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Abstract. De novo genome assembly reconstructs the chromosomes
from massive relatively short fragmented reads and serves as fundamen-
tal for studying new species where there is no reference genome. Wtdbg2
is a de novo assembler for long reads that is up to hundreds of kilo-
bases. It is based on fuzzy-Bruijn graph (FBG) and is ten times faster
than the cutting-edge assemblers such as Canu. However, the perfor-
mance of wtdbg2 still requires further improvement: 1) it requires up
to terabytes of memory to compute the assembly, which is infeasible
to run on commodity server; 2) it requires tens of hours for assem-
bling on large datasets such as genomes of homo sapiens. To address
the above drawbacks, we propose several optimization techniques for
accelerating wtdbg2 on commodity server, including a memory auto-
tuning scheme, sequence alignment optimization and intermediate result
elimination in the output procedure. We compare the optimized wtdbg2
with the original implementation and two cutting-edge assemblers on
real-world datasets. The experiment results demonstrate that optimized
wtdbg2 achieves maximum and average speedup of 2.31× and 1.54× re-
spectively. In addition, our proposed optimization reduces the memory
usage of wtdbg2 by 39.5% without affecting the correctness.

Keywords: genome assembly · wtdbg2 · performance optimization ·
computational biology · auto-tuning · load balance

1 Introduction

De Novo genome assembly aims to generate a new genome from DNA fragments
(named as reads) without the reference genome. It is of great significance in
bioinformatics for identifying previously uncharacterized genomes [23] and ana-
lyzing the structural genomic changes [22]. Moreover, with the prosperities and
advances of DNA sequencing technologies from Oxford Nanopore Technologies
(ONT) and Pacific Bioscience (PacBio), the length of reads has been increased
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up to several hundreds of base pairs (bps). The most popular assembly meth-
ods such as de Bruijn Graph are developed for short read assembly in second-
generation DNA sequencing. However, recent research works have taken efforts
to modify the de Bruijn Graph for long and error-prone reads in next-generation
sequencing such as A-Bruijn graph in Flye [13] and fuzzy-Bruijn graph (FBG)
in wtdbg2 [22].

Wtdbg2 [22] is one of the fastest status-quo assemblers for long noisy reads
and has been adopted in Novel Sequence Insertion (NSI) tools such as rCANID [12]
in addition to analysis for genome datasets [24]. Wtdbg2 is based on FBG that
wraps each 256bp of reads into a unit named as bin and utilizes hash lists to
encode the reads. In wtdbg2, a k-bin of FBG contains K consecutive bins. To im-
prove the error toleration of FBG, a vertex can represent various k-bins if aligned
together in sequence alignment routine. For the algorithm details of FBG, the
readers can refer to [22].

However, to further improve the performance of wtdbg2, there are two major
challenges to be addressed. The first challenge is the prohibitive memory con-
sumption generated during the execution of wtdbg2. For instance, the wtdbg2
takes up to 1,788GB memory on Axolotl [5], thus it is infeasible to assemble large
datasets on commodity servers that usually contains less than 512GB memory.
The second challenge is the tremendous computation power required by wtdbg2.
For instance, the wtdbg2 takes up to tens of hours for mammalian genome as-
sembly on datasets such as homo sapiens.

Therefore, to alleviate the memory consumption and to further enhance the
performance of wtdbg2, we propose a memory auto-tuning scheme based on
regression model to reduce memory usage. In addition, we improve the paral-
lelization of sequence alignment routine, which is one of the major bottlenecks,
by enhancing the thread efficiency and load balance in wtdbg2. Moreover, we op-
timize the output procedure by eliminating the redundant intermediate results.
We compare our optimization strategies with the original wtdbg2 and other
two status-quo assemblers Canu and Flye under five real-world genome datasets
and the results show that the maximum acceleration rate is of 2.31×, with the
average acceleration rate is of 1.54× and the memory cost can be reduced up
to 39.5%, without affecting the correctness. With our proposed optimizations,
massive parallel genome assembling that is previously infeasible with wtdbg2 on
commodity server now can be run successfully.

– We perform comprehensive analysis of the performance bottlenecks in wt-
dbg2 and identify that the all-vs-all sequence alignment and output proce-
dure are the major hotspots in large genome assembly.

– We propose a memory auto-tuning scheme based on regression model to
alleviate the memory usage of wtdbg2. In addition, we accelerate the se-
quence alignment and optimize the output procedure to further improve the
performance of wtdbg2.

– We evaluate our optimized wtdbg2 with five real-world genome datasets and
compare to the original wtdbg2 as well as two cutting-edge genome assem-
blers. The experiment results demonstrate our optimization strategies are
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effective to reduce the memory usage in addition to improve the performance
of wtdbg2 with correctness validation.

This paper is organized as follows. In Section 2, we present the background
of genome assembly and wtdbg2. We present the bottleneck analysis and op-
timization strategies of wtdbg2 in Section 3. The detailed implementations are
described in Section 4. Section 5 presents the evaluation results of the optimized
wtdbg2. Section 6 describes the related work. Section 7 concludes this paper.

2 Background

2.1 Genome Assembly

Genome assembly is a computational representation of a genome sequence. Since
we are not able to sequence along the whole length of DNA, genome assembly
provides a computational method to reconstruct a DNA sequence from a large
set of short reads of sequenced DNA fragments, which may be overlapped by each
other. Moreover, the de novo genome assembler is a type of assembler aiming
at assembling short reads to construct full-length sequences of DNA without
any reference template. Among the methodologies for implementing a de novo
genome assembler, De Bruijn graph is one of the most popular method, which
aligns k-mers based on k− 1 sequence conservation to create contigs. The short
k-mers allow fast hashing to decrease the computationally intensity and enhance
the overall performance.

Nowadays, a number of software such as Canu [14] and MECAT [25] is de-
veloped for de novo assembly. Most of them reported that sequence alignment
process, which includes k-mer counting and contig generation, is the major bot-
tleneck of these existing assemblers [10] and consumes large memory footprint
when parallelized on shared-memory system.

2.2 Wtdbg2

Wtdbg2 [22] is an efficient long-read genome assembler. It implements fuzzy-
Bruijn graph (FBG) which extends the basic ideas of De Bruijn graph (DBG) to
support long noisy reads on shared memory system with pthread parallelization.
Similar to DBG, a ”base” in FBG is a 256bp bin and a k-mer in FBG consists
of k consecutive bins on reads. FBG is made up of vertices of k-bins and edges
between two vertices which indicates their adjacency on a read. The difference
is that a single vertex may represent different k-bins if they are aligned together
based on all-vs-all read alignment, which tolerates errors in noisy long reads.

As shown in Figure 1, the workflow to obtain the constructed contigs of
input reads contains four steps: (a) binning and pairwise alignment, (b) graph
construction, (c) graph clearing and (d) consensus. In the first stage, input reads
are all loaded from files to memory and each base is encoded with 2 bits. For all-
vs-all read alignment, a Smith-Waterman-like dynamic programming is applied.
After alignment, FBG is then constructed by adding vertices according to the
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obtained all-vs-all alignments and edges of two vertices if they are in the same
read. In the phase of graph clearing, wtdbg2 retains only one edge if there are
multiple edges between two k-bins. Besides, edges covered by less than 3 reads
are omitted. The resulting FBG is then consensused to obtain the final long
contigs.

In assembling, the execution of wtdbg2 is split into two phases. The first
phase is binning and pairwise alignment, whose results are written to disk as in-
termediate results. The second phase includes graph constructing, graph cleaning
and consensus, which consumes large memory footprint.

Binning & pairwise 

alignment
Graph 

construction

Graph 

cleaning

Consensus
Contigs:

Reads:

Fig. 1: The overview of the long-read assembling process in wtdbg2.

3 Methodology

In this section, we first provide the analysis for bottleneck as well as for the
memory consumption of wtdbg2 to guide our optimization. Then we present the
strategies for reducing the memory usage and optimizing execution hotspots,
including the sequence alignment and output procedure.

3.1 Bottleneck Analysis

The reported [5] memory consumption of wtdbg2 under different datasets are
shown in Table 1. Since most of the commodity servers contain less than 256GB
memory, the large mammalian datasets especially the genome of homo sapiens
cannot be directly assembled by wtdbg2 on the commodity servers. Though the
original wtdbg2 provides a variable kbmparts to control the memory usage, it
still requires manual tuning, and thus facing the risk of assembly failure due to
memory overflow.

We profile the execution of wtdbg2 using HPCToolkit [6]. The result of bot-
tleneck analysis is shown in Figure 2, where the execution time for output pro-
cedure is excluded. The description of the datasets is shown in Table 2. It is
clear that the KBM indexing is the major bottleneck of wtdbg2 under small
datasets such as E.coli and C.elegans. However, when the dataset’s genome size
increases, especially in the genomes of homo sapiens, the sequence alignment
process dominates the execution time and becomes the bottleneck of wtdbg2.
Since the large datasets usually take hours to be processed and thus worth the



Accelerating De Novo Assembler WTDBG2 on Commodity Servers 5

efforts for acceleration, we focus on optimizing the sequence alignment routine
to improve the performance of wtdbg2 on large datasets.

In addition, the size of output contigs of wtdbg2 can take up to 30GB under
dataset Human HG00733. On the other hand, it can take more than 41.3%
of entire execution time to write the contigs under dataset E.coli (e.g., 2.03
seconds of the overall 4.91 seconds). What’s more, the performance of the output
procedure also needs to be improved to further accelerate wtdbg2. Moreover,
the wtdbg2 also writes the intermediate alignment results to the hard disks,
whose size is at the same order of magnitude as the contigs. These intermediate
alignment results are redundant during the execution. Therefore, we propose to
eliminate the redundant intermediate results in order to accelerate the output
procedure.

Table 1: The memory cost of wtdbg2 under different datasets.
C.elegans D.melanogaster A4

Memory Cost(GB) 1.0 19.4
Human NA24385 Human HG00733

Memory Cost(GB) 112.9 338.1
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Fig. 2: The result of bottleneck analysis of wtdbg2. E, C, D, N and H represents
the datasets: E.coli, C.elegans, D.melanogaster A4, Human NA24385 and Human
HG00733. The time for output is excluded.

3.2 Memory Auto-tuning

We develop an auto-tuning scheme based on linear regression model to satisfy
the memory demand of the large genome datasets. We identify that the high-
est memory usage is at the phase of sequence alignment where wtdbg2 easily
crashes due to memory shortage at large datasets. Another execution phase that
is unlikely to crash due to memory shortage is the reads collecting phase whose
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memory usage approximately equals to the size of the input dataset. We also
notice that there is a parameter kbm_parts in wtdbg2 to control the number of
iterations of alignment, which exhibits a negative linear relationship with mem-
ory usage in sequence alignment routine. Based on the above observations, we
develop a regression model to estimate the memory usage of sequence alignment
based on the memory measurement of reads collecting. At the reads collecting
phase, the model estimates how much sequence alignment would exceed the sys-
tem memory capacity and then adjusts the kbm_parts automatically to satisfy
the memory demand. The regression model is built on the statistics collected in
previous execution of wtdbg2. Since running the regression model only requires
monitoring the system memory usage and executing a simple linear function,
the overhead of memory auto-tuning is negligible.

3.3 Sequence Alignment Optimization

Thread Efficiency We improve the parallelization of sequence alignment rou-
tine in wtdbg2 to accelerate the major bottleneck under large datasets. In the
original wtdbg2, as shown in Figure 3a, after processing the alignment with
threads at the granularity of a single read, the alignment results of each read are
merged into the graph in the master thread. In addition, the read assignment
among threads is also performed in the master thread. After analyzing the per-
formance of sequence alignment, the result merging function map2rdhit_graph
dominates the execution time of the master thread, which increases the time de-
lay between two reads alignment for a thread and thus decreases the efficiency of
multi-threading. Since wtdbg2 adopts the shared-memory parallelization using
pthread, we distribute the work of result merging among threads by leverag-
ing the mutual exclusive locks [16] as shown in Figure 3a, which improves the
multi-threading efficiency of the sequence alignment routine.

Sequence
Alignment

Result
Aggregation

Reads
Assignment

Multiple Threads

Main Thread

Main Thread

Sequence
Alignment

Result
Aggregation

Reads
Assignment

Multiple Threads

Multiple Threads

Main Thread

Original Parallelization Optimized Parallelization

(a) Original and optimized paral-
lelization of sequence alignment

Batch 1

Batch 2

Batch 2

Batch 1

Reads

(b) Batched read assignment scheme
in sequence alignment

Fig. 3: The illustration of optimization strategies in sequence alignment routine
of wtdbg2.
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Load Balance When the sequence alignment routine analyzes a specific read Ri

in wtdbg2, it only compares Ri with reads that have larger identifiers. Hence, as
the identifier of the Ri increases, the number of reads that Ri needs to be aligned
with decreases. Since a thread only performs sequence alignment for reads in
ascending order in wtdbg2, load imbalance becomes severe as the identifier of the
read increases. Moreover, reducing the number of assignments can alleviate the
load imbalance between master and slave threads. However, fewer assignments
means more reads in each assignment, which in turn increases the load of slave
threads.

To address load imbalance among threads and to mitigate the load in the
master thread, we develop a batched read assignment scheme for the sequence
alignment. The proposed allocation scheme is shown in Figure 3b, where batch-
size is set to 4. We partition all the reads into M batches, each with N reads.
For the ith batch, the index of its reads ranges from Ni to Ni+ N

2 in ascending
or descending order. Thus, the number of reads each thread needs to compare is
the same theoretically, which also decreases the number of read assignments in
the master thread. Since the solution space of M is huge and the best M is dif-
ferent for various datasets, we develop a linear regression model to automatically
search for the optimal setting of M .

4 Implementation

In this section, we provide the implementation details of the optimization method-
olgies proposed in Section 3.

4.1 Memory Auto-tuning

The processing logic of memory auto-tuning is shown in Algorithm 1. After the
reads collecting process finishes, our implementation uses function check_meminfo
to obtain the total memory MT and available memory MA of the system from
the file meminfo. Then the memory usage of reads MREAD can be calculated by
MT − MA and the highest memory usage MMAX can be estimated by the re-
gression model. At the end of the auto-tuning process, the parameter kbm_parts
is determined using kbm_parts = MMAX

MT
. The value of kbm_parts is later used

in sequence alignment to avoid exceeding the system memory constraint.

Algorithm 1 The logic of memory auto-tuning
1: Input: regression model f : MREAD →MMAX

2: Output: kbm_parts
3: (MT , MA) ← check_meminfo()
4: MREAD ←MT −MA

5: MMAX ← f(MREAD)

6: kbm_parts ← MMAX
MT
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4.2 Sequence Alignment Optimization

Thread Efficiency As shown in Algorithm 2, for each read R in the sets of
read R, the master thread finds an idle slave thread k and then assigns the
sequence to it. The thread k first encodes its read R with a specific hash list to
get the binned sequence BSk and then performs the sequence alignment between
BSk and other binned sequences whose indices are bigger than the index of R.
After the sequence alignment, it generates the alignment results including the
cigars cigarsk and the overlapped bins with other sequences hitsk. With the
results generated, the thread k requests for the mutex lock and merges the local
results to the FBG graph. The reason for applying mutex lock is to avoid writing
conflict among multiple threads. Once the result merging finishes, the thread k
releases the lock and becomes an idle thread. Then the master thread continues
to assign remaining reads to thread k unless all reads have already been assigned.
The parallel result merging method reduces the assignment delay for the slave
threads as well as alleviating the load for the master thread.

Algorithm 2 The logic of thread efficiency optimization
1: Input: Reads R
2: Output: cigars g_cigars, hits g_hits
3: for each R ∈ R do
4: k = get-idle-thread-id()
5: assign R to thread k
6: BSk ← query_index(R, k)
7: (cigarsk, hitsk) = kbm_alignment(BSk, k) /*the new intermediate result in thread k*/
8: get-mutex_lock(k)
9: (g_cigars, g_hits) = result-gather(cigars, hits, cigarsk, hitsk)

10: free-mutex_lock(k)
11: turn-idle-thread(k)
12: end for

Load Balance The implementation of batched read assignment is shown in
Algorithm 3. The variable batchtime is calculated by the regression model based
on the number of reads R.size, which is then used to determine the optimal
setting of batchsize. After the number of batched reads (batchsize) is determined,
the master thread computes the indices of reads that belong to a specific batch
i. Once the batch is assigned, thread k will finish the sequence alignment process
for the reads in batch i, generating the cigars as well as hits and merging them
to the graph.

4.3 Output Optimization

We use a condition parameter WITHALIGNMENT to control the output of in-
termediate alignment results written to hard disks. Once the WITHALIGNMENT =
true, the output of intermediate results is skipped. In addition, we use another
condition parameter PRINTGRAPH to control the output of runtime informa-
tion such as that for FBG graph.
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Algorithm 3 The logic of load balance optimization
1: Input: all the reads R
2: Output: cigars g_cigars, hits g_hits
3: batchtime← f1(R.size)
4: batchsize← R.size/(batchtime× ncpu− 1)
5: for i← 0→ batchtime× ncpu do
6: batchi ← get_newbatch()
7: k = get-idle-thread-id()
8: BSk ← query_index_batch(batchi, k)
9: (cigarsk, hitsk) = kbm_alignment_batch(BSk, k) /*the new intermediate result in thread

k*/
10: turn-idle-thread(k)
11: end for

5 Evaluation

We implement the proposed optimizations for wtdbg2 and compare its perfor-
mance with the original wtdbg2 and two state-of-art sequence assemblers under
five real-world datasets.

5.1 Experiment Setup

Assemblers For Comparison. We choose two cutting-edge genome assemblers
Canu [14] and Flye [13] for comparison. These two assemblers use both PacBio
and Oxford Nanopore datasets as input. However, the assemble and consensus
processes are integrated in Canu and Flye, whereas they are separate in wt-
dbg2. Canu is based on MinHash Alignment Process (MHAP) [8] and Celera
Assembler [9], whereas Flye is based on A-Bruijn Graph.

Genome Datasets. We choose five datasets to compare the performance of
different genome assemblers, including E.coli [5], C.elegans [1], D.melanogaster
ISO1 [2], Human NA24385 [4] and Human HG00733 [3]. The details of the
datasets are shown in Table 2. For convenience, we abbreviate the datasets to
E, C, DISO, NA and HG respectively.

Experiment Platform. We conduct all the experiments on a commodity
server that is memory constrained. The server has 2 Intel Xeon E5-2680v4 CPUs,
each with 14 hyper-threaded cores. The memory capacity of the server is 256
GB, which is much smaller than the fat node with 2 TB memory used in the
experiment of original wtdbg2 [22].

Evaluation Criteria. We first compare the memory usage of wtdbg2 us-
ing memory auto-tuning optimization with the original wtdbg2 to measure the
effectiveness of the memory auto-tuning. To evaluate the performance improve-
ment, we compare the optimized versions of wtdbg2 with Canu and Flye. We
only measure the execution time of assemble process in Canu and Flye. We
choose wtdbg2 applied with memory auto-tuning optimization as the baseline
since the original wtdbg2 fails to run on large datasets such as HG due to out of
memory error. For validation of correctness, we use QUAST [11] with assembly
indicators including N50, NGA50, genome fraction and total genome length. All
assembly indicators derived for both original and optimized wtdbg2 are based
on pre-polished assembly results.
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Table 2: The genome datasets.
Dataset Dataset Type Coverage genome size
E.coli PacBio RSII 20× 4.6MB

C.elegans PacBio RSII 80× 100MB
D.melanogaster ISO1 Oxford Nanopore 32× 144MB

Human NA24385 PacBio CCS 28× 3GB
Human HG00733 PacBio Sequel 93× 3GB

5.2 Performance Analysis

Memory Auto-tuning The memory usage of the optimized wtdbg2 normal-
ized to the original wtdbg2 is shown in Figure 4. We adopt the memory usage
of the original wtdbg2 reported from [5], which indicates the dataset HG00733
consumes 338.1GB memory that exceeds the memory capacity of our experiment
server. From Figure 4, we can see that the regression model used in the opti-
mized wtdbg2 can successfully predict the memory usage and adjust the param-
eter kbm_parts accordingly so that it satisfies the memory demand from large
datasets. Specifically, for dataset HG00733, the memory auto-tuning scheme re-
duces the memory demand by 39.5% compared to the original wtdbg2, and thus
enables a successful execution on this dataset.

E C DISO NA HG
Genome Datasets
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Fig. 4: The memory usage after applying the memory-auto tuning optimization
on wtdbg2.

Performance Improvement The performance comparison results between
the optimized wtdbg2 and two state-of-art assemblers Canu and Flye are shown
in Figure 5. The metrics for assembly quality including N50, NGA50, genome
fraction and total genome length compared to the reference genome are shown
in Table 3, Table 4, Table 5 and Table 6, respectively. The missing bar in Fig-
ure 5 and the ’-’ symbol in Table 3 to 6 indicate the execution failure due to
out of memory error or extreme long execution time (e.g., more than 7 days).
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From Figure 5, we can see that the optimized wtdbg2 with both sequence align-
ment and output optimizations achieves the best performance under all datasets.
Based on the results from Table 3 to Table 6, we can see that the optimized wt-
dbg2 achieves comparable or even better assembly quality when compared to
the original wtdbg2. The highest speedup achieved by A-wtdbg2 is 2.31× under
dataset NA and the average speedup of A-wtdbg2 is 1.54× compared to the
baseline. The reason for A-wtdbg2 to achieve the lower speedup with datasets
E and C is that the sequence alignment routine takes up a small portion of the
entire execution time on these datasets, which is also described in the bottleneck
analysis in Sec 3.1.

Table 3: The N50 (million base pairs (Mbps)) of the assembly results from dif-
ferent assemblers.

Datasets Canu Flye wtdbg2 M-wtdbg2 O-wtdbg2 A-wtdbg2
E 4.6680 4.6371 4.6719 4.6358 4.6358 4.6341
C 2.0681 2.8587 1.9726 1.9726 1.9726 1.9718

DISO 4.2986 16.431 6.2255 6.2258 6.2259 6.2268
NA - - 15.512 15.512 15.512 15.511
HG 34.637 - - 21.293 26.354 24.699

Table 4: The NGA50 (million base pairs (Mbps)) of the assembly results com-
pared to reference genome from different assemblers.

Datasets Canu Flye wtdbg2 M-wtdbg2 O-wtdbg2 A-wtdbg2
E 0.033895 0.033539 0.033539 0.033540 0.033539 0.033935
C 0.56166 0.56513 0.558,99 0.55899 0.55899 0.55752

DISO 1.0913 1.6581 1.2923 1.2923 1.2038 1.1852
NA - - 2.0664 2.0531 2.0531 2.0714
HG 2.4485 - - 1.6464 1.9423 1.9534

Table 5: The genome fraction(%) of the assembly results compared to reference
genome from different assemblers.

Datasets Canu Flye wtdbg2 M-wtdbg2 O-wtdbg2 A-wtdbg2
E 73.451 73.478 72.97 72.992 73.056 72.994
C 99.685 99.647 98.662 98.66 98.662 98.686

DISO 93.516 93.273 88.361 88.35 88.322 88.411
NA - - 87.607 87.705 87.705 88.417
HG 91.726 - - 87.284 88.39 88.39
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Fig. 5: Performance comparison among optimized wtdbg2, Canu and Flye, where
M-wtdbg2, O-wtdbg2 and A-wtdbg2 is the original wtdbg2 applied with memory
auto-tuning optimization (baseline), both memory and output optimizations and
all proposed optimizations, respectively.

Table 6: The total genome length (million base pairs(Mbps)) of the assembly
results from different assemblers.

Datasets Canu Flye wtdbg2 M-wtdbg2 O-wtdbg2 A-wtdbg2
E 4.6476 4.6371 4.6358 4.6719 4.6719 4.6702
C 108.19 102.46 106.10 106.09 106.09 106.31

DISO 140.57 144.43 136.90 136.86 136.78 136.82
NA - - 2,749.3 2,752.6 2,752.4 2,774.5
HG 3,038.5 - - 2,775.5 2,804.1 2,802.3

5.3 Parameter Sensitivity Analysis

To better understand the impact of parameter batchtime described in Section 4.2
on the performance of wtdbg2, we adjust the setting of batchtime within the
range of A±16 under four different datasets, where A is the setting after applying
memory auto-tuning optimization described in Section 4.2. From Figure 6 we
can see that when the batchtime increases, which in turn decreases the batchsize,
the performance of wtdbg2 usually gets improved. The reason for that is a finer-
grained partitioning improves the load balance, while at the same time hardly
increases the load for threads in a single execution of alignment. Moreover, we
notice that the performance impact of batchtime varies across different datasets
and thus an auto-tuning scheme is required to search for the optimal batchtime.

6 Related Work

As genome assembly is widely used to obtain genome information, various genome
assemblers are developed to construct assembly graphs from a large set of reads,
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Fig. 6: The performance impact of parameter batchtime under different datasets,
where A equals the performance when applying memory auto-tuning optimiza-
tion. The results under each dataset have been normalized by the best one.

including A-Bruijn assembly graph [13] and de Bruijn graph. Among them, de
Bruijn graph (DBG) is the most commonly used method for genome assem-
bling. Among recent implementations on a single machine, IDBA-UD [19] algo-
rithm can reconstruct long contigs with higher accuracy through multi-thread
parallelism, which applies progressive relative depth, local assembly and error
correction. In addition, Canu [14] is developed for scalable and accurate long-
read assembly. It implements adaptive k-mer weighting and repetitive separation
methods, and parallelizes the overlap computation into multiple jobs and merges
these results with parallel bucket sort algorithm. On the other hand, an open-
source de novo genome assembly, MECAT [25], combines fast mapping, error
correction and de novo assembly. MECAT indices reads with hash tables and
accelerates the computation by sampling with sliding window and thus reduces
the number of searched k-mers from the degree of sampling number.

Recently, research works are proposed to scale genome assembly to multi-
ple nodes. Pan et al. [17] develop distributed memory parallel hash tables for
DNA k-mer counting and evaluate their methods on 4,096 cores of the NERSC
Cori supercomputer. In addition, Pakman [10] is one of the most recent paral-
lel implementations, which enables large-scale genome assembly with distributed
memory parallelism up to 8K cores. In addition to parallel I/O and load-balanced
counting of k-mers, Pakman proposed a new type of graph named PakGraph for
better parallelism. Other optimizations such as dynamic memory allocation and
runtime power control [20, 21] can also be applied to further accelerate genome
assembly.

Moreover, there are research works focusing on accelerating the genome se-
quencing or assembly on modern GPU. Nvidia provided its own CUDA library
NVBIO [18] for sequence analysis with high throughput. To outperform NVBIO,
Ahmed et al. proposed specially designed APIs (GASAL [7]) to provide GPU
accelerated kernels for local, global and semi-global alignment routines, which
achieved notable speedup. In addition, CUDASW++ 3.0 [15] accelerates Smith-
Waterman algorithm by the use of CPU and GPU SIMD operations as well as
the collaborated processing on CPU and GPU. However, the above GPU accel-
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eration methods are not applicable for wtdbg2 due to its implementation with
hash list and varying read length.

7 Conclusion

In this paper, we analyze the hotspots of wtdbg2, and identify that sequence
alignment and output procedure are the two major performance bottlenecks. In
addition, we also reduce the prohibitive memory usage of the original wtdbg2.
Specifically, we propose a memory auto-tuning scheme to satisfy the memory
demand when running wtdbg2 with large datasets on commodity servers. We
also propose sequence alignment optimization to improve the multi-threading
efficiency and load balance. Moreover, we apply output optimization to elimi-
nate the redundant intermediate alignment results to further improve the per-
formance of wtdbg2. The experiment results demonstrate that the optimized wt-
dbg2 achieves a maximum speedup of 2.31× and an average speedup of 1.54×. In
addition, our optimization reduces the memory usage by 39.5% without affecting
the correctness.
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