parallel genetic algorithm. In the upper layer, the
Island model is deployed in MPEs, and an MPE is in charge of one
sub-population evolution. Sub-populations carries out the migra-
tion by MPI. In the lower layer, the Cellular mode is deployed in
CPEs, and one CPE processes an individual. The information ex-
change in CPEs is performed using register communication, which
completes individuals selection and crossover. For the whole Ge-
netic Algorithm, individuals can be expanded indefinitely while
the communication overhead is small. In addition, the two-layer
model is independent and can be selected according to specific
problems. In other words, in Sunway multi-core system, there are
four main cores (MPE) in each node, and each MPE is a processor
to process a process. Each MPE has 64 slave cores (CPE), and
each CPE processes one thread. The specific structure is shown
in Fig. 5:

4.1. MPEs parallel structure

In this paper, the Island model is implemented in the upper
layer. We divide the population into multiple sub-populations ac-
cording to the number of MPEs, and sub-populations perform ge-
netic manipulation in parallel. An MPE treats one sub-population



Z. Xiao, X. Liu, J. Xu et al. / Future Generation Computer Systems 114 (2021) 679–691 683

2
2
2
2
2
2
2
3
3
3

i
t
d
a
p
i

m
a
e
r
c
m
t
p

2
2

2
2
3
3
3
3
3
3
3
3

as an island that evolves independently. The algorithm of this
layer is implemented by using MPI, and the structure of this part
corresponds to the contents of level 1 in Fig. 5.

For the migration topology, we choose the single-ring struc-
ture. Migration realizes information transmission in islands us-
ing MPI. In detail, the master node broadcasts the size of sub-
population to all slave nodes that produces its sub-population.
The sub-population completes one iteration; the best individual
on the island is chosen to replace the worst one in the right
domain. Finally, the master node obtains the result of all sub-
populations. The equal exchange data of each island ensures MPI
communication load balancing. For the SW26010 heterogeneous
many-core processor, the number of processors can be fully ex-
panded. Therefore, in the upper Island model, the population
size is fully expanded while ensuring a considerable communi-
cation overhead. Specific algorithm implementation is shown in
Algorithm 1:

Algorithm 1 Upper layer parallel genetic algorithm
1: Require:
2: numb : the number of subpopulation
3: subpopsize : the number of individuals in one subpopulation
4: Pc , Pmu, Pmi : the probability of crossover, mutation and migration
5: maxgen : the maximum number of iterations
6: gen : the Current iterations
7: fit[gen][i] : the fitness of i-th individual in the n-th generation
8: parents[gen] : the parents of the n-th generation
9: child[gen][i] : the i-th child of the n-th generation
10:
11: Phase 1: Initialization
12: Input parameter : numb, subpopsize,maxgen, Pc , Pmu, Pmi
13: gen = 0
14: parents[], child[][], fit[][]
15:
16: Phase 2: MainLoop
17: //Parallel execution on all MPEs
18: for gen in range maxgen :
19: for i in range subpopsize :
20: Roulette Wheel Selection → parents[gen]

21: Crossover
Pc
−→ child[gen][i], Child[gen][i + 1]

22: Mutation
Pm
−→ child[gen][]

3: Evaluate the fitness of new individuals → fit[gen][i]
4: Pick the best and worst −→ best, worst
5: //Exchange information between MPEs
6: for i in range (numb):
7: Migration
8: subpopulationi(best), subpopulationi+1(worst)
9: gen = gen + 1
0:
1: Phase 3: Submit
2: Submit the final subpopsize individuals to node 0

4.2. CPEs parallel structure

The selection and crossover of GA require the exchange of
ndividual information within the sub-population. Considering
he characteristics of the SW26010 many-core processor, to re-
uce the performance loss caused by communication overhead,
Cellular model is implemented on CPEs. The structure of this
art corresponds to level 2 is shown in Fig. 5. The algorithm
mplementation of Cellular model is shown in Algorithm 2:

Considering the access bottleneck when the CPE accesses the
ain memory, we store the chromosome and fitness values of
n individual in the LDM of the corresponding CPE. Information
xchange is performed within the domain topology of CPEs using
egister communication. Combining with the register structure
haracteristics of the Sunway heterogeneous system, the Cellular
odel adopts the topology of the eight communication fields. In

he topological area, the roulette-wheel selection is used to select
arents randomly. The parents perform a crossover to produce a
Algorithm 2 Lower layer parallel genetic algorithm
1: Require:
2: numb : the number of subpopulation
3: subpopsize : the number of individuals in one sub-population
4: Pc , Pmu, Pmi : the probability of crossover, mutation and migration
5: maxgen : the maximum number of iterations
6: gen : the Current iterations
7: fit[gen][i] : the fitness of i-th individual in the n-th generation
8: parents[gen] : the parent of the nth generation
9: child[gen][i] : the i-th child of the n-th generation
10: old[gen][j] : the j-th individual of the n-th generation
11: new[gen][j] : the j-th individual of the n-th generation
12:
13: Phase 1: Initialization
14: Input parameter : numb, subpopsize,maxgen, Pc , Pmu, Pmi
15: gen = 0, subpopsize = 64
16: parents[], child[][], fit[][]
17:
18: Phase 2: MainLoop
19: //Parallel execution on all MPEs
20: for gen in range maxgen :
21: //Parallel execution on all CPEs
22: for i in range subpopsize :
23: for j in range 8 :
24: Roulette Wheel Selection → parents[gen]

25: Crossover
Pc
−→ new[gen + 1][j]

6: Evaluate the fitness → fit[gen][i]
7: child[gen][i] = MAX(old[gen][j] : new[gen][j])

8: Mutation
Pm
−→ child[gen][]

9: Pick the best and worst −→ best, worst
0: //Exchange information between MPEs
1: for i in range (numb):
2: Migration
3: subpopulationi(best), subpopulationi+1(worst)
4: gen = gen + 1
5:
6: Phase 3: Submit
7: Submit the final subpopsize individuals to node 0

new individual, the individual with high fitness value is retained
after a comparison between the new individual and the original
one. Then, individuals randomly perform mutation. After multiple
iterations, the CPEs pass the information to the MPE and execute
the upper-level island model.

In the SW26010 heterogeneous many-core processor, one core
group contains 8 * 8 CPEs, and each CPE has a 64 KB LDM. When
the data stored in CPEs are similar in horizontal and vertical
directions, and the more saturated the storage is, the higher
the utilization of CPEs, the higher the transmission efficiency,
and the higher the algorithm performance [36]. In this paper,
each individual occupies one CPE, and all 64 CPEs are used.
CPEs perform the fitness assessment, crossover, and mutation in
parallel. Individual information is stored in LDM, and register
communication is used to exchange data between CPEs instead
of accessing main memory. By doing this, the communication
overhead is reduced significantly. Moreover, the cellular model
has a more compact topology and makes the genetic algorithm
obtain and retain excellent genes.

4.3. Register communication in cellular model

In SW26010 core processors, there are 4 row transfer registers,
4 column transfer registers, 6 row shared receive registers, and
6 column shared receive registers in each CPE, each register
size is 256 bits. These registers are used as send buffers and
receive buffers, this layout could minimize the impact of register
communication on the core calculation. The specific structure is
shown in Fig. 6. The data of source CPE and purpose CPE are
passed in a producer–consumer relationship. In detail, CPE stops
and waits for data when all receiver registers are empty and CPEs



684 Z. Xiao, X. Liu, J. Xu et al. / Future Generation Computer Systems 114 (2021) 679–691

S
r

w
C
i
I
d

o
T
r

f
s
c
s
o

a
p
f
i
m
m
r
L

4

r
m
s
d
m
d

c
t
p
o
t
i
H
s

p
t
m
B

Fig. 6. Register communication structure in Sunway TaihuLight: The CPE of the
W26010 processor has four rows transmit registers, and four columns transmit
egisters. To avoid deadlock, the cellular model uses the eight-neighbor topology.

ith a receive command. When all transmit registers are full, and
PE has a transfer command, CPE remains for data transmission
n the transmit register until the idle transmit register is present.
n this paper, we adopt the eight-domain topology to avoid the
eadlock validly in data transmission between CPEs.
Cellular model is deployed in the lower layer to make full use

f the many-core systems and reduce communication overhead.
he selection and crossover within the model are realized by
egister communication.

Due to the limitation of memory access, the individual in-
ormation is stored in the LDM of the CPE. However, the LDM
pace is limited and needs to be utilized reasonably. Register
ommunication is used to perform data transmission from the
ame row or the same column, and indirectly achieve the purpose
f accessing adjacent LDMs.
For the Sunway TaihuLight, the main core needs 94 Cycles to

ccess the LDM, while only 10 Cycles are required for register
oint-to-point communication, and only 14 Cycles are required
or row broadcasting and column broadcasting. The access speed
s greatly improved as compared with directly accessing main
emory because of the small-time consumption of register com-
unication and accessing data from LDMs. Implementation of

egister communication not only utilizes the limited resources of
DM but also improves the efficiency of access.

.4. Multi-layer structure selection

The hybrid parallel genetic algorithm can be performed sepa-
ately depending on the specific application. The hybrid parallel
odel is used for solving the problem with large-scale data and
traightforward fitness function. When dealing with small-scale
ata and complex fitness function models, we use the Island
odel in upper layer; furthermore, the Master–Slave model is
eployed in CPEs.
In the master–slave model, the MPEs perform the selection,

rossover, mutation, and migration; and the CPEs complete the
ime-consuming fitness calculation. This method is relatively sim-
le to implement; however, the evolutionary operation is carried
ut within the entire population. The MPI is used for paralleliza-
ion, and the communication cost increases with the increase
ndividuals, which leads to the reduction of the acceleration ratio.
ence, this model is suitable for the situation that has a small
cale and complicated fitness evaluation.
In order to verify the applicability of the model, the hybrid

arallel model is tested in the CEC2013 benchmark and used
o complete nonlinear prestack seismic propagation. The island
odel is used to optimize the performance of RTM programs.

oth models perform well in accuracy and convergence speed.
5. Implementation of the HPGA

As mentioned in the previous chapter, the algorithm in this
paper has a two-level decomposition structure, based on which
a parallel structure is constructed. MPI, as a powerful distributed
parallel tool, enables different CPUs to communicate by sending
and receiving information, and then completes tasks coopera-
tively, which significantly reduces the running time. Commu-
nication between CPUs is expensive, so choosing a reasonable
communication topology is an effective way to balance informa-
tion exchange and computing allocation. Register communication
is adopted to avoid repeated access to data from main mem-
ory and considerably shorten the data exchange time between
cores by combining with the characteristics of the SW26010
heterogeneous multicore processor.

The large-scale hybrid parallel genetic algorithm is motivated
by the optimization problem in the real-world such as seismic in-
version. The algorithm is tested on the CEC2013 benchmark, and
the communication load is balanced in case of the vast expansion
of the data scale. Using the CEC2013 benchmark as an example,
we introduce the optimization design of MPI communication,
register communication, and the genetic algorithm.

5.1. Chromosome design and initial population

The individual is represented by binary code, which is appro-
priate for the needs of crossover and mutation. We regard the
value of one dimension as a gene, which ranges between −100
and 100, and is accurate to 4 decimal places. Multiple dimensional
Genes constitute a chromosome, which represents a feasible so-
lution to the problem. There are 11 different dimensions of data
in the CEC2013 benchmark, and the length of the chromosome
code is based on the dimension requirement.

We use an 18-bit binary code to represent a gene. The formula
for converting a binary represented by a binary string into a
decimal number is as follows:

(b0b1...bM) =

(
M∑
i=0

bi · 2i

)
10

= X t , (1)

where M is the length of the gene, and the length of our gene is
18.

The formula for converting to the corresponding real number
is as follows:

X = min + X t (max − −min)
2M+1 − 1

, (2)

where max and min is the maximum and minimum of the gene,
respectively. The max is −100 and the min is 100 in this case.

This paper randomly initializes the population according to
the characteristics of the SW26010 heterogeneous multi-core
processor. The upper layer implements the Island model, and One
MPE is used as an island. The population information is stored in
the main memory, and MPE uses MPI for communication when
migration. In addition, the number of sub-populations is equal to
the number of MPI processes. The Cellular model is deployed in
CPEs, and one CPE processes an individual. The individual infor-
mation is stored in the LDM and the CPEs exchange information
through register communication. There are 64 CPEs in an MPE,
and so there are 64 individuals in a subpopulation.

In this case, the data processed between each CPE is the
same size, and also the data size processed by each MPE is the
same, which ensures load balancing. In theory, the number of
processors can be expanded infinitely to ensure the diversity of
the population.



Z. Xiao, X. Liu, J. Xu et al. / Future Generation Computer Systems 114 (2021) 679–691 685

i
c
c
d
r

5

f
b
t
c
m
i
c

d
t
a

N

5.2. Fitness evaluation

The fitness evaluation in the algorithm is completed in the
Cellular model, and the CPEs in the same sub-population com-
plete the individual fitness assessment in parallel. The fitness
function is determined based on the specific problem. There are
28 benchmark functions in CEC2013 benchmark [37], and all test
functions are minimization problems defined as follows:

minf (x), x = [x1, x2, . . . , xD]T , (3)

where D is the dimension. In the CEC2013 benchmark, the orthog-
onal matrix generated from standard normally distributed entries
by Gram–Schmidt orthonormalization. Matrix data is saved in
‘‘M_D2.txt’’, ‘‘M_D10.txt’’, ‘‘M_D30.txt’’, ‘‘M_D50.txt’’, ‘‘M_D100.
txt’’, and each file concludes ten D*D orthogonal matrices. So,
the value of D is 2, 10, 30, 50, 100. Here, the fitness function is
determined by the reference benchmark function value. We set
the rule, that the individual with lower the function value has
the higher the fitness, to guide the evolution of the hybrid parallel
genetic algorithms.

In the program of seismic inversion, the fitness function is
the reciprocal of the squared difference from the target inversion
curve. For the segmentation performance experiment of reverse
time migration, the performance result is directly used as the
fitness function.

5.3. Genetic operators

In this paper, the island model in the first parallel layer com-
pletes the migration operation through MPI communication. The
primary genetic operations are accomplished in the second level
of parallel, and the selection, crossover and mutation operations
in the cellular model are performed in parallel by register com-
munication. The hybrid model effectively improves the speed and
performance of the genetic algorithm.

5.3.1. Register communication
For reducing communication overhead, we implement a Cel-

lular model in the lower layer. When performing selection and
crossover, we use register communication to realize information
exchange between CPEs.

In the SW26010 heterogeneous many-core processor system,
the CPE provides four-row transmit registers and four-column
transmit registers in the design, and six-row and column shared
receive registers for the transmit buffer and receive buffer respec-
tively. These registers are 256 bits in size. The Cellular model in
this paper uses the eight-neighbor topology, and it guarantees
that there is no deadlock when data is transferred from the CPEs.
However, the receiving CPE does not know the source of the data,
and the register communication also needs to occupy the LDM
resources.

In response to the above problems, we design a register com-
munication protocol for recording the data source, and this proto-
col achieves the data sharing between CPEs in the eight-neighbor
topology. The specific communication protocol is as follows: (see
Fig. 7).

Limited by the width of the communication register, the entire
packet has a width of 256 bits. The front is the data part, retaining
6 data locations, each of which occupies 32 bits and occupies 192
bits in total. ‘‘respos’’ occupies 16 bits, and it is the offset position
of this data packet in the receiving buffer of the CPE. ‘‘src’’ is used
to record the data sender, and it occupies 8 bits. ‘‘dst’’ is used to
record the data receiver, and it occupies 8 bits. ‘‘cva’’ occupies
16 bits, which is used to indicate the valid bit of the data. ‘‘cvb’’

occupies 16 bits and it is not used yet.
Fig. 7. Register communication protocol: The width of the whole packet is 256
bits. The front is 6 data locations, which occupies 192 bits. ‘‘Respos’’ occupies 16
bits and stores the offset of the packet in the CPE receiving buffer. ‘‘Src’’ records
the data sender with 8 bits. The ‘‘dst’’ uses an 8-bit recording data receiver.
‘‘Cva’’ records 16 bits of valid data. ‘‘Cvb’’ is empty, which occupying 16 bits.

According to the protocol, the individual information is trans-
mitted in the topology domain. In a cellular model, the chromo-
some of each individual is stored in the LDM. When exchanging
information between CPEs, we divide the data into 75 transmis-
sions, caused by the limitation of the communication register
width. When performing selection in parallel, each individual
receives information from eight CPEs in the neighborhood each
time. Each CPE receives 600 data transfer packets at a time to
perform crossover. All individuals in sub-population perform se-
lection and crossover in parallel by using register communication,
and this method reduces communication overhead effectively.

The selection uses the roulette-wheel selection algorithm to
select parents within the eight neighborhoods. The roulette-
wheel selection algorithm is also called the proportional selection
algorithm, in which the probability of the selected individual is
proportional to its fitness. The specific operation is to calculate
the fitness of each individual in the neighborhood and sum them
and calculate the probability that each individual is inherited to
the next generation. The specific formula is as follows:

P (xi) =
f (xi)∑N
j=1 f

(
xj
) , (4)

where N is the number of populations, and in this paper is the
number of an individual within the neighborhood. This paper
uses eight neighborhoods, but the value can be 4 to 7 when the
individual is at the boundary.

Then, we calculate the cumulative probability of each individ-
ual:

qi =

i∑
j=1

P
(
xj
)
. (5)

Parents perform a single-point crossover to generate the new
ndividual by randomly selecting chromosome locations. We cal-
ulate the fitness value of a new individual, and the value is
ompared with the value of the original individual, and the in-
ividual with higher fitness is retained. Besides, individuals are
andomly selected for mutation at a probability of 0.005.

.3.2. MPI communication
In the first layer, each sub-population can be deployed to dif-

erent MPEs by using the characteristics that the population can
e divided into several loosely dependent sub-populations. Due to
he limitation of heterogeneous systems, MPE cannot communi-
ate with each other. We use MPI communication to complete the
igration. MPI (The message passing interface) is a common tool

n high-performance computing, which is often used in parallel
omputing and other complex function operations [38,39].
Assuming that there are NMPI MPIs in parallel for population

ecomposition, Nsubpop is the number of subpopulations. NMPI
i is

he number of CPEs available for each subpopulation, and there
re:

MPI
i =

NMPI
, i = 1, 2, . . . ,N subpop, (6)
Nsubpop



686 Z. Xiao, X. Liu, J. Xu et al. / Future Generation Computer Systems 114 (2021) 679–691

C

N

Besides, according to the algorithm structure, if the number
of individuals in the sub-population is NP , NCPE

i,j is the number of
PEs used by each individual, then:

CPE
i,j =

NP
NMPI

i
, j = 1, 2, . . . ,NMPI

i , (7)

According to the algorithm design in this paper, the number
of MPI equals the number of sub-populations when an individual
is processed from a CPE. That is to say, an MPE deals with a
sub-population, and there are 64 individuals in a sub-population.

The sub-population distribution affects the execution speed of
the parallel genetic algorithm. When designing the topology, we
should try to ensure that the amount of data exchanged between
each sub-population is the same and that the speed of each
MPE processing is relatively close. In this paper, the migration
topology uses a single-ring topology. After one iteration of the
low-level cellular model, migration is carried out, replacing one
individual in each sub-population. The best individuals in the core
group exchange the worst individuals in the right neighboring
core group, and the worst individuals in the core group are also
exchanged by the best individuals in the left neighboring core
group.

In this case, the task size and the amount of data transmitted
by MPI communication are equal, which effectively guarantees
load balancing.

6. Experimental result and analysis

The experiment was performed on the SW26010 heteroge-
neous many-core processor, using up to 2048 compute nodes.
The experiment mainly consists of three parts. The first part is
the performance and scalability testing of the hybrid parallel
genetic algorithm on the CEC2013 benchmark. The second part
is the hybrid parallel genetic algorithm for nonlinear pre-stack
seismic inversion. The third part is dealing with the complex
fitness objective function using the single island model.

6.1. Evaluation about the CEC2013 benchmark

In this part, the test function is the CEC2013 large-scale global
optimization benchmark problems. 12 benchmark functions
picked from the CEC2013 benchmark are tested experimentally,
including unimodal functions, basic multimodal functions, and
composition functions. We carried out a series of tests on the
CEC2013 benchmark to evaluate the convergence and accuracy
of HPGA.

6.1.1. Evaluation of HPGA
To evaluate the performance of our high parallel genetic algo-

rithm, we use multiple processes to experiment on 12 benchmark
functions. In this part, we discuss the convergence of hybrid
parallel genetic algorithm when the number of processes in-
creases. In this group of experiments, the crossover probability
is 0.8, and the mutation probability is 0.005. The number of
iterations is 2000 generations, and the results are recorded every
50 generations. There are 64 individuals in a sub-population, and
processes number of 2, 16, 128, 1024, and 8192 is tested. Note
that HPGA may generate different results each time, depending
on the randomly selected generations, so we run it three times
for each benchmark function and compute the average.

In Fig. 8, the horizontal axis is the number of iterations, and
the vertical axis is the reference function value. As can be seen
from the graph, with the increase of iteration times, the fitness
values of the 12 benchmark functions gradually tend to converge
and generate the solution whose quality is very good between
500 and 2000 generations, which proves that the algorithm in this
Table 1
Comparative table of convergence time and accuracy with the state of the art
works.
Function Method Time (s) Accuracy (104)

F1 GA-DM 1789 10.033
HPGA 633 9.946

F2 GA-DM 2189 1.241
HPGA 804 1.224

F3 GA-DM 2068 0.012
HPGA 576 0.012

F4 GA-DM 2185 1.023
HPGA 1031 0.915

F5 GA-DM 2165 0.163
HPGA 1084 0.158

F6 GA-DM 2254 0.201
HPGA 1051 0.170

F7 GA-DM 2153 1.728
HPGA 1050 1.718

F8 GA-DM 2472 7.768
HPGA 1064 7.674

F9 GA-DM 2773 0.059
HPGA 1120 0.058

F10 GA-DM 2137 0.082
HPGA 868 0.061

F11 GA-DM 2374 0.397
HPGA 890 0.366

F12 GA-DM 2431 1.534
HPGA 887 1.463

paper is universal. In addition, this group of experiments on the
number of processes 2, 16, 128, 1024 and 8192 cases, we can see
from the graph that with the increase of the number of processes,
that is, the population number increases, the convergence rate
of the benchmark function is better, and it has better optimal
performance. This also conforms to the theory that the higher the
diversity of individuals in the genetic algorithm, the better the
performance.

6.1.2. Comparison with state of the art works
Table 1 shows the comparison results between the proposed

method and the state of the art works, the performance of
the algorithm is discussed when using 8192 nodes in a 100-
dimensional case. In this part of the experiment, the method(GA-
DM) proposed by Liu et al. [15] is implemented on the Sun-
way TaihuLight. Both GA-MD and HPGA adopt 8192 MPEs, each
of which has 64 CPEs. The parameters of both methods use
crossover probability 0.9, mutation probability 0.005, the num-
ber of migration is one individual at a time, and the number
of iterations is 2000 generations. For the 12 benchmark func-
tions, compared with the algorithm proposed in [15], the method
proposed in this paper improves the accuracy slightly, and the
convergence speed has been greatly improved. Comparing the
codes of the two methods, it is found that GA-DM stores data
in the master process, sends the data to the slave process when
assigning tasks, and sends the results back to the master process
after the slave process completes the calculation. The HPGA
proposed in this paper stores the data and results in each process,
and the master process only needs to release a few control
parameters, which greatly reduces the communication overhead.

6.1.3. Weak expansion experiment
In this experiment, six benchmark functions were selected

from the CEC2013 benchmark to test the weak scalability. In this
group of experiments, the crossover probability and mutation
probability are 0.8 and 0.005, respectively. Experiments were
carried out on 2, 16, 128, 1024, and 8192 processes, respectively.
Record the entire execution time of all processes after the iter-
ation of 2000 generations, and retain the maximum execution
time.



Z. Xiao, X. Liu, J. Xu et al. / Future Generation Computer Systems 114 (2021) 679–691 687

t
n
r
l
g

s
s
w
t
t
g
p

6

r
t
t
s
i
s
3

Fig. 8. Function value: This part of the experiment discussed the convergence speed and performance of HPGA as the number of iterations and processes increased.
In the CEC2013 benchmark test, 12 100-dimensional benchmark functions were tested. As can be seen from the figure, the 12 benchmark functions tend to the
minimum as the number of iterations increases. Also, as the number of processes increases from 2 to 8192, the convergence performance and speed of the 12
benchmark functions are improved obviously.
In Fig. 9(a), the horizontal axis is the number of processes, and
he vertical axis is the normalized acceleration ratio based on the
umber of processes is 2. The results show that the acceleration
atio functions of the six benchmark functions maintain similar
inear functions, which proves that the hybrid large-scale parallel
enetic algorithm has good scalability.
In Fig. 9(b), we show the scalability comparison results of

ix benchmark functions under the same conditions between the
ingle island model and the parallel model. It can be seen that
hen the number of processes is more than 103, the running
ime of the single island model increases significantly, while
he running time of the hybrid parallel model still keeps linear
rowth. The graph shows that the hybrid model proposed in this
aper has stronger scalability than the single island model.

.1.4. Multi-dimensional experiment
The experiments show the performance of the hybrid algo-

ithm in different dimensions. The crossover probability and mu-
ation probability of genetic algorithms are 0.8 and 0.005, respec-
ively. There are 1024 MPI processes and 64 individuals in the
ub-population. The number of iterations is 2000, and the output
s recorded every ten generations. In the CEC2013 benchmark, the
ize can reach 11 dimensions. We conducted experiments in 10,
0, 50, and 100 dimensions (see Fig. 10).
From the graph ref Fig: function-4, it can be seen that the
convergence speed is the fastest in the 10-dimensional case, and
the convergence rate is less than 100 generations, and the results
reach the optimal value. With the increase of dimension, the
search range becomes larger, and the convergence speed and
results of the algorithm decrease relatively. From the graph, we
can see that the algorithm still has good performance in both
30 and 50 dimensions. It can converge within 500 generations
and approach optimal performance. The algorithm also shows
convergence performance when tested in a 100-dimensional case,
and generally converges within 1000 generations.

6.2. Seismic inversion

To further test the performance of the hybrid algorithmmodel,
we also use this algorithm to realize the non-linear prestack seis-
mic inversion. Seismic inversion is to infer the structure, shape,
and material composition of the earth’s interior based on various
geophysical observation data and to calculate various geophysical
parameters quantitatively. Inversion technology has been applied
in many fields and is widely used in complex experimental pro-
cesses of various scales and levels. For example, the estimation
of underground structure and mineral deposits, the estimation
of hydrocarbon accumulation parameters, the determination of



688 Z. Xiao, X. Liu, J. Xu et al. / Future Generation Computer Systems 114 (2021) 679–691

m
u
a
f
l
g
t
i
r
t
t
a
a
d
β

o
o

T

T

T

i

r

w

Fig. 9. (a) Weak scalability: the elements in each process of the six benchmark
functions are fixed to 2, 16, 128, 1024, and 8129, respectively. With the increase
of the number of processes, the six benchmark functions maintain similar linear
functions, showing good weak scalability; (b) Weak scalability comparison:
Weak scalability comparison between the single island model and mixed parallel
model, following As the number of processes increases, the weak scalability of
hybrid parallel model is better than that of the single island model.

focal location by wave arrival time, medical tomography, and so
on. In many cases, inversion improves the conventional seismic
resolution, improves the research conditions of reservoir parame-
ters to varying degrees, obtains optimized data volume, improves
the evaluation ability of resources, and puts forward favorable
well location suggestions. Therefore, people’s interest in seismic
inversion technology is growing. Seismic inversion has become a
conventional technology in oil and gas exploration and develop-
ment and is becoming a key link in reservoir characterization [40,
41].

Conventional AVA seismic inversion uses the approximate for-
ula of the Zoepritz equation. In this part, the exact equation is
sed to optimize the whole model space. The global optimization
lgorithm has better adaptability in geophysical inversion with
ewer parameters. For more complicated problems, especially
arge-scale parameter seismic inversion such as LSRTM and FWI,
radient method, and the Newton method are generally used. In
his paper, AVA seismic inversion is used to evaluate the reliabil-
ty of the algorithm under the condition of small-scale computing
esources. This paper considers the horizontal interface between
wo uniformly isotropic elastic half-spaces on the welding in-
erface. Among them, the wave velocity, shear wave velocity
nd density in the upper half-space are respectively expressed
s α1, β1 and ρ1; the wave velocity, shear wave velocity and
ensity in the lower half-space are respectively expressed as α2,
2 and ρ2. The reflection coefficient and transmission coefficient
f plane waves are given by Zoeppritz equation. In this paper,
nly the reflection coefficient Rpp of polypropylene is considered,
 s
Fig. 10. Multidimensional experiments: The elements of each dimension were
fixed to 10, 30, 50, and 100, respectively. Under 10-dimensional conditions, it
converges within 100 generations and reaches the optimal value; under 30 and
50-dimensional conditions, it converges within 500 generations, and the final
result is close to the optimal value; under 100-dimensional conditions, it can
converge within 1000 generations.

the specific calculation formula is as follows [42,43]:

Rpp =
Q 2

− r4T0T3 + r4T1T2 − (1 + Q )2 T0T2 + (r4 − Q )2 T1T3 − (r4 − Q − 1)2 T0T1T2T3
Q 2 + r4T0T3 + r4T1T2 + (1 + Q )2 T0T2 + (r4 − Q )2 T1T3 + (r4 − Q − 1)2 T0T1T2T3

,

(8)

where

Q = 2sin2θ
(
r4r23 − r22

)
, (9)

T0 = r0sinθ/

√
1 − r20 sin2θ, (10)

1 = r1sinθ/

√
1 − r21 sin2θ, (11)

2 = r2sinθ/

√
1 − r22 sin2θ, (12)

3 = r3sinθ/

√
1 − r23 sin2θ, (13)

n which,

0 =
α1

α1
, r1 =

α2

α1
, r2 =

β1

α1
, r3 =

β2

α1
, r4 =

ρ2

α1
, (14)

here θ is the angle of incidence, and internal consistency and
ymmetry are maintained by r = 1 and T = Tanθ .
0 0



Z. Xiao, X. Liu, J. Xu et al. / Future Generation Computer Systems 114 (2021) 679–691 689

g
a
i
t
0
i
1
g
v
d
v
F
g
a
t
l
t
i
a

6

s
p
q
t
c
4
a
u
t
n
f
o
k
o
S
r
f
i
d
a
o

Fig. 11. Seismic inversion: The PHGA is used for seismic inversion. The fitness
function is the difference between the observed value and the measured value.
The graph shows that the algorithm searches in the global scope, can effectively
jump out of the local optimum, and eventually converges to the better global
solution.

In this part of the experiments, the fitness function of the
enetic algorithm is the difference between the observed value
nd the measured value, that is, the closer the perceived value
s, the better the inversion effect will be. In this experiment,
he crossover probability is 0.8, and the mutation probability is
.005. The number of MPI processes is 128, and there are 64
ndividuals in each subpopulation. The number of iterations is
000, and the output is recorded every ten generations. In this
roup of experiments, the surface S-wave velocity and P-wave
elocity, as well as the surface and underground density are
etermined. Then the underground S-wave velocity and P-wave
elocity are inverted according to the determined conditions. In
ig. 11, the individuals in GA are represented by red dots. The
raph shows that the individuals in the algorithm search globally
nd finally find the optimal solution. Besides, it can be seen from
he graph that the algorithm can also effectively jump out of the
ocal optimum and find a better solution in global. The parame-
er optimization strategy proposed in this paper can effectively
mprove the overall calculation efficiency and is a more practical
pplication in the field of geophysics.

.3. Single island model experiment

According to the scale requirements of different problems, a
ingle island model was used to optimize RTM. Seismic wave
ropagation is a very complex physical phenomenon, which re-
uires a very accurate description of the complex wave equa-
ion. Reverse time migration imaging (RTM) is one of the most
ommonly used migration algorithms in seismic modeling [44–
6]. RTM uses the two-way wave to generate topographic im-
ges, showing significant advantages in high-steep structures and
nder-salt imaging. The flow chart of RTM algorithm implemen-
ation in this paper is shown in Fig. 12. The performance bottle-
eck of reverse-time migration imaging algorithms mainly comes
rom memory access and computation. In the RTM algorithm,
nly one direction of data is stored in memory continuously. This
ind of non-uniform memory access leads to a considerable time
verhead. In this paper, the RTM algorithm is implemented on the
unway TaihuLight. The performance of the RTM algorithm is se-
iously affected by the selection of three dimensional parameters
rom the core specifications. In this case, a single island model
s used to automatically optimize the parameters of the three-
imensional slave core of the reverse-time migration imaging
lgorithm to make full use of hardware resources to reduce time
verhead.
Fig. 12. Demonstration of the RTM algorithm:

Fig. 13. RTM Segmentation optimization: As the number of iterations increases,
the time of the RTM algorithm decreases gradually, and the single island model
convergence achieves the optimal effect in the 21st iteration.

In this case, we use the binary code of a three-dimensional
combination of parameters from nuclear specifications as chro-
mosomes. Restricted by the architecture of the SW26010 het-
erogeneous multi-core processor and the condition of reverse
time migration imaging algorithm, the range of values of three-
dimensional parameters NX, NY and NZ are integers in [1,500],
[1,1000] and [1,1000], among which NX must be a multiple of
4. Moreover, the product of NX, NY, and NZ does not exceed
3 ∗ 107. We use the reciprocal of the running time of the three-
dimensional reverse-time migration imaging algorithm as the
fitness function of genetic algorithm. In this experiment, the
number of iterations is 400, the crossover probability is 0.8,
and the mutation probability is 0.1. Graph 13 is the parameter
optimization of RTM data block segmentation. The graph shows
that with the increase of iteration times, the performance of the
algorithm improves effectively and achieves the optimal effect
at the 21st iteration, then keeps the stable value. It is proved
that the single island model is very effective in solving parameter
optimization problems with small data scale and complex fitness
calculation.

7. Conclusion

With the development of processors and the complexity of
various optimization problems, genetic algorithm has developed
from serial to parallel, from single to hybrid. Sunway TaihuLight,
as the third supercomputer in the world, deploys many high
parallel and intensive computing algorithms on it. At this time,



690 Z. Xiao, X. Liu, J. Xu et al. / Future Generation Computer Systems 114 (2021) 679–691

v
i
a

D

c
t

A

c
W
f

J
K
2
a
S

R

it is very meaningful to deploy high parallel genetic algorithm
on SW26010 heterogeneous multi core processors to help solve
a variety of parallel optimization problems. Against this back-
ground, This paper proposes a highly scalable hybrid parallel
genetic algorithm, which runs on the light of Sunway TaihuLight.

In order to implement this method, this paper implements the
islanding model at the upper level and the fine-grained model
at the lower level. MPI and register communication achiever
are used for two levels parallelism and information exchange
between MPEs and CPEs. This algorithm effectively reduces the
communication overhead while fully demonstrating individual
diversity. The data size processed by different CPEs is the same
and the data size processed by different MPEs are the same as
also, which ensure the load balancing.

To verify the performance of the algorithm, performance tests
and scalability experiments are carried out on CEC2013 bench-
mark. The hybrid parallel algorithm model perform excellent
scalability and performance on CEC2013 benchmark. The hybrid
parallel algorithm is compared with a single island model and
shows superiority in both performance and time. In order to
further prove the practicability of the algorithm, this paper also
uses the nonlinear pre-stack seismic inversion algorithm to verify,
the results show that the algorithm can quickly find the global
optimal solution. In addition, according to the data size and the
complexity of the objective function, the single island model is
also well used in parameters optimization for RTM program.

This novel design fully exploits the hardware potential of
heterogeneous many-core processors, and has a good reference
for the optimization and design of similar algorithms under het-
erogeneous many-core processors.

CRediT authorship contribution statement

Zhiyong Xiao: Conceptualization, Methodology. Xu Liu: Dat-
acuration, Writing - original draft. Jingheng Xu: Visualization,
Investigation. Qingxiao Sun: Writing-review and editing, Super-
ision. Lin Gan: Software, Validation. The corresponding author
s responsible for ensuring that the descriptions are accurate and
greed by all authors.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

The authors are grateful to the reviewers for their valuable
omments, which greatly improved the paper. Special thanks to
ubing Wan and others for their technical help and Mengyao Sun

or her writing guidance.
This work was supported by Natural Science Foundation of

iangsu Province, China under Grant No. BK20190079, National
ey Research and Development Project of China under Grant No.
017YFE0128500 and Center for High Performance Computing
nd System Simulation of Pilot National Laboratory for Marine
cience and Technology (Qingdao), China.

eferences

[1] Y. Zuo, M. Gong, J. Zeng, L. Ma, L. Jiao, Personalized recommendation
based on evolutionary multi-objective optimization [research frontier],
IEEE Comput. Intell. Mag. 10 (1) (2015) 52–62.

[2] J.H. Holland, Genetic algorithms, Scholarpedia 7 (12) (2012) 1482, http:
//dx.doi.org/10.4249/scholarpedia.1482.

[3] M. Gen, R. Cheng, Genetic Algorithms and Engineering Optimization, 1997.
[4] P.C. Chu, J.E. Beasley, A genetic algorithm for the multidimensional knap-
sack problem, J. Heuristics 4 (1) (1998) 63–86, http://dx.doi.org/10.1023/A:
1009642405419, https://doi.org/10.1023/A:1009642405419.

[5] J.F. Gonçalves, J.J. de Magalhães Mendes, M.G.C. Resende, A hybrid genetic
algorithm for the job shop scheduling problem, European J. Oper. Res. 167
(1) (2005) 77–95, http://dx.doi.org/10.1016/j.ejor.2004.03.012.

[6] L.V. Snyder, M.S. Daskin, A random-key genetic algorithm for the gener-
alized traveling salesman problem, European J. Oper. Res. 174 (1) (2006)
38–53.

[7] E. Cantú-Paz, A survey of parallel genetic algorithms, Calc. Paralleles Res.
Syst. Repar. 10 (2) (1998) 141–171.

[8] B. Dorronsoro, D. Arias, F. Luna, A.J. Nebro, E. Alba, A grid-based hybrid
cellular genetic algorithm for very large scale instances of the CVRP, in:
2007 High Performance Computing & Simulation Conference (HPCS 2007),
2007, pp. 759–765.

[9] K. Nitisiri, M. Gen, H. Ohwada, A parallel multi-objective genetic algo-
rithm with learning based mutation for railway scheduling, Comput. Ind.
Eng. 130 (2019) 381–394, http://dx.doi.org/10.1016/j.cie.2019.02.035, http:
//www.sciencedirect.com/science/article/pii/S0360835219301214.

[10] Y. Zhao, L. Chen, G. Xie, J. Zhao, J. Ding, GPU implementation of a
cellular genetic algorithm for scheduling dependent tasks of physical
system simulation programs, J. Comb. Optim. 35 (1) (2018) 293–317,
http://dx.doi.org/10.1007/s10878-016-0007-y.

[11] M. Rathomi, R. Pulungan, A coarse-grained parallelization of genetic algo-
rithms, Int. J. Adv. Intell. Inf. 4 (1) (2018) 1–10, http://dx.doi.org/10.26555/
ijain.v4i1.137, http://ijain.org/index.php/IJAIN/article/view/137.

[12] N. Hou, F. He, Y. Zhou, Y. Chen, X. Yan, A parallel genetic algorithm with
dispersion correction for HW/SW partitioning on multi-core CPU and
many-core GPU, IEEE Access 6 (2018) 883–898, http://dx.doi.org/10.1109/
ACCESS.2017.2776295.

[13] Y.Y. Liu, S. Wang, A scalable parallel genetic algorithm for the generalized
assignment problem, Parallel Comput. 46 (2015) 98–119, http://dx.doi.org/
10.1016/j.parco.2014.04.008, http://www.sciencedirect.com/science/article/
pii/S0167819114000519.

[14] Z. Huang, J. Zhong, L. Feng, Y. Mei, W. Cai, A fast parallel genetic
programming framework with adaptively weighted primitives for symbolic
regression, Soft Comput. (2019) 1–17.

[15] Y. Liu, R. Zhao, K. Zheng, S. Wang, Y. Liu, H. Shen, Q. Zhou, A hybrid parallel
genetic algorithm with dynamic migration strategy based on sunway
many-core processor, in: 2017 IEEE 19th International Conference on High
Performance Computing and Communications Workshops (HPCCWS), IEEE,
2017, pp. 9–15.

[16] P.S. Oliveto, C. Witt, Improved time complexity analysis of the simple
genetic algorithm, Theoret. Comput. Sci. 605 (2015) 21–41.

[17] L. Gan, H. Fu, C. Yang, W. Luk, W. Xue, O. Mencer, X. Huang, G. Yang, A
highly-efficient and green data flow engine for solving euler atmospheric
equations, in: 2014 24th International Conference on Field Programmable
Logic and Applications (FPL), IEEE, 2014, pp. 1–6.

[18] L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, G. Yang, Solving mesoscale
atmospheric dynamics using a reconfigurable dataflow architecture, IEEE
Micro 37 (4) (2017) 40–50.

[19] H. Fu, L. Gan, R.G. Clapp, H. Ruan, O. Pell, O. Mencer, M. Flynn, X. Huang, G.
Yang, Scaling reverse time migration performance through reconfigurable
dataflow engines, IEEE Micro 34 (1) (2013) 30–40.

[20] H. Fu, C. He, B. Chen, Z. Yin, Z. Zhang, W. Zhang, T. Zhang, W. Xue,
W. Liu, W. Yin, et al., 18.9-pflops nonlinear earthquake simulation on
sunway taihulight: enabling depiction of 18-Hz and 8-meter scenarios,
in: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, vol. 2, ACM, 2017.

[21] B. Chen, H. Fu, Y. Wei, C. He, W. Zhang, Y. Li, W. Wan, W. Zhang, L. Gan, W.
Zhang, Z. Zhang, G. Yang, X. Chen, Simulating the Wenchuan earthquake
with accurate surface topography on Sunway TaihuLight, in: Proceedings of
the International Conference for High Performance Computing, Network-
ing, Storage, and Analysis, SC 2018, Dallas, TX, USA, November 11-16, 2018,
pp. 517–528.

[22] W. Xue, C. Yang, H. Fu, X. Wang, Y. Xu, L. Gan, Y. Lu, X. Zhu, Enabling and
scaling a global shallow-water atmospheric model on tianhe-2, in: 2014
IEEE 28th International Parallel and Distributed Processing Symposium,
IEEE, 2014, pp. 745–754.

[23] A. Rezoug, M. Bader-El-Den, D. Boughaci, Guided genetic algorithm for
the multidimensional knapsack problem, Memetic Comput. 10 (1) (2018)
29–42, http://dx.doi.org/10.1007/s12293-017-0232-7.

[24] A.J. Umbarkar, M.S. Joshi, W. Hong, Multithreaded parallel dual population
genetic algorithm (MPDPGA) for unconstrained function optimizations on
multi-core system, Appl. Math. Comput. 243 (2014) 936–949, http://dx.doi.
org/10.1016/j.amc.2014.06.033.

[25] T. Dökeroglu, A. Cosar, Optimization of one-dimensional bin packing
problem with island parallel grouping genetic algorithms, Comput. Ind.
Eng. 75 (2014) 176–186, http://dx.doi.org/10.1016/j.cie.2014.06.002.

http://refhub.elsevier.com/S0167-739X(19)33318-7/sb1
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb1
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb1
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb1
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb1
http://dx.doi.org/10.4249/scholarpedia.1482
http://dx.doi.org/10.4249/scholarpedia.1482
http://dx.doi.org/10.4249/scholarpedia.1482
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb3
http://dx.doi.org/10.1023/A:1009642405419
http://dx.doi.org/10.1023/A:1009642405419
http://dx.doi.org/10.1023/A:1009642405419
https://doi.org/10.1023/A:1009642405419
http://dx.doi.org/10.1016/j.ejor.2004.03.012
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb6
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb6
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb6
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb6
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb6
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb7
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb7
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb7
http://dx.doi.org/10.1016/j.cie.2019.02.035
http://www.sciencedirect.com/science/article/pii/S0360835219301214
http://www.sciencedirect.com/science/article/pii/S0360835219301214
http://www.sciencedirect.com/science/article/pii/S0360835219301214
http://dx.doi.org/10.1007/s10878-016-0007-y
http://dx.doi.org/10.26555/ijain.v4i1.137
http://dx.doi.org/10.26555/ijain.v4i1.137
http://dx.doi.org/10.26555/ijain.v4i1.137
http://ijain.org/index.php/IJAIN/article/view/137
http://dx.doi.org/10.1109/ACCESS.2017.2776295
http://dx.doi.org/10.1109/ACCESS.2017.2776295
http://dx.doi.org/10.1109/ACCESS.2017.2776295
http://dx.doi.org/10.1016/j.parco.2014.04.008
http://dx.doi.org/10.1016/j.parco.2014.04.008
http://dx.doi.org/10.1016/j.parco.2014.04.008
http://www.sciencedirect.com/science/article/pii/S0167819114000519
http://www.sciencedirect.com/science/article/pii/S0167819114000519
http://www.sciencedirect.com/science/article/pii/S0167819114000519
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb14
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb14
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb14
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb14
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb14
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb15
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb15
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb15
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb15
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb15
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb15
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb15
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb15
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb15
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb16
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb16
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb16
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb17
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb17
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb17
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb17
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb17
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb17
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb17
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb18
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb18
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb18
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb18
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb18
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb19
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb19
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb19
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb19
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb19
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb20
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb20
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb20
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb20
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb20
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb20
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb20
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb20
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb20
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb22
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb22
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb22
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb22
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb22
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb22
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb22
http://dx.doi.org/10.1007/s12293-017-0232-7
http://dx.doi.org/10.1016/j.amc.2014.06.033
http://dx.doi.org/10.1016/j.amc.2014.06.033
http://dx.doi.org/10.1016/j.amc.2014.06.033
http://dx.doi.org/10.1016/j.cie.2014.06.002


Z. Xiao, X. Liu, J. Xu et al. / Future Generation Computer Systems 114 (2021) 679–691 691
[26] J. Luo, D.E. Baz, A survey on parallel genetic algorithms for shop scheduling
problems, in: 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops, IPDPS Workshops 2018, Vancouver, BC, Canada,
May 21-25, 2018, 2018, pp. 629–636, http://dx.doi.org/10.1109/IPDPSW.
2018.00103.

[27] J.R. Cheng, M. Gen, Accelerating genetic algorithms with GPU computing:
A selective overview, Comput. Ind. Eng. 128 (2019) 514–525, http://dx.doi.
org/10.1016/j.cie.2018.12.067.

[28] L. Zheng, Y. Lu, M. Guo, S. Guo, C. Xu, Architecture-based design and
optimization of genetic algorithms on multi- and many-core systems,
Future Gener. Comput. Syst. 38 (2014) 75–91, http://dx.doi.org/10.1016/
j.future.2013.09.029.

[29] P. Pospichal, J. Jaros, Gpu-based acceleration of the genetic algorithm,
GECCO competition (2009).

[30] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue, F. Liu, F.
Qiao, W. Zhao, X. Yin, C. Hou, C. Zhang, W. Ge, J. Zhang, Y. Wang, C. Zhou,
G. Yang, The sunway taihulight supercomputer: system and applications,
Sci. China Inf. Sci. 59 (7) (2016) 072001, http://dx.doi.org/10.1007/s11432-
016-5588-7.

[31] L. Gan, H. Fu, W. Xue, Y. Xu, C. Yang, X. Wang, Z. Lv, Y. You, G. Yang,
K. Ou, Scaling and analyzing the stencil performance on multi-core and
many-core architectures, in: 2014 20th IEEE International Conference on
Parallel and Distributed Systems (ICPADS), IEEE, 2014, pp. 103–110.

[32] C. Yang, W. Xue, H. Fu, H. You, X. Wang, Y. Ao, F. Liu, L. Gan, P. Xu, L.
Wang, et al., 10M-Core scalable fully-implicit solver for nonhydrostatic
atmospheric dynamics, in: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, IEEE
Press, 2016, p. 6.

[33] L. Li, T. Yu, W. Zhao, H. Fu, C. Wang, L. Tan, G. Yang, J. Thomson, Large-
scale hierarchical k-means for heterogeneous many-core supercomputers,
in: SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, IEEE, 2018, pp. 160–170.

[34] H. Fu, J. Liao, N. Ding, X. Duan, L. Gan, Y. Liang, X. Wang, J. Yang, Y.
Zheng, W. Liu, et al., Redesigning CAM-SE for peta-scale climate modeling
performance and ultra-high resolution on sunway taihulight, in: Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ACM, 2017, pp. 1–12.

[35] B. Barney, et al., Introduction to parallel computing, Lawrence Livermore
Natl. Lab. 6 (13) (2010) 10.

[36] S. Xu, Y. Xu, W. Xue, X. Shen, F. Zheng, X. Huang, G. Yang, Taming
the" Monster": Overcoming program optimization challenges on SW26010
through precise performance modeling, in: 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), IEEE, 2018, pp. 763–773.

[37] J. Liang, B. Qu, P. Suganthan, A.G. Hernández-Díaz, Computational Intelli-
gence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang
Technological University, Singapore, Technical Report, 201212, 34, 2013,
pp. 281–295.

[38] W. Gropp, W.D. Gropp, A.D.F.E.E. Lusk, E. Lusk, A. Skjellum, Using MPI:
Portable Parallel Programming with the Message-Passing Interface, vol. 1,
MIT press, 1999.

[39] W. Gropp, R. Thakur, E. Lusk, Using MPI-2: Advanced Features of the
Message Passing Interface, MIT press, 1999.

[40] G.T. Schuster, Seismic Inversion, Society of Exploration Geophysicists, 2017.
[41] Y. Wang, Seismic Inversion: Theory and Applications, John Wiley & Sons,

2016.
[42] X. Zhu, G.A. McMechan, Elastic inversion of near-and postcritical reflections

using phase variation with angle, Geophysics 77 (4) (2012) R149–R159.
[43] B. Ursin, E. Tjäland, The information content of the elastic reflection matrix,

Geophys. J. Int. 125 (1) (1996) 214–228.
[44] M. Araya-Polo, J. Cabezas, M. Hanzich, M. Pericas, F. Rubio, I. Gelado, M.

Shafiq, E. Morancho, N. Navarro, E. Ayguade, et al., Assessing accelerator-
based HPC reverse time migration, IEEE Trans. Parallel Distrib. Syst. 22 (1)
(2010) 147–162.
[45] F. Ortigosa, Q. Liao, A. Guitton, W. Cai, Speeding up RTM velocity
model building beyond algorithmics, in: SEG Technical Program Expanded
Abstracts 2008, Society of Exploration Geophysicists, 2008, pp. 3219–3223.

[46] J. Xu, H. Fu, W. Shi, L. Gan, Y. Li, W. Luk, G. Yang, Performance tuning and
analysis for stencil-based applications on POWER8 processor, ACM Trans.
Archit. Code Opt. 15 (4) (2018) 1–25.

Zhiyong Xiao received his B.S. degree from Shandong
University of China in 2008, and received the Ph.D.
degree in Optics, Physics and Image Processing from
the Ecole Central de Marseille, France in 2014. He
was an assistant research fellow at Fresnel Institute,
CNRS France. He is an associate professor at Jiangnan
University now. His research interests include parallel
computing, machine learning and artificial intelligence.

Xu Liu received the Master degree from Jiangnan
University. She is pursuing the Ph.D. degree in Jiangnan
University. Her research interests include high parallel
computing and evolutionary algorithm.

Jingheng Xu is pursuing the Ph.D. degree in School
of Computer Science and Engineering, Tsinghua Univer-
sity. He has participated in many state funded research
projects and published several papers in international
journals and conferences. His research interests include
high parallel computing and evolutionary algorithm.

Qingxiao Sun is pursuing the Ph.D. degree in School of
Computer Science and Engineering, Beihang University.
He is currently working on GPU hardware extension
and performance optimization. His research interests
include computer architecture, HPC and deep learning.

Lin Gan received the Ph.D. from Tsinghua University.
He is an assistant professor in School of Computer
Science and Engineering, Tsinghua University. He has
participated in many state funded research projects and
published several papers in international journals and
conferences. His current research areas include parallel
computing and machine learning.

http://dx.doi.org/10.1109/IPDPSW.2018.00103
http://dx.doi.org/10.1109/IPDPSW.2018.00103
http://dx.doi.org/10.1109/IPDPSW.2018.00103
http://dx.doi.org/10.1016/j.cie.2018.12.067
http://dx.doi.org/10.1016/j.cie.2018.12.067
http://dx.doi.org/10.1016/j.cie.2018.12.067
http://dx.doi.org/10.1016/j.future.2013.09.029
http://dx.doi.org/10.1016/j.future.2013.09.029
http://dx.doi.org/10.1016/j.future.2013.09.029
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb29
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb29
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb29
http://dx.doi.org/10.1007/s11432-016-5588-7
http://dx.doi.org/10.1007/s11432-016-5588-7
http://dx.doi.org/10.1007/s11432-016-5588-7
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb31
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb31
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb31
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb31
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb31
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb31
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb31
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb32
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb32
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb32
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb32
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb32
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb32
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb32
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb32
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb32
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb33
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb33
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb33
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb33
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb33
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb33
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb33
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb34
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb34
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb34
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb34
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb34
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb34
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb34
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb34
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb34
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb35
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb35
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb35
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb36
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb36
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb36
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb36
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb36
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb36
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb36
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb37
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb37
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb37
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb37
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb37
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb37
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb37
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb38
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb38
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb38
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb38
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb38
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb39
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb39
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb39
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb40
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb41
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb41
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb41
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb42
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb42
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb42
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb43
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb43
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb43
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb44
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb44
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb44
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb44
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb44
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb44
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb44
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb45
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb45
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb45
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb45
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb45
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb46
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb46
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb46
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb46
http://refhub.elsevier.com/S0167-739X(19)33318-7/sb46

	Highly scalable parallel genetic algorithm on Sunway many-core processors
	Introduction
	Related work
	Background
	Sunway TaihuLight and SW26010
	Genetic algorithm
	Traditional genetic algorithm
	Master–slave model
	Island model
	Cellular model


	Memory layout of the HPGA
	MPEs parallel structure
	CPEs parallel structure
	Register communication in cellular model 
	Multi-layer structure selection

	Implementation of the HPGA
	Chromosome design and initial population
	Fitness evaluation
	Genetic operators
	Register communication
	MPI communication


	Experimental result and analysis
	Evaluation about the CEC2013 benchmark
	Evaluation of HPGA
	Comparison with state of the art works
	Weak expansion experiment
	Multi-dimensional experiment

	Seismic inversion
	Single island model experiment

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


