
SpTFS: Sparse Tensor Format Selection for
MTTKRP via Deep Learning

Qingxiao Sun∗, Yi Liu∗, Ming Dun∗, Hailong Yang∗‡, Zhongzhi Luan∗, Lin Gan†,
Guangwen Yang†, and Depei Qian∗

Beihang University∗, Tsinghua University†, China
State Key Laboratory of Mathematical Engineering and Advanced Computing, Wuxi, China‡

{qingxiaosun,yi.liu,dunming0301,hailong.yang,zhongzhi.luan,depeiq}@buaa.edu.cn∗, {lingan,ygw}@tsinghua.edu.cn†

Abstract—Canonical polyadic decomposition (CPD) is one
of the most common tensor computations adopted in many
scientific applications. The major bottleneck of CPD is matricized
tensor times Khatri-Rao product (MTTKRP). To optimize the
performance of MTTKRP, various sparse tensor formats have
been proposed such as CSF and HiCOO. However, due to the
spatial complexity of the tensors, no single format fits all tensors.
To address this problem, we propose SpTFS, a framework that
automatically predicts the optimal storage format for an input
sparse tensor. Specifically, SpTFS leverages a set of sampling
methods to lower the sparse tensor to fix-sized matrices and
specific features. Then, TnsNet combines CNN and the feature
layer to accurately predict the optimal format. The experimental
results show that SpTFS achieves prediction accuracy of 92.7%
and 96% on CPU and GPU respectively.

Index Terms—MTTKRP, Sparse Tensor, Format Selection,
Convolutional Neural Network

I. INTRODUCTION

Tensors can represent high dimensional data with more
than two dimensions. Multi-dimensional tensors are commonly
used in the fields of scientific computing [1]–[3] and numerical
analysis [4]–[6]. In the meanwhile, tensor decomposition is
widely used to understand the relationship of data across
multiple dimensions. The concept of tensor decomposition
first appeared in the psychometric literature [7], and later
became popular in the field of chemometrics [8]. In recent
years, tensor decomposition has received wide attention due
to its applicability in broader areas such as neuroscience [9],
recommendation systems [10], and machine learning [11].

Canonical polyadic decomposition (CPD) [12] is one of the
most popular tensor decomposition techniques. CPD is a gen-
eralization of singular value decomposition and outputs matrix
factors for each mode (a.k.a, dimension) of a tensor. The major
performance bottleneck of CPD is matricized tensor times
Khatri-Rao product (MTTKRP) [13], which is the primary
focus of optimizations in tensor composition. Since real-world
tensors are usually large and extremely sparse, many existing
works optimize the performance of MTTKRP based on the
computation patterns and operation dependency [13]–[16].

Although the parallelization can significantly improve the
performance of MTTKRP, it is constrained by the sparsity
patterns and hardware characteristics (e.g., CPU and GPU).
Therefore, different sparse tensor formats have been proposed
to improve the computation performance with co-designed

storage and algorithm that adapts to the sparsity and hardware.
Coordinate (COO) [17] is a simple but popular sparse tensor
format in which each non-zero value is stored with the indices
of all dimensions. Compressed Sparse Fiber (CSF) [18] uses
a tree structure to store non-zero values and their index
pointers, similar to Compressed Sparse Row (CSR) [19] in
matrices. In addition, hardware-specific extensions based on
COO and CSF have been proposed, such as HiCOO and HB-
CSF [20]–[22]. However, due to the complex sparsity patterns
and diverse hardware characteristics, the optimal tensor format
for MTTKRP varies significantly. Therefore, it is challenging
to determine the optimal tensor format for MTTKRP running
with different tensor inputs on different hardware platforms.

The format selection of sparse tensors can be analogized
to the classification problem. For programmers, choosing the
optimal format is a daunting task with tedious efforts. How-
ever, such a problem is proved to be perfectly suited for deep
learning techniques, which have demonstrated their promising
success in image classification and object detection. Specif-
ically, the convolutional neural network (CNN) has gained
tremendous popularity in classification tasks due to its ability
to capture the underlying features of input data without human
engineering [23]–[27]. Despite the great success, how to use
CNN to solve the problems in high-performance computing is
still an ongoing research field. Related to this study, previous
works applied CNN to sparse matrix format selection for
optimizing SpMV [28]–[30] and SpGEMM [31]. However,
such approaches cannot be directly applied in tensor format
selection due to higher dimensional data to deal with.

Since the tensor usually stores higher-dimensional data, it
cannot be directly fed to CNN that commonly handles data no
more than three dimensions (e.g., weight, height, and channel
for image data). Although high-dimensional convolution has
been proposed [32]–[34], there are two reasons it cannot be
used in our work. Firstly, the irregularity of tensor data dete-
riorates the computation efficiency of convolution operations,
which leads to unacceptable training overhead [35]. Secondly,
the popular deep learning frameworks such as TensorFlow [36]
and PyTorch [37] can only support up to 3-D convolution
layers, which cannot satisfy the need for higher dimensional
tensors. Therefore, the format selection of sparse tensor poses
special challenges to CNN: 1) the higher-dimensional tensors
need to be lowered into matrices in order to adopt CNN; 2) the

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

SC
20

: I
nt

er
na

tio
na

l C
on

fe
re

nc
e

fo
r

H
ig

h
Pe

rf
or

m
an

ce
 C

om
pu

tin
g,

 N
et

w
or

ki
ng

, S
to

ra
ge

 a
nd

 A
na

ly
si

s
| 9

78
-1

-7
28

1-
99

98
-6

/2
0/

$3
1.

00
 ©

20
20

 I
E

E
E

 |
D

O
I:

 1
0.

11
09

/S
C

41
40

5.
20

20
.0

00
22

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 13:59:56 UTC from IEEE Xplore. Restrictions apply.

lowered matrices need to be represented as fixed-size input for
CNN, without losing the sparsity patterns; 3) the CNN network
needs to be re-designed to compensate for the missing sparsity
features during matrix representation.

To address the above challenges, we propose an automatic
tensor format selection framework SpTFS, that effectively pre-
dicts the optimal format for an input tensor running MTTKRP
on a particular hardware platform. The SpTFS first lowers the
high dimensional tensors into two-dimensional matrices and
then represents the matrices as fixed-size input suitable for the
CNN network through various scaling methods. In addition,
we re-design the CNN network by adding an additional feature
layer to compensate for the sparsity features lost during matrix
representation. We evaluate SpTFS on both CPU and GPU
platforms to prove its effectiveness in predicting optimal tensor
format. To the best of our knowledge, this is the first work
to automatically select the optimal sparse storage format for
tensor computation.

Specifically, this paper makes the following contributions:
• We comprehensively analyze the impact of sparse tensor

format selection on the performance of MTTKRP due
to the complex sparsity patterns and diverse hardware
characteristics.

• We propose a tensor transformation mechanism, that
first lowers a tensor into matrices, and then represents
the matrices to fixed-size inputs to CNN through two
different scaling methods.

• We design and implement TnsNet, that combines CNN
and feedforward neural network (FFNN) to obtain bet-
ter prediction accuracy. Moreover, TnsNet integrates an
additional feature layer that compensates for the sparsity
feature lost during tensor transformation.

• We develop an automatic sparse tensor format selection
framework SpTFS that effectively predicts the optimal
format for input tensor data running MTTKRP on dif-
ferent hardware platforms. Experiment results show that
SpTFS can achieve high prediction accuracy and thus
significant speedup for MTTKRP.

The rest of this paper is organized as follows: Section II
presents the background of this paper. Section III presents
the details of SpTFS methodology. Section IV presents the
evaluation results of SpTFS. Section V discusses the related
work, and Section VI concludes this paper.

II. BACKGROUND

A. Tensor Notation

Tensor denotes the array with multiple dimensions [38]
and is the generalization of matrix and vector. Specifically,
a high-order tensor refers to the tensor with more than two
dimensions, and the mode-n of a tensor denotes its nth

dimension. High-order tensors have been widely used in
the fields of signal processing (e.g., Higher-Order Statistics
(HOS) for the multivariate cases [39]), chemometrics (e.g.,
the excitation-emission spectroscopy matrices [8]) and im-
age/video rendering (e.g., RGB color images and 3D light

field displays [40]). Since finding the exact rank of a tensor is
an NP-hard problem [41], researchers pay the most attention
to ranks that are less than the longest dimension of a sparse
tensor. Here, we use the three-dimensional tensor and mode-1
operation to describe the concepts and related mathematics
about tensor decomposition without losing generality. All
notations for vectors, matrices, and high-dimensional tensors
are shown in Table I, where a slice denotes the subarray with
one index of the tensor fixed, and a fiber denotes the subarray
with two indices of the tensor fixed.

TABLE I: Important tensor notations.

Notation Definition
X A high-dimensional tensor.
N Tensor order.

I, J,K, In Tensor mode sizes.
X(n) Matricized tensor in mode-n.

X (i, j, k) An element in a high dimensional tensor.
X (i, :, :) A slice in a high dimensional tensor.
X (i, j, :) A fiber in a high dimensional tensor.

A A matrix.
A(i, j) An element in a matrix.

a An vector.
ai An element in a vector.
� The symbol for Kronecker product.
∗ The symbol for Hadamard product.
† The symbol for pesudo-inverse.

Canonical polyadic decomposition (CPD) [12] is one of the
most widely-applied tensor operations, which decomposes a
tensor X with rank F into the summation of F rank-one
tensors, and the rank-one tensors can be represented as the
outer products of vectors. In other words, the CPD models a
tensor X ∈ R

I×J×K with three factor matrices A ∈ R
I×F ,

B ∈ R
J×F and C ∈ R

K×F as formulated in Equation 1.
To solve the CPD, one of the most popular approaches is
to utilize Alternating Least Squares (ALS) [38], where a least
square problem for each factor matrix is solved iteratively with
others fixed. The update process for factor matrix A is shown
in Equation 2. The main bottleneck in the CPD-ALS algorithm
for sparse tensors is MTTKRP [13], which can be formulated
as Equation 3.

X (i, j, k) =
F∑

f=1

A(i, f)B(j, f)C(k, f) (1)

A = X(1)(B�C)(CTC ∗BTB)† (2)

Â = X(1)(B�C) (3)

B. Sparse Tensor Storage Formats

1) COO and COO-based Formats: Coordinate format
(COO) [17] is an intuitive format for storing sparse tensor.
COO consists of tuples, and each tuple stores the indices
and value for every nonzero element in the tensor. The
MTTKRP algorithm using COO tensor format computes at
the granularity of a single element. The advantage of COO
is the simplicity and insensitivity of sparsity patterns in

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 13:59:56 UTC from IEEE Xplore. Restrictions apply.

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � ���

�		
�����

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

�� � � ���

���		
�����

�

�

��

� � � �
� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � � � � � �

� � � � � � � �

	 � � � � � � �

��� �� �� �� �� �� �� ���

���		 �����

� � � �

� �

� �

� �

� �

� �

� � � �

� � � �

� � � �

� � � 	 � �

����� ���� ����� ���� ����� ���

���
����� ������
�����

� � � �

� �

� �

� �

� �

��� ��� ��� �� �� ��� �� �� ����� ���

� �

� � �

� � �

� � �

��� ��� ��� �� � � ���

���

��

! � � ���

� � � �
�		

������������������������
������������������������

Fig. 1: The comparison of sparse tensor storage formats, where F-COO and HiCOO (where parameter B = 2) are COO-based
formats, and HB-CSF is CSF-based format. The val stands for the non-zero value.

tensor. However, it requires a large memory footprint and
relies on atomic operations when running on GPU. Therefore,
the variants of COO have been proposed to overcome the
above drawbacks, including F-COO [20] and HiCOO [21],
as shown in Figure 1 (a). F-COO adds two flag arrays named
start-flag and bit-flag, which indicate whether the indices of
slices vary at the beginning of a block and at an element,
respectively. The two flag arrays are used to guide segment
scan [42] for avoiding atomic operations in MTTKRP on GPU.
Meanwhile, HiCOO partitions each dimension into chunks
with size B and compresses the nonzero tuples with fewer
bits. The bptr array stores where the block begins. The indices
for every nonzero element can be computed using Equation 4.
Atomic operations in MTTKRP can be avoided through its
privatization method. Moreover, HiCOO groups blocks into a
large logical superblock with size L. To avoid write conflicts,
the blocks within a superblock are always scheduled together
and assigned to a single thread.

i = bi ∗B + ei

j = bj ∗B + ej

k = bk ∗B + ek

(4)

2) CSF and CSF-based Formats: Compressed Sparse Fiber
(CSF) [18] extends the Compress Sparse Row (CSR) [19]
format used to store sparse matrices. CSF maintains a tree-
based structure and consists of six arrays, as shown in Figure 1
(b). The i ptr array stores the position of the first fibers of
the slices, while the j ptr array stores the position of the first
elements of the fibers. Other arrays store the corresponding
indices and values of elements. The CSF format is superior
in less memory footprint and higher cache hit rate compared
to COO, due to its compressed slices and fibers. Moreover,
tiling can be used along the second mode to partition matrix
factors, which are distributed among threads to eliminate the
need for locks. However, the tree-based CSF requires the
recursive algorithm when used in MTTKRP, which is not
efficient when implemented on GPU. Thus, CSF is extended
to HB-CSF [22] for better adaption on GPU, whose structure
is shown in Figure 1 (b). HB-CSF is a mixture of COO,
Compressed Slice (CSL), and CSF. The COO is used when the

slice only contains one element, whereas the CSL is applied
when the slice contains multiple fibers, and each fiber contains
a single element. Except for the above cases, the CSF format
is adopted. HB-CSF improves the load balance and memory
efficiency on GPU due to fine-grained tensor partition.

Figure 2 presents the performance comparison of real-
world sparse tensors using different storage formats for MT-
TKRP. The tensor datasets are adopted from FROSTT [43]
and HaTen2 [44], including ten 3-D tensors and six 4-D
tensors. The detailed descriptions of different tensor formats
are provided in Section IV-A. Two observations can be drawn
from Figure 2: 1) the execution time of the same tensor in
different formats varies significantly; 2) the optimal storage
format changes across tensors, there is no single format fits
for all. In fact, the massive amount of real-world tensor
data is prohibitive for selecting the optimal format through
manual efforts. What is worse, the sparsity distribution of high-
dimensional tensors is difficult to be described by traditional
machine learning methods, and thus makes such methods less
effective. The selection of sub-optimal format may exponen-
tially increase the execution time of MTTKRP. The above
observations motivate us to predict the optimal storage format
for tensors through deep learning methods automatically.

���

��

��

�

�

�

��

��
�
�

!�
�

�
�

��� "!�������� "!�������� ��������� �����!��

�#���� �!$� %���&'()' �*� ���!��� �#���� ���� ���� ������ ������ +��� ,��$� *�!�� ���!��� �����

��& ������ ��& ������

Fig. 2: The execution time of MTTKRP on real-world sparse
tensors across all modes on CPU. The number of columns
each tensor contains depends on its order.

C. Supervised Learning-based Techniques
Supervised learning has attracted lots of attention due to its

outstanding performance on image classification tasks [23]–
[27], [45]. Among the machine learning methods, gradient

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 13:59:56 UTC from IEEE Xplore. Restrictions apply.

boosted decision tree (GBDT) [46] has been adopted in many
application scenarios. XGBoost [47] is an efficient imple-
mentation of GBDT (based on CART [48]), which has been
widely used in classification. XGBoost also supports gradient
boosting linear classifier (GBLinear). Recently, deep learning
methods have achieved great success in scenarios where the
input contains non-linear patterns (e.g., images). Convolution
neural network (CNN) is one of the most popular deep neural
networks (DNNs) and is often used to realize tasks such as
classification and detection. The input of CNN can be a matrix
with non-linear patterns (e.g., pixels of an image), and the
output is the probability of the input belonging to each class.
However, the input size of CNN is typically fixed and equals to
the number of nodes of the input layer. If the raw inputs have
different sizes, they need to be scaled to a fixed size. During
scaling, the features of raw inputs should be retained as much
as possible, in order to faithfully represent the patterns.

III. METHODOLOGY

A. Design Overview

In this section, we propose an automatic tensor format
selection framework SpTFS, that can predict the optimal tensor
format for MTTKRP with re-designed CNN network. As
shown in Figure 3, the SpTFS consists of three important
components including tensor transformation, feature extrac-
tion and TnsNet (a re-designed CNN network). The tensor
transformation component converts the sparse tensors into fix-
sized matrices through tensor lowering (Section III-B) and
matrix representation (Section III-C). Inspired by [31], feature
extraction is used to capture lost tensor features during tensor
transformation, which is then fed into the fully connected
layer in TnsNet (Section III-D). The performance of each
tensor input is profiled with different storage formats on the
target hardware platform, and the tensor format with the best
performance is labeled. The profiled datasets are then used
to train the TnsNet, which predicts the optimal format for a
tensor on the target hardware platform.

Due to the limited number of publicly available datasets
of sparse tensors, we randomly select sparse matrices from
the SuiteSparse [49] and combine them to generate more
datasets of sparse tensors. SuiteSparse has been widely used in
evaluating the performance of matrix computation [50]–[54]
as well as the accuracy of matrix format selection [29]–[31],
[55]–[57]. For the 3-D tensors, we use the elements of the first
matrix to form the higher two dimensions, and the elements
along the higher indices of the second matrix to form the
lowest dimension. Similarly, for the 4-D tensors, the elements
of the first matrix and the second matrix form the higher two
dimensions and the lower two dimensions, respectively. After
that, the generated sparse tensor datasets are processed through
tensor transformation and feature extraction in order to be used
for training the CNN network.

Note that the SpTFS can support the format selection of
higher-order tensors. Tensors of any order can be transformed
into matrices through tensor lowering and matrix representa-
tion. In addition to MTTKRP, the SpTFS can also support more

general tensor computations such as Tensor Times Matrix
(TTM) thanks to the versatility of tensor transformation.

B. Tensor Lowering

Tensor lowering is based on flattening and mapping tech-
niques, both of which are able to capture the sparsity dis-
tribution of tensors, which are important to train the TnsNet
network. As shown in Figure 4, we take mode-1 MTTKRP as
an example to explain the flattening and mapping of a third-
order tensor. For mapping, we first get the mode-1 slices of the
tensor (i.e., X(i,:,:)) (Figure 4 (b)), which denotes the subarrays
with the i index fixed. Next, we map the non-zero values of all
slices to a slice (Figure 4 (c)), and the non-zero values of the
same position are accumulated to obtain the density of mode-1
slices. Note that in the density distribution, all non-zero values
are regarded as 1. The mode-1 mapping can be formulated in
Equation 5, where X ∈ R

I×J×K and A ∈ R
J×K .

A =
I∑

i=1

X (i, :, :) (5)

Flattening is to unfold the tensor using matricization. Fig-
ure 4 (d) shows the mode-1 flattening of X is X(1) in
Equation 3. For any element in X , its flattening to the matrix
can be formulated in Equation 6, where B ∈ R

I×JK .

B(i,k×J+j) = X (i, j, k) (6)

Here, we generalize the method of tensor lowering regarding
a N th-order tensor. For mapping, we map the non-zeros to
a slice with N − 2 indices fixed each time and eventually
generate CN−1

N matrices. For flattening, we unfold the tensor
along each mode to generate a matrix. The mode-1 mapping
can be formulated in Equation 7, where X ∈ R

I1×I2×···×IN

and A ∈ R
IN−1×IN . The other matrices generated by mode-1

mapping can be deduced similarly. The mode-n flattening of
X to matrix can be formulated in Equation 8, where tensor
element (i1, i2, · · · , iN) maps to matrix element (in, j) [38].

A =

I1,··· ,IN−2∑

i1,··· ,iN−2=1

X (i1, · · · , iN−2 :, :) (7)

j = 1 +

N∑

k=1
k �=n

(ik − 1)Jk, and Jk =

k−1∏

m=1
m �=n

Im (8)

Note that flattening and mapping are two separate methods
of tensor lowering that can be applied independently. As seen,
mapping reflects the vertical distribution of the non-mode
indices, and flattening reflects the horizontal distribution of
the mode index. Therefore, they can be combined to retain
the sparsity distribution of a tensor. With the tensor lowered
to matrices, we then transform the matrices into fix-sized input
for the network through matrix representation (Section III-C).

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 13:59:56 UTC from IEEE Xplore. Restrictions apply.

-���!.

�����*�!��

�%!���$����

�$����

 �����

�����*�!�� ��!�!��&��������*�!��

 ����� ����������!��
� ��������/��!��

� ����!.��$��������!��

����%��0.���*�!��
� �������!����!���

� �$���!�,����%���

� 1

 �����&������ ��2��

���%*�%��

 ��!���

-����

����*���

�������

����!��

���$�!��

�$���� ������������
� �)34���5���5"!���

� 6)34���5�����5���5"7����

���!�!��

8�$%� �����

 ����� ����������!��

����%��0.���*�!��

$���!*�!��

Fig. 3: The design overview of SpTFS.

�

�
�

� � �

� � � � 	

�
�

�
 � 	

� � 	

�

� � 	

� �
 � 	

��' �9!��������������:
��-�������!*�����9�������:

*�-�������$$!�����9�������:
��-������������!�����9�������:

Fig. 4: The process of lowering a high-dimensional tensor into
matrices using mapping or flattening.

C. Matrix Representation

The matrices generated through tensor lowering are irregular
in size, and we need to scale the matrices into fix-sized
input (e.g., 128× 128) for the network. Inspired by [28], we
consider two ways for matrix scaling: density representation
and histogram representation. Both methods can represent the
coarse-grained patterns of the original matrix with acceptable
sizes. The density representation captures detailed variations
among different regions of the original matrix. The histogram
representation [28] further captures the distance between an
element and the diagonal of the original matrix while losing
parts of the sparsity distribution.

As shown in Figure 5, we illustrate the matrix representation
methods by the example of mapping the 8 × 8 matrix to
4 × 4 matrices. For the density representation (Figure 5
(b)), each block counts non-zero elements and fills into the
new matrix. For histogram representation, row histogram and
column histogram are used to express the diagonal information
of the original matrix (Figure 5 (c)). The steps of scaling with
histograms are illustrated in Algorithm 1. The rowDim and
the colDim are the row and column indices of the elements
mapped to the new matrix, which are also used in the density
representation. The dist reflects the distance between the
element and the diagonal. However, the distance does not fully

reflect the sparsity distribution of an element. For example, if
the elements distributed on both sides of the diagonal have the
same distance from the diagonal, they will be counted at the
same position of the histogram. Finally, the values of the new
matrices are normalized to the range of [0,1] by dividing by
the maximum value.

� � �

� � �

� �

� �

� � �

�

� �

� � �

� �

� �

� �

� � �

� �

� �

� �

� �

� �

� �

� � �

�� 9���!�!��� ����!.:

�� 9�����!�,��$��������!��:

*� 9�9!���������$��������!��:

Fig. 5: Different ways for representing a matrix.

Algorithm 1 Matrix representation using histograms.

1: Input: input matrix IM and output resolution r
2: Output: row matrix RM and column matrix CM
3: rowRatio = IM.height / r
4: colRatio = IM.width / r
5: maxDim = max(IM.height, IM.width)
6: for each non-zero nz in IM do
7: dist = r × abs(nz.row − nz.col) / maxDim
8: rowDim = nz.row / rowRatio
9: colDim = nz.col / colRatio

10: RM [rowDim][dist]+ = 1
11: CM [colDim][dist]+ = 1
12: end for

Note that both representation methods may lose the potential
patterns of a matrix, which will ultimately affect the accuracy
of tensor format selection. Therefore, we choose to add a
feature layer to the network structure to compensate for the
loss of tensor features (Section III-D).

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 13:59:56 UTC from IEEE Xplore. Restrictions apply.

*��+;$���!�� *��+;$���!�� *��+;$���!�� �������;��

��$$!��<����!�, ��$�:

�
���������

�

��� ��� �� �� �� �� �� �� � � ��
��� �

���� �

����%����,��

�� �

��

�= �

��� �

7���2��

��������� ��

)�����!�!�,

�������!��<����!�, ��$�:

��� ��� �� �� �� �� �� �� � � ��

Fig. 6: The structure design of TnsNet.

D. Network Structure Designs

As shown in Figure 6, TnsNet combines CNN and feed-
forward neural network (FFNN) [58] to predict the optimal
storage format for a tensor. The inputs of TnsNet include the
fix-sized matrices generated through tensor lowering and ma-
trix representation. Besides, tensor features are also extracted
and fed to TnsNet. Here, we take the density representation as
an example, where the BaseNet includes all convolution and
pooling layers of TnsNet. The advantage of using BaseNet
is to provide better portability when handling higher-order
tensors. In such a case, the design and hyper-parameters of
the BaseNet can be re-used without any modification. For the
matrices generated after tensor transformation, we use them as
inputs to the BaseNets separately and concatenate the outputs
at the fully connected layer.

After BaseNet, the outputs from two tensor lowering meth-
ods merge together as joint features of matrices and flow
into the fully connected layer. The joint features are further
concatenated with the feature layer, where the feature layer
can supplement the missing sparsity features of the original
tensor. The feature layer reflects the memory layout (e.g.,
sparsity) and computation characteristics (e.g., nnz) using the
specific tensor format. Table II summarizes all the sparsity
features used in the feature layer, including the global and local
features of the tensor. The global features include the tensor’s
mode sizes, nnz, sparsity, and features related to nnz per row-n
(e.g., aveNnzPerRow n). Whereas, the local features are those
related to slices and fibers, such as nnz per slice, nnz per fiber
and fibers per slice. The local features can significantly affect
the performance of MTTKRP of CSF-based tensor formats.
Since the value of the input feature (e.g., nnz) may vary
significantly across tensors, we normalize each input feature
to the range of [0,1] by dividing each value by the maximum
value of the feature. Ultimately, the outputs of TnsNet are
the probability of each tensor format to achieve the optimal
performance. For a particular tensor, the tensor format with
the highest probability is predicted to be optimal.

As shown in Figure 7, TnsNet using the histogram repre-
sentation replaces each input matrix with a row matrix and a
column matrix. These two matrices can be seen as different
channels of an image (e.g., RGB). For the matrices generated
after the same method of tensor transformation, we adopt the
late-merging structure [57] in our TnsNet. That is, each matrix

TABLE II: The candidate feature set of a tensor.

Feature Meaning
I n Tensor mode sizes.
slice, fiber Number of slices, fibers.
sliceRatio, fiberRatio The ratio of slices, fibers.
nnz Number of non-zeros.
sparsity Density of NNZ in the tensor.
aveNnzPerRow n Average number of NNZ per row-n.
maxNnzPerRow n Maximum number of NNZ per row-n.
minNnzPerRow n Minimum number of NNZ per row-n.
devNnzPerRow n The deviation of the number of NNZ per row-n.
adjNnzPerRow n Average difference between NNZ of adjacent row-ns.
aveNnzPerSlice Average number of NNZ per slice.
maxNnzPerSlice Maximum number of NNZ per slice.
minNnzPerSlice Minimum number of NNZ per slice.
adjNnzPerSlice Average difference between NNZ of adjacent slices.
devNnzPerSlice The deviation of number of NNZ per slice.
aveNnzPerFiber Average number of NNZ per fiber.
maxNnzPerFiber Maximum number of NNZ per fiber.
minNnzPerFiber Minimum number of NNZ per fiber.
devNnzPerFiber The deviation of number of NNZ per fiber.
adjNnzPerFiber Average difference between NNZ of adjacent fibers.
aveFibersPerSlice Average number of fibers per slice.
maxFibersPerSlice Maximum number of fibers per slice.
minFibersPerSlice Minimum number of fibers per slice.
devFibersPerSlice The deviation of number of fibers per slice.
adjFibersPerSlice Average difference between fibers of adjacent slices.

is used as the input of BaseNet, and then the output features
are merged into the fully connected layer (similar to handling
higher-order tensors). After merging the features of the row
and column, the remaining structure stays unchanged.

�������!��<9!������� ��$�:

��$$!��<9!������� ��$�:

�
7���2��

�
7���2�� *��*�������;��

�
���������;��

�

�� �

�= �

��� �

��������� ��

)�����!�!�,

���������;��

��� �

��� �
��� ��� �

��� ��� �

����%����,��

Fig. 7: The design of TnsNet using histogram representation.

When porting the TnsNet to a hardware platform different
from where it is trained, new training data needs to be collected

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 13:59:56 UTC from IEEE Xplore. Restrictions apply.

to reflect the new hardware characteristics. When adding new
tensor data to the dataset, the same tensor transformation
procedures are applied to convert the tensor data into fix-sized
matrices to re-train TnsNet. Then, the TnsNet is re-trained with
the new data collected on the particular platform.

IV. EVALUATION

A. Experiment Setup

1) Hardware and Software Platforms: As shown in Ta-
ble III, we evaluate the effectiveness of SpTFS on two hard-
ware platforms, where the CPU is an Intel Xeon processor
and the GPU is an Nvidia RTX Turing processor. The GPU is
also utilized to speed up the process of training and prediction.
TnsNet is built using TensorFlow release version 1.15 [36].

TABLE III: Hardware platforms used for evaluation.

CPU GPU

Model Intel Xeon Silver 4110 CPU GeForce RTX 2080 Ti
Frequency 2.1GHz 1.3GHz
Cores 16 4352 (68 SMs)
Cache 32KB L1, 1MB L2, 11MB L3 5.5 MB L2
Memory 192GB DDR4 11GB GDDR6
Bandwidth 230.4GB/s 616.0GB/s
OS/Driver CentOS Linux release 7.6 GPU Driver 440.33
Compiler gcc-4.8 nvcc-10.2

2) Sparse Tensor Formats and Datasets: For MTTKRP on
CPU, we evaluate the sparse tensor storage formats, including
COO, CSF, and HiCOO. Specifically, the CSF implementation
is adopted from SPLATT [59], whereas the COO and HiCOO
implementations are adopted from ParTI! [21]. SPLATT pro-
vides the optimization option for tiling. We use CSF-tile and
CSF-based to denote enabling and disabling this option. For
HiCOO, we use two superblock sizes (i.e., HiCOO-sb10 and
HiCOO-sb14) according to [21]. For example, HiCOO-sb10
means that the size of the superblock is 210. For MTTKRP on
GPU, the tensor formats we evaluate are COO, F-COO, CSF,
and HB-CSF. Except for F-COO, we adopt the implementa-
tions of all tensor formats from [22]. Since there is no public
F-COO implementation available, we develop our F-COO
implementation based on [20]. Due to severe load imbalance,
F-COO exhibits relatively poor performance, which has also
been confirmed in [22]. Among all GPU formats during our
evaluation, F-COO only accounts for 0.4% of the cases with
the best performance, whereas in 59.3% of the cases, it leads
to the worst performance. Therefore, we do not consider F-
COO for tensor format selection on GPU. To ensure fairness,
we use the best parameter configurations reported in each
implementation and compile with the “O3” option.

For the evaluation dataset, we generate 9,855 third-order
tensors and 9,793 fourth-order tensors based on 2,726 matrices
selected from the SuiteSparse Matrix Collection [49]. The
number of non-zero elements ranges from 3 to 9,953,208. In
addition, we add 16 real-world tensors (10 for 3-D and 6 for
4-D) from FROSTT [43] and HaTen2 [44] to the evaluation
dataset (details listed in Figure 2).

3) Cross Validation: We use the 5-fold cross validation
method to determine hyperparameters and evaluate the ac-
curacy of the models. The validation method is widely used
in literatures [28]–[30]. We compare the design of TnsNet
with the XGBoost [47] machine learning methods, including
GBDT and GBlinear, which are based on CART [48] and the
linear model, respectively. The input features of GBDT and
GBLinear are listed in Table II, which are the same to the
feature layer of TnsNet. The GBDT and GBLinear are trained
for CPU and GPU platforms separately. For TnsNet, we set
the batch size to 100 and the convolution filter size to 3× 3.
We select the Adam stochastic optimizer with 0.0001 learning
rate. During training data collection, we set the rank size to
16. Besides, we set the number of threads to 16 when on CPU,
and the thread block size to 256 when on GPU.

B. Results for Prediction

1) Prediction Accuracy: Table IV reports the prediction
accuracy of the four designs (density/histogram representation
w/o feature layer) of TnsNet and two machine learning meth-
ods (GBDT and GBLinear) on CPU. The recall represents
the percentage of correct results returned and prec. represents
the precision. The third column in Table IV represents the
number of sparse tensors achieving the optimal performance in
the corresponding format. TnsNet with density representation
(density repr.) and feature layer (FL) achieves the highest pre-
diction accuracy in general. The overall prediction accuracy of
TnsNet (density repr.+FL) in mode-1, mode-2 and mode-3 is
92%, 93% and 93%, respectively. In comparison, the machine
learning method GBDT only achieves 85%, 84%, and 89%
prediction accuracy. In addition, TnsNet (density repr.+FL)
also exhibits stable recall rate and prediction accuracy for all
tensor formats. In comparison, the recall rate and precision
accuracy of GBDT deteriorate to 49% (in mode-1 with HiOO-
sb14 format) and 74% (in mode-3 with CSF-tile format) in
the worst case. For the histogram representation, the training
accuracy is high whereas the prediction accuracy is low, which
indicates it suffers from overfitting.

The difference in prediction accuracy among the tensor
formats is due to the amount of training data and the com-
plexity of the format patterns. With more training data, TnsNet
can better learn the data patterns in the corresponding tensor
format. The prediction accuracy of HiCOO-sb10 is better
than HiCOO-sb14, because the training dataset contains more
profiling data for HiCOO-sb10 than HiCOO-sb14 (4,454 vs.
250 on average across all modes). Besides, the complex format
patterns also affect the prediction accuracy of TnsNet. In
mode-1, the number of training data for COO and CSF-based
format is similar, but the prediction accuracy of COO is much
higher than CSF-based. This is because the performance of
CSF is strongly correlated with the spatial distribution of
the tensor data. However, the spatial distribution of tensor
data is partially lost during the tensor transformation. Due to
space constraint, we will only present the evaluation results of
TnsNet (density repr.+FL) and GBDT in the rest of the paper.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 13:59:56 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Prediction accuracy of different designs of TnsNet and machine learning methods on CPU.

MTTKRP
Mode

SpTensor
Format

Ground
Truth

only density repr. only histogram repr. density repr.+FL histogram repr.+FL GBDT GBLinear
recall prec. recall prec. recall prec. recall prec. recall prec. recall prec.

Mode-1

COO 740 0.95 0.88 0.6 0.65 0.97 0.91 0.56 0.68 0.91 0.78 0.9 0.66
HiCOO-sb10 4143 0.9 0.91 0.86 0.82 0.95 0.92 0.83 0.82 0.88 0.88 0.87 0.68
HiCOO-sb14 328 0.66 0.87 0.63 0.7 0.73 0.88 0.67 0.66 0.49 0.82 0.22 0.91
CSF-based 3912 0.93 0.88 0.84 0.83 0.91 0.94 0.84 0.81 0.9 0.86 0.56 0.82
CSF-tile 732 0.67 0.93 0.77 0.83 0.78 0.85 0.78 0.77 0.52 0.88 0.27 0.72
Total 9855 0.89 0.8 0.92 0.79 0.85 0.71

Mode-2

COO 656 0.92 0.93 0.58 0.59 0.95 0.96 0.6 0.57 0.87 0.78 0.57 0.64
HiCOO-sb10 2544 0.89 0.91 0.86 0.9 0.9 0.93 0.86 0.89 0.82 0.9 0.54 0.86
HiCOO-sb14 170 0.94 0.85 0.77 0.76 0.96 0.85 0.77 0.78 0.86 0.83 0.42 0.82
CSF-based 5527 0.94 0.92 0.84 0.81 0.96 0.94 0.83 0.83 0.89 0.85 0.94 0.67
CSF-tile 958 0.8 0.92 0.75 0.78 0.86 0.94 0.75 0.75 0.6 0.77 0.03 0.44
Total 9855 0.91 0.8 0.93 0.8 0.84 0.69

Mode-3

COO 831 0.67 0.94 0.63 0.71 0.84 0.95 0.68 0.7 0.83 0.81 0.37 0.7
HiCOO-sb10 6675 0.97 0.92 0.87 0.86 0.96 0.95 0.87 0.88 0.95 0.94 0.97 0.72
HiCOO-sb14 253 0.75 0.91 0.76 0.74 0.77 0.89 0.74 0.8 0.63 0.84 0.24 0.56
CSF-based 1912 0.84 0.84 0.7 0.7 0.9 0.86 0.75 0.67 0.8 0.81 0.13 0.73
CSF-tile 184 0.85 0.92 0.72 0.67 0.88 0.91 0.76 0.71 0.69 0.74 0.04 0.23
Total 9855 0.9 0.79 0.93 0.8 0.89 0.71

All-Mode Overall 0.9 0.8 0.93 0.8 0.86 0.7

Table V reports the prediction accuracy on GPU. Simi-
larly, TnsNet achieves better prediction accuracy compared
to GBDT in all modes across all tensor formats. Specifically,
TnsNet achieves 96% prediction accuracy on average, whereas
GBDT only achieves 90%. Since there are fewer tensor
formats available on GPU, the prediction accuracy of both
TnsNet and GBDT is higher than on CPU.

Due to the limited number of real-world tensors, we repeat
the 5-fold cross validation of the entire datasets for 10 times
and obtain the average accuracy of 93% and 92% on CPU and
GPU, respectively. The results further prove the effectiveness
of TnsNet on real-world tensors.

TABLE V: Prediction accuracy of TnsNet and GBDT on GPU.

MTTKRP
Mode

SpTensor
Format

Ground
Truth

TnsNet GBDT
recall prec. recall prec.

Mode-1

COO 6063 0.98 0.98 0.94 0.98
CSF 1640 0.95 0.91 0.87 0.73
HB-CSF 2152 0.96 0.98 0.88 0.91
Total 9855 0.97 0.92

Mode-2

COO 6191 0.97 0.99 0.93 0.98
CSF 1650 0.94 0.9 0.89 0.71
HB-CSF 2014 0.97 0.94 0.87 0.91
Total 9855 0.97 0.91

Mode-3

COO 5967 0.97 0.97 0.94 0.97
CSF 1796 0.85 0.86 0.81 0.66
HB-CSF 2092 0.92 0.9 0.78 0.88
Total 9855 0.94 0.88

All-Mode Overall 0.96 0.9

2) Training/Testing Loss: The loss is used to indicate the
degree of prediction deviation from the true value. During
training, the loss decreases, and the accuracy increases. Fig-
ure 8 compares the losses and accuracies during training and
testing on CPU and GPU. We can observe that the loss curve
during training is more oscillating than during testing, but
the overall trend is similar. As the number of training steps
increases, the accuracy and loss of TnsNet gradually converge
to an almost constant value. Compared to CPU, the training
on GPU converges faster due to fewer tensor formats. The

results show that TnsNet quickly learns the tensor features
and maintains convergence on both CPU and GPU platforms.
The results also indicate that the training data after applying
our proposed tensor transformation is still able to retain the
important features for identifying the optimal tensor format.

C. Results for Speedup

The performance speedup of MTTKRP using the tensor
format predicted by TnsNet on CPU and GPU is presented in
Figure 9 and Figure 10, respectively. The performance using
the COO format and CSF-based/CSF format are chosen as the
baseline. We can observe that TnsNet achieves higher perfor-
mance speedup than GBDT in all modes on both platforms.
On CPU, TnsNet achieves an average speedup of 4.56× and
2.06× over COO format and CSF-based format, respectively.
The low performance speedup of TnsNet over CSF-based
format is due to the fact that CSF format performs better than
the COO format in most cases. On GPU, TnsNet achieves an
average speedup of 1.58× and 2.08× over COO format and
CSF format, respectively. The low performance speedup of
TnsNet over COO format is due to the fact that COO format
already achieves optimal performance in most cases (refer to
Table V). Nevertheless, the results further demonstrate that
choosing the right tensor format is critical to achieving the
optimal performance for MTTKRP.

Figure 12 shows the speedup distribution of TnsNet com-
pared to GBDT, with the cases where the two models give
different predictions for the optimal tensor formats. The left
part of the vertical dash line indicates the cases when using
the formats predicted by TnsNet achieves better performance
than GBDT. TnsNet is able to improve the performance of
72% of the tensors. For 4.8% of the tensors, TnsNet achieves
5× speedup over GBDT. Moreover, the speedup of TnsNet
can reach up to 420×, 341× and 557× in mode-1, mode-
2, and mode-3, respectively. The results show that TnsNet is
more accurate for predicting the optimal tensor format, and
thus leads to significant speedup compared to GBDT.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 13:59:56 UTC from IEEE Xplore. Restrictions apply.

�>

��>

��>

��>

��>

���>

���>

�:�

�:�

�:�

�:�

�:�

�:�

�:�

�:�

� �:� � �:� � �:� � �:� � �:�

'
**
%
��
*,

?
�
��

���$
#�

���!�!��@���� ����!��@����
���!�!��@�**%��*, ����!��@�**%��*,

�>

��>

��>

��>

��>

���>

���>

�:�

�:�

�:�

�:�

�:�

�:�

�:�

�:�

� �:� � �:� � �:� � �:� � �:�

'
**
%
��
*,

?
�
��

���$
#�

���!�!��@���� ����!��@����
���!�!��@�**%��*, ����!��@�**%��*,

�>

��>

��>

��>

��>

���>

���>

�:�

�:�

�:�

�:�

�:�

�:�

�:�

�:�

� �:� � �:� � �:� � �:� � �:�

'
**
%
��
*,

?
�
��

���$
#�

���!�!��@���� ����!��@����
���!�!��@�**%��*, ����!��@�**%��*,

-����� -����� -�����

�>

��>

��>

��>

��>

���>

���>

�:�

�:�

�:�

�:�

�:�

�:�

�:�

�:�

� �:� � �:� � �:� � �:� � �:�

'
**
%
��
*,

?
�
��

���$
#�

���!�!��@���� ����!��@����
���!�!��@�**%��*, ����!��@�**%��*,

�>

��>

��>

��>

��>

���>

���>

�:�

�:�

�:�

�:�

�:�

�:�

�:�

�:�

� �:� � �:� � �:� � �:� � �:�

'
**
%
��
*,

?
�
��

���$
#�

���!�!��@���� ����!��@����
���!�!��@�**%��*, ����!��@�**%��*,

�>

��>

��>

��>

��>

���>

���>

�:�

�:�

�:�

�:�

�:�

�:�

�:�

�:�

� �:� � �:� � �:� � �:� � �:�

'
**
%
��
*,

?
�
��

���$
#�

���!�!��@���� ����!��@����
���!�!��@�**%��*, ����!��@�**%��*,

-����� -����� -�����

Fig. 8: Loss and accuracy of TnsNet during training and testing on CPU (above) and GPU (below).

�

�

�

�

�

�

	

-����� -����� -����� -����� -����� -�����

�
$
��
�
%
$

 ��2�� 67&

�+����� �+�����������

Fig. 9: Speedup of TnsNet and GBDT
over the baseline COO format and the
CSF-based format on CPU.

�:�

�:�

�:	

�:=

�:�

�:�

-����� -����� -����� -����� -����� -�����

�
$
��
�
%
$

 ��2�� 67&

�+����� �+�����

Fig. 10: Speedup of TnsNet and GBDT
over the baseline COO format and the
CSF format on GPU.

�

�

��

��

��

��

��

��

-����� -����� -����� -����� -����� -����� -����� -�����

�
$
��
�
%
$

 ��2�� 67&

�+����� �+�����������

Fig. 11: Speedup of TnsNet and GBDT
over the baseline COO format and the
CSF-based format for 4-D tensors.

�>

��>

��>

��>

��>

��>

��>

	�>

��>

A�
�5�B
�5�B
�:�5�B
�:�5�:�B

)
��
*�
�
��
�
�

�$���%$

-����� -����� -�����

	�> ��>

Fig. 12: Speedup distribution of TnsNet over GBDT on CPU.

D. Applying to Higher-order Tensors

Since the tensor lowering method can be applied to tensors
with any dimension, it is easy for our approach to be used
with higher-order tensors. To demonstrate, we apply our
approach to predict the optimal storage format for fourth-order
tensors. Unlike the third-order tensor, a fourth-order tensor will
eventually generate C2

3 = 3 matrices after mapping in a certain
mode. Specifically, the TnsNet achieves an average accuracy
of 88% across all modes, whereas GBDT only achieves 58%.
Since the sparsity distribution of higher-order tensors is more
complicated, it is difficult to capture the accurate correlations
between the data patterns and the optimal format due to the
loss of sparsity features. In addition, TnsNet leverages the
feature layer to compensate for the loss of sparsity features
during tensor transformation, which can retain high prediction
accuracy. For the real-world tensors, TnsNet achieves an

average accuracy of 91% across all modes.
The performance speedup for fourth-order tensors is shown

in Figure 11. On average, TnsNet and GBDT achieve 20.8×
and 16.1× speedup over COO format across all modes, respec-
tively. And for the CSF-based format, TnsNet and GBDT only
achieve an average speedup of 2.05× and 1.69×, respectively.
This is because the distribution of the optimal formats is highly
skewed. For example, the COO format only accounts for 4.1%
of the cases with the best performance. Moreover, the per-
formance gap among different storage formats on the fourth-
order tensors is larger than that on third-order tensors. Such a
performance gap might become even larger as the tensor order
increases. This proves the necessity of our work for accurately
predicting the optimal storage format for tensors.

E. Applying to more Hardware Platforms
To demonstrate the generality of our approach, we evaluate

SpTFS on two new hardware platforms, including an Intel
Xeon E5-2650v4 CPU with 24 cores, and an Nvidia Tesla
V100 GPU with 80 SMs. Specifically, we collect training data
on these new platforms and use TnsNet to re-train the model
to predict the optimal tensor formats. Here, we utilize two
methods for re-training: 1) training the models from scratch,
and 2) re-training the models based on pre-trained ones.

Figure 13 shows the prediction accuracy when applying
TnsNet on these new platforms with the above two re-training
methods. We can observe that both methods eventually achieve
similar prediction accuracy of around 90%. On GPU, using

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 13:59:56 UTC from IEEE Xplore. Restrictions apply.

�>

��>

��>

��>

��>

��>

��>

	�>

��>

=�>

���>

� � � � � � � 	 � =

'
**
%
��
*,

���$
#�

*���!�%�%�@�����

�*���*9@�����

*���!�%�%�@�����

�*���*9@�����

*���!�%�%�@�����

�*���*9@�����

�>

��>

��>

��>

��>

��>

��>

	�>

��>

=�>

���>

� � � � � � � 	 � =
'
**
%
��
*,

���$
#�

*���!�%�%�@�����

�*���*9@�����

*���!�%�%�@�����

�*���*9@�����

*���!�%�%�@�����

�*���*9@�����

�� �)3
�� 6)3

Fig. 13: Prediction accuracy of different re-training methods
on new hardware platforms, where accuracy at step = 0
is without re-training. scratch modeX and continuous modeX
mean training the model from scratch and re-training from a
pre-trained model, respectively for mode-X computation.

continuous training, the prediction accuracy already reaches
over 85% across all modes when re-training starts. However,
on CPU, the continuous training has no significant advantage
over training from scratch. The reason can be attributed to
the different similarity of the training data collected on the
platforms. We measure the similarity by comparing the optimal
formats for tensors on the new and original platforms. On
GPUs, the similarities of the training data across all three
modes are 91%, 93%, and 90%, respectively. In contrast,
on CPUs, the similarities only reach 29%, 47%, and 37%,
respectively. In general, the SpTFS can be applied to other
hardware platforms with stable prediction accuracy.

F. Overhead Analysis

We discuss the overhead of SpTFS from both training and
prediction aspects. For training, it takes about 7 minutes to
train TnsNet with 7,886 input tensors (5-fold cross validation)
on our experiment server. Since the training is only performed
once, the training overhead is negligible. For prediction, the
overhead of SpTFS can be further divided into three parts: 1)
tensor lowering and matrix representation, 2) tensor feature
extraction, and 3) tensor format prediction using TnsNet.
Illustrated in Section II-A, the number of iterations of CPD-
ALS (MTTKRP algorithm for our interest) depends on when
it reaches the convergence (i.e., the error is less than the
threshold). Here we set the threshold to 10−5 in accord
with existing research [59]. Based on our empirical study, the
average number of iterations for CPD-ALS with the real-world
tensors is 15.8. Therefore, we analyze the prediction overhead
of SpTFS amortized to 15 iterations of CPD-ALS.

Figure 14 and Figure 15 show the performance breakdowm
of SpTFS normalized to the performance using baseline COO
format on CPU and GPU, respectively. Note that the cases
where COO is already the optimal format are not taken into
account. The average performance is presented for 7 groups,
where the number of non-zeros ranges from 100 to 107

with a stride of ×10. The absolute value and error bar for
each performance result are also presented. The results less
than 100% mean SpTFS achieves better performance even

with prediction overhead taken into account. For CPU, the
performance results for all groups are under 100%. However,
as the number of non-zeros increases, the performance advan-
tage using SpTFS diminishes (normalized results closing to
100%). This is because the tensor transformation and feature
extraction overhead increase proportionally as the number
of non-zeros. However, the performance benefit of adopting
optimal tensor format becomes less due to the increasing non-
zeros (the tensor becomes dense). Together, the above trends
offset the performance profit of predicting the optimal tensor
format with SpTFS. In addition, the format prediction overhead
using histogram representation is 2.1× higher on average than
using density representation.

�>

��>

��>

��>

��>

���>

C�5�� C�5�� C�5�� C�5�� C�5�� C�5�� C�5	� C�5�� C�5�� C�5�� C�5�� C�5�� C�5�� C�5	�

)
��
*�
�
��
�
�

��
22D�

����%���.���*�!�� ��������/!��<����!.��$��������!��
����������$���!*�!�� �����������.�*%�!��

&���!�, "!�������

�:��� �:��� �:���

�:���

�:���

�:���

�:���

�:���
�:��� �:���

�:���

�:���

�:���

�:���

Fig. 14: Performance breakdown of SpTFS normalized to the
baseline COO format on CPU.

For GPU, the results of most groups are still below 100%.
However, the performance improvement using SpTFS becomes
smaller on GPU. This is because the performance gap among
different GPU formats is not as large as that of CPU formats.
Different from CPU, the trend of performance speedup is not
monotonically decreasing with the increasing number of non-
zeros. This is because as the number of non-zeros increases,
more GPU threads are launched for better parallelism until
the hardware resources are saturated. Whereas similar to CPU,
the sampling overhead of SpTFS takes a larger portion of the
execution time when the number of non-zeros increases.

�>

��>

��>

��>

��>

���>

���>

C�5�� C�5�� C�5�� C�5�� C�5�� C�5�� C�5	� C�5�� C�5�� C�5�� C�5�� C�5�� C�5�� C�5	�

)
��
*�
�
��
�
�

��
22D�

����%���.���*�!�� ��������/!��<����!.��$��������!��
����������$���!*�!�� �����������.�*%�!��

&���!�, "!�������

�:���

�:���

�:���

�:���

�:��� �:���
�:���

�:���

�:���

�:���

�:��� �:���
�:���

�:���

Fig. 15: Performance breakdown of SpTFS normalized to the
baseline COO format on GPU.

In sum, it is effective to improve performance by using
SpTFS to predict the optimal storage format for sparse tensors.
Especially when the convergence condition of CPD-ALS be-
comes stricter (which means more iterations are required), the
prediction overhead will be further diluted compared to the
performance gain. In addition, when the rank size is larger,
the proportion of prediction overhead will reduce significantly

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 13:59:56 UTC from IEEE Xplore. Restrictions apply.

compared to the execution time of MTTKRP. Currently, we do
not consider the format conversion overhead in our evaluation.
Such overhead can be amortized if the converted tensors are
to be used by multiple users. In such a case, only a one-
time process is required to convert the tensors into all formats,
which eliminates the overhead for runtime format conversion.
We leave the tensor format prediction mechanism with input
awareness for future work.

G. Analysis of Network Designs

1) Mapping vs. Flattening: Mapping and flattening reflect
the vertical and horizontal sparsity distribution of the tensors in
a certain mode, respectively. Figure 16 presents the prediction
accuracy of TnsNet with only mapping or flattening method.
For reference, the prediction accuracy of the best TnsNet
design (mapping+flattening+density repr.) is also shown in the
figure (pink bars). We can observe that every single method
alone is unable to achieve the best prediction accuracy. Specifi-
cally, the average prediction accuracy when using mapping or
flattening alone is 82% and 84%, respectively. Therefore, it
is necessary to combine mapping and flattening in order to
capture more tensor patterns for better prediction accuracy.

	�>

	�>

��>

��>

=�>

=�>

���>

-����� -����� -�����

'
**
%
��
*,

��$$!��<����!�,��$�: ��$$!��<9!���������$�:
�������!��<����!�,��$�: �������!��<9!���������$�:
��$$!��<�������!��<����!�,��$�:

Fig. 16: The prediction accuracy of TnsNet using only map-
ping or flattening method (+ density/histogram representation).

2) Density vs. Histogram: Density and histogram are the
two methods considered in our approach for matrix scaling.
Figure 16 presents a detailed comparison of the two represen-
tations when using one of the lowering method (mapping or
flattening). When using only one tensor lowering method, the
prediction accuracy of TnsNet with histogram representation
is 3.4% higher than the density representation on average. This
is because using only one tensor lowering method, it is able to
reduce the number of weights and biases to be learned during
training. The low number of weights and biases avoids the
overfitting problem in Table IV.

3) CNN Ablation Study: To study the importance of the
CNN component in TnsNet, we conduct experiments by
removing the CNN and only using the feature layer as input to
TnsNet. The evaluation results show that TnsNet achieves 54%
prediction accuracy on average, which proves the necessity of
CNN in TnsNet for improving prediction accuracy. In addition,
we modify TnsNet to a deeper network by adding one extra
feature layer after the original feature layer. The two feature
layers have the same configuration. The evaluation results
show that TnsNet achieves 93.9% prediction accuracy on aver-
age, but with 5.2% increase of training time. Therefore, when

TnsNet goes deeper, there is a tradeoff between prediction
accuracy and training overhead.

4) Input Resolution: The input resolution is the size of the
matrices fed to the network. Higher resolution will retain more
tensor patterns, and ultimately improve the prediction accu-
racy. However, the high resolution also means high overhead
during the processes of tensor lowering and matrix represen-
tation. When the input resolution increases from 64 × 64 to
128 × 128, the accuracy of TnsNet improves from 83.5% to
92.7%. However, as the input resolution increases to 256×256,
the accuracy improves slightly (93.3%). Therefore, to balance
the prediction accuracy and tensor transformation overhead,
we choose the input resolution of 128× 128 for TnsNet.

V. RELATED WORK

Optimization for CPD Algorithm. For optimizing the CPD
algorithm on CPUs, Kang et al. [14] utilized the MapReduce
framework [60] to implement the CPD algorithm on CPUs.
Choi et al. [61] implemented both Alternating Least Squares
(ALS) and Gradient Descent (GD) algorithm for CPD in
DFacTo on CPUs. Smith et al. [59] developed SPLATT that
accelerated the CPD algorithm through efficient cache-friendly
tilting and reordering under CSF format [18]. Choi et al. [13]
further optimized the MTTKRP process in SPLATT through
fine-grained blocking techniques to improve the cache hit rate.
Li et al. [21] developed the HiCOO format that is compact
and mode-generic to improve the performance of the CPD
algorithm. Vervliet et al. [62] proposed a fully randomized
sampling approach to combine the CPD with Stochastic Gradi-
ent Descent (SGD). Cheng et al. [15] proposed SPALS, which
samples the MTTKRP process to reduce the computational
power. For optimizing the CPD algorithm on GPUs, Liu
et al. [20] introduced F-COO, which adds flag arrays for
eliminating atomic operations. Nisa [22] developed HB-CSF
to alleviate the load imbalance caused by tree-based CSF.
Sparse Matrix Format Selection. Methods for handling
this problem can be divided into traditional machine learning
methods [55]–[57], [63] and deep learning methods [28]–[31].
SMAT [63] generated the learning model offline based on the
ruleset classifier to predict the best combination of parameters.
Sedaghati et al. [55] developed the learning model using the
decision tree classifier to select the best matrix format on
GPUs. Benatia et al. [56] leveraged the multi-class Support
Vector Machine (SVM) classifier to select the best sparse
format for each input matrix. Zhao et al. [57] proposed a two-
stage scheme using regression tree-based models to construct
overhead-conscious selectors of sparse matrix formats. For
deep learning methods, Zhao et al. [28] used CNN for the
first time to implement sparse matrix format selection through
histogram representation. Pichel et al. [29] overcame the class
imbalance problem in the context of sparse matrix format
selection on GPUs through cost-sensitive methods. Xie et
al. [31] used CNN to predict the best format and algorithm for
SpGEMM through matrix features and density representation.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 13:59:56 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSION

In this paper, we propose an automatic tensor format selec-
tion framework SpTFS, that effectively predicts the optimal
storage format for an input tensor running MTTKRP. The
SpTFS lowers the high-dimensional tensors into fix-sized
matrices through tensor lowering and matrix representation.
Besides, we re-design the CNN network by adding the feature
layer to compensate for the sparsity features lost during
matrix representation. The experiment results show that SpTFS
achieves high prediction accuracy to determine the optimal
tensor format on both CPU and GPU platforms, which in turn
leads to significant performance speedup for MTTKRP.

ACKNOWLEDGEMENTS

This work is supported by National Key Research and
Development Program of China (Grant No. 2016YFB1000304
and 2016YFB0200100), National Natural Science Foundation
of China (Grant No. 61502019 and 61732002) and the Open
Project Program of the State Key Laboratory of Mathematical
Engineering and Advanced Computing (Grant No. 2019A12).
Hailong Yang is the corresponding author.

REFERENCES

[1] B. N. Khoromskij, “Tensors-structured numerical methods in scientific
computing: Survey on recent advances,” Chemometrics and Intelligent
Laboratory Systems, vol. 110, no. 1, pp. 1–19, 2012.

[2] N. Vervliet, O. Debals, L. Sorber, and L. De Lathauwer, “Breaking the
curse of dimensionality using decompositions of incomplete tensors:
Tensor-based scientific computing in big data analysis,” IEEE Signal
Processing Magazine, vol. 31, no. 5, pp. 71–79, 2014.

[3] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa,
and H. A. Phan, “Tensor decompositions for signal processing applica-
tions: From two-way to multiway component analysis,” IEEE signal
processing magazine, vol. 32, no. 2, pp. 145–163, 2015.

[4] T. Zhang and G. H. Golub, “Rank-one approximation to high order
tensors,” SIAM Journal on Matrix Analysis and Applications, vol. 23,
no. 2, pp. 534–550, 2001.

[5] T. Gerstner and M. Griebel, “Dimension–adaptive tensor–product
quadrature,” Computing, vol. 71, no. 1, pp. 65–87, 2003.

[6] F. Le Gall, “Powers of tensors and fast matrix multiplication,” in
Proceedings of the 39th international symposium on symbolic and
algebraic computation, 2014, pp. 296–303.

[7] R. A. Harshman et al., “Foundations of the parafac procedure: Models
and conditions for an” explanatory” multimodal factor analysis,” 1970.

[8] A. Smilde, R. Bro, and P. Geladi, Multi-way analysis: applications in
the chemical sciences. John Wiley & Sons, 2005.

[9] F. Cong, Q.-H. Lin, L.-D. Kuang, X.-F. Gong, P. Astikainen, and
T. Ristaniemi, “Tensor decomposition of eeg signals: a brief review,”
Journal of neuroscience methods, vol. 248, pp. 59–69, 2015.

[10] P. Symeonidis, “Matrix and tensor decomposition in recommender
systems,” in Proceedings of the 10th ACM Conference on Recommender
Systems, 2016, pp. 429–430.

[11] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551–3582, 2017.

[12] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum
of products,” Journal of Mathematics and Physics, vol. 6, no. 1-4, pp.
164–189, 1927.

[13] J. Choi, X. Liu, S. Smith, and T. Simon, “Blocking optimization
techniques for sparse tensor computation,” in 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2018,
pp. 568–577.

[14] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “Gigatensor:
scaling tensor analysis up by 100 times-algorithms and discoveries,”
in Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2012, pp. 316–324.

[15] D. Cheng, R. Peng, Y. Liu, and I. Perros, “Spals: Fast alternating least
squares via implicit leverage scores sampling,” in Advances in neural
information processing systems, 2016, pp. 721–729.

[16] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
“Tensaurus: A versatile accelerator for mixed sparse-dense tensor com-
putations.”

[17] O. Kaya and B. Uçar, “Scalable sparse tensor decompositions in dis-
tributed memory systems,” in SC’15: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2015, pp. 1–11.

[18] S. Smith and G. Karypis, “Tensor-matrix products with a compressed
sparse tensor,” in Proceedings of the 5th Workshop on Irregular Appli-
cations: Architectures and Algorithms, 2015, pp. 1–7.

[19] E. F. D’Azevedo, M. R. Fahey, and R. T. Mills, “Vectorized sparse
matrix multiply for compressed row storage format,” in International
Conference on Computational Science. Springer, 2005, pp. 99–106.

[20] B. Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi, “A unified opti-
mization approach for sparse tensor operations on gpus,” in 2017 IEEE
international conference on cluster computing (CLUSTER). IEEE,
2017, pp. 47–57.

[21] J. Li, J. Sun, and R. Vuduc, “Hicoo: hierarchical storage of sparse
tensors,” in SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2018, pp. 238–
252.

[22] I. Nisa, J. Li, A. Sukumaran-Rajam, R. Vuduc, and P. Sadayappan,
“Load-balanced sparse mttkrp on gpus,” in 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2019,
pp. 123–133.

[23] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Med-
ical image classification with convolutional neural network,” in 2014
13th international conference on control automation robotics & vision
(ICARCV). IEEE, 2014, pp. 844–848.

[24] Y. Wei, W. Xia, M. Lin, J. Huang, B. Ni, J. Dong, Y. Zhao, and S. Yan,
“Hcp: A flexible cnn framework for multi-label image classification,”
IEEE transactions on pattern analysis and machine intelligence, vol. 38,
no. 9, pp. 1901–1907, 2015.

[25] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu, “Cnn-rnn: A
unified framework for multi-label image classification,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2016, pp. 2285–2294.

[26] S. Yu, S. Jia, and C. Xu, “Convolutional neural networks for hyperspec-
tral image classification,” Neurocomputing, vol. 219, pp. 88–98, 2017.

[27] M. Zhang, W. Li, and Q. Du, “Diverse region-based cnn for hyper-
spectral image classification,” IEEE Transactions on Image Processing,
vol. 27, no. 6, pp. 2623–2634, 2018.

[28] Y. Zhao, J. Li, C. Liao, and X. Shen, “Bridging the gap between deep
learning and sparse matrix format selection,” in Proceedings of the
23rd ACM SIGPLAN symposium on principles and practice of parallel
programming, 2018, pp. 94–108.

[29] J. C. Pichel and B. Pateiro-López, “Sparse matrix classification on
imbalanced datasets using convolutional neural networks,” IEEE Access,
vol. 7, pp. 82 377–82 389, 2019.

[30] M. Barreda, M. F. Dolz, M. A. Castaño, P. Alonso-Jordá, and E. S.
Quintana-Ortı́, “Performance modeling of the sparse matrix–vector prod-
uct via convolutional neural networks,” The Journal of Supercomputing,
pp. 1–18, 2020.

[31] Z. Xie, G. Tan, W. Liu, and N. Sun, “Ia-spgemm: an input-aware auto-
tuning framework for parallel sparse matrix-matrix multiplication,” in
Proceedings of the ACM International Conference on Supercomputing,
2019, pp. 94–105.

[32] K. Jnawali, M. R. Arbabshirani, N. Rao, and A. A. Patel, “Deep
3d convolution neural network for ct brain hemorrhage classification,”
in Medical Imaging 2018: Computer-Aided Diagnosis, vol. 10575.
International Society for Optics and Photonics, 2018, p. 105751C.

[33] J. Li, S. Zhang, and T. Huang, “Multi-scale 3d convolution network
for video based person re-identification,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 8618–8625.

[34] S. Dong, Z. Gao, S. Pirbhulal, G.-B. Bian, H. Zhang, W. Wu, and S. Li,
“Iot-based 3d convolution for video salient object detection,” Neural
computing and applications, vol. 32, no. 3, pp. 735–746, 2020.

[35] J. Bouvrie, “Notes on convolutional neural networks,” 2006.
[36] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 13:59:56 UTC from IEEE Xplore. Restrictions apply.

scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[37] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in Neural Information Processing Systems, 2019, pp. 8024–8035.

[38] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[39] C. L. Nikias, “Higher-order spectral analysis,” in Proceedings of the 15th
Annual International Conference of the IEEE Engineering in Medicine
and Biology Societ. IEEE, 1993, pp. 319–319.

[40] G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays:
compressive light field synthesis using multilayer displays with direc-
tional backlighting,” 2012.

[41] J. Håstad, “Tensor rank is np-complete,” Journal of algorithms (Print),
vol. 11, no. 4, pp. 644–654, 1990.

[42] S. Sengupta, M. Harris, M. Garland et al., “Efficient parallel scan
algorithms for gpus,” NVIDIA, Santa Clara, CA, Tech. Rep. NVR-2008-
003, vol. 1, no. 1, pp. 1–17, 2008.

[43] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis,
“Frostt: The formidable repository of open sparse tensors and tools,”
2017.

[44] I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos, “Haten2:
Billion-scale tensor decompositions,” in 2015 IEEE 31st International
Conference on Data Engineering. IEEE, 2015, pp. 1047–1058.

[45] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke, A. Jansen,
R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold et al.,
“Cnn architectures for large-scale audio classification,” in 2017 ieee
international conference on acoustics, speech and signal processing
(icassp). IEEE, 2017, pp. 131–135.

[46] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[47] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[48] A. S. Foulkes, “Classifcation and regression trees,” in Applied Statistical
Genetics with R. Springer, 2009, pp. 157–179.

[49] T. A. Davis and Y. Hu, “The university of florida sparse matrix collec-
tion,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, pp. 1–25, 2011.

[50] B.-Y. Su and K. Keutzer, “clspmv: A cross-platform opencl spmv
framework on gpus,” in Proceedings of the 26th ACM international
conference on Supercomputing, 2012, pp. 353–364.

[51] D. Merrill and M. Garland, “Merge-based sparse matrix-vector multi-
plication (spmv) using the csr storage format,” ACM SIGPLAN Notices,
vol. 51, no. 8, pp. 1–2, 2016.

[52] B. Xie, J. Zhan, X. Liu, W. Gao, Z. Jia, X. He, and L. Zhang, “Cvr:
Efficient vectorization of spmv on x86 processors,” in Proceedings of the
2018 International Symposium on Code Generation and Optimization,
2018, pp. 149–162.

[53] C. Liu, B. Xie, X. Liu, W. Xue, H. Yang, and X. Liu, “Towards efficient
spmv on sunway manycore architectures,” in Proceedings of the 2018
International Conference on Supercomputing. ACM, 2018, pp. 363–
373.

[54] A. Benatia, W. Ji, Y. Wang, and F. Shi, “Sparse matrix partitioning for
optimizing spmv on cpu-gpu heterogeneous platforms,” The Interna-
tional Journal of High Performance Computing Applications, vol. 34,
no. 1, pp. 66–80, 2020.

[55] N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy, and P. Sadayap-
pan, “Automatic selection of sparse matrix representation on gpus,” in
Proceedings of the 29th ACM on International Conference on Super-
computing, 2015, pp. 99–108.

[56] A. Benatia, W. Ji, Y. Wang, and F. Shi, “Sparse matrix format selection
with multiclass svm for spmv on gpu,” in 2016 45th International
Conference on Parallel Processing (ICPP). IEEE, 2016, pp. 496–505.

[57] Y. Zhao, W. Zhou, X. Shen, and G. Yiu, “Overhead-conscious format
selection for spmv-based applications,” in 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2018,
pp. 950–959.

[58] D. Svozil, V. Kvasnicka, and J. Pospichal, “Introduction to multi-layer
feed-forward neural networks,” Chemometrics and intelligent laboratory
systems, vol. 39, no. 1, pp. 43–62, 1997.

[59] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “Splatt:
Efficient and parallel sparse tensor-matrix multiplication,” in 2015 IEEE

International Parallel and Distributed Processing Symposium. IEEE,
2015, pp. 61–70.

[60] J. Dean and S. Ghemawat, “Mapreduce: a flexible data processing tool,”
Communications of the ACM, vol. 53, no. 1, pp. 72–77, 2010.

[61] J. H. Choi and S. Vishwanathan, “Dfacto: Distributed factorization of
tensors,” in Advances in Neural Information Processing Systems, 2014,
pp. 1296–1304.

[62] N. Vervliet and L. De Lathauwer, “A randomized block sampling
approach to canonical polyadic decomposition of large-scale tensors,”
IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 2,
pp. 284–295, 2015.

[63] J. Li, G. Tan, M. Chen, and N. Sun, “Smat: an input adaptive auto-
tuner for sparse matrix-vector multiplication,” in Proceedings of the
34th ACM SIGPLAN conference on Programming language design and
implementation, 2013, pp. 117–126.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 13:59:56 UTC from IEEE Xplore. Restrictions apply.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

Hardware and Software Platforms. We evaluate SpTFS on two hard-

ware platforms, where the CPU is an Intel Xeon Silver 4110 pro-

cessor and the GPU is a Nvidia GeForce RTX 2080 Ti processor.

TnsNet is built using TensorFlow v1.15. We did not use any MPI

library.

Sparse Tensor Formats and Datasets. For MTTKRP on CPU, we

evaluate the sparse tensor storage formats including COO, CSF

and HiCOO. Specifically, the CSF implementation is adopted from

SPLATT v1.1.0, whereas the COO and HiCOO implementations

are adopted from ParTI! v1.1.0. For MTTKRP on GPU, the tensor

formats we evaluate are COO, F-COO, CSF and HB-CSF. Except F-

COO, we adopt the implementations of all tensor formats from the

paper published in IPDPS19 (Nisa et al.). To ensure fairness, we use

the best parameter configurations reported in each implementation

and compile with “O3” option.

Comparison. We compare the design of TnsNet with the XG-

Boost v1.1.0 including GBDT and GBlinear. During training data

collection, we set the rank size to 16 for all sparse formats. Besides,

we set the number of threads to 16 when on CPU, and the thread

block size to 256 when on GPU.

ARTIFACT AVAILABILITY

Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved

license.

Hardware Artifact Availability: There are no author-created hard-

ware artifacts.

Data Artifact Availability: There are no author-created data

artifacts.

Proprietary Artifacts: None of the associated artifacts, author-

created or otherwise, are proprietary.

Author-Created or Modified Artifacts:

Persistent ID: https://github.com/sunqingxiao/SpTFS\ �

_info_for_SC20;
http://doi.org/10.5281/zenodo.3866029

↪→

↪→

Artifact name: SpTFS

BASELINE EXPERIMENTAL SETUP, AND

MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Intel Xeon Silver 4110 CPU; GeForce

RTX 2080 Ti

Operating systems and versions: CentOS Linux release 7.6; GPU

Driver 440.33

Compilers and versions: gcc 4.8; nvcc 10.2

Applications and versions: TensorFlow v1.15; XGBoost v1.1.0

Libraries and versions: SPLATT v1.1.0; ParTI! v1.1.0; HB-CSF

Key algorithms: convolutional neural network

Input datasets and versions: SuiteSparse; FROSTT; HaTen2

URL to output from scripts that gathers execution environment

information.

https://github.com/sunqingxiao/SpTFS_info_for_SC2 �

0/execution-environment.txt↪→

ARTIFACT EVALUATION

Controls, statistics, or other steps taken to make the measurements

and analyses robust to variability and unknowns in the system. We

have conducted the safety checks when collecting the training data.

Specifically, we repeat the execution of MTTKRP under each ten-

sor format for 10 times, and collect the mean execution time and

standard deviation for each tensor format. The above procedure

is applied to all input sizes. The details of safety checks and data

collection have been provided in the readme file of the following url:

https://github.com/sunqingxiao/SpTFS_info_for_SC20/blob/ mas-

ter/software/README.md.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2023 at 13:59:56 UTC from IEEE Xplore. Restrictions apply.

