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Abstract—Meeting the Quality of Service (QoS) requirement
under task consolidation on the GPU is extremely challenging.
Previous work mostly relies on static task or resource scheduling
and cannot handle the QoS violation during runtime. In addition,
the existing work fails to exploit the computing characteristics
of batch tasks, and thus wastes the opportunities to reduce
power consumption while improving GPU utilization. To address
the above problems, we propose a new runtime mechanism
SMQoS that can dynamically adjust the resource allocation
during runtime to satisfy the QoS of latency-sensitive tasks and
determine the optimal resource allocation for batch tasks to
improve GPU utilization and power efficiency. The experimental
results show that with SMQoS, 2.27% and 7.58% more task co-
runnings reach the 95% QoS target than Spart and Rollover
respectively. In addition, SMQoS achieves 23.9% and 32.3%
higher throughput, and reduces the power consumption by 25.7%
and 10.1%, compared to Spart and Rollover respectively.

Index Terms—Graphics processing units, Quality of Service,
Dynamic resource management, Throughput, Power efficiency

I. INTRODUCTION

Graphics Processing Unit (GPU) utilizes massive Thread
Level Parallelism (TLP) to provide high computing capability.
Due to the continuous improvement of GPU peak perfor-
mance, it is difficult for a single task to fully utilize all
its computing resources. Therefore, multiple tasks are co-
located on GPU to improve resource utilization. Based on the
requirement for Quality of Service (QoS), GPU tasks can be
divided into latency-sensitive (LS) tasks and batch tasks.

Task consolidation on GPUs has received wide attention
from both industry and academia. In the industry, Hyper-
Q [18] in Nvidia Kepler architecture supports concurrent
execution of multiple kernels on a single GPU with multiple
independent queues. Multi-Process Server (MPS) [17] is also
provided to support concurrent execution of GPU kernels
from multiple applications on the same GPU. However, both
methods lack effective control of GPU resources, and whether
the kernels can execute concurrently depends on the resource
status of the GPU. Moreover, the GPU schedules concurrent
kernels based on the first-in-first-out (FIFO) policy, which is
unable to satisfy the QoS for LS tasks.

Meanwhile, two primary mechanisms are proposed in
academia to share GPU resources among co-running GPU
tasks including Spatial Multitasking (SMT) [1] and Simul-
taneous Multikernel (SMK) [29]. SMT divides the Streaming

Multiprocessors (SMs) on GPU into several disjoint subsets,
each of which is assigned to one of the co-running tasks. SMK
allows multiple tasks to co-run on a single SM simultaneously
by switching them with time quota. QoS for LS tasks is not
supported in the original design of the above two mechanisms.

To provide QoS on GPU, existing research works can be
primarily divided into two categories: 1) task and resource
scheduling. Research works in this category propose new task
scheduling and resource partition methods in order to meet the
QoS requirement. These methods are generally applied before
task running, and cannot handle performance interference
during runtime. 2) runtime mechanism. The representative
research works in this category include Spart [2] and Rollover
[30]. The drawback of Spart is that the linear prediction
model it adopted leads to frequent SM swapping, and thus
severely deteriorates the performance. Whereas for Rollover,
the resource contention from intra-SM, such as load-store units
and L1 cache, leads to unexpected performance degradation.
Moreover, it fails to exploit the computing characteristics of
batch tasks for reducing power consumption.

To address the drawbacks of existing works on GPU QoS
support, we propose a new runtime mechanism SMQoS. The
specific contributions are as follows:
• We propose a QoS management mechanism that monitors

the performance of LS tasks during runtime and dynam-
ically adjusts the SM allocation between LS and batch
tasks in order to satisfy the QoS target.

• We dynamically determine the optimal SM allocation for
batch tasks so that the idle SM resources can be used for
improving utilization or be power gated to reduce power
consumption.

• We implement a runtime system SMQoS by extending
the CUDA API and GPU architecture. The experimental
results show that SMQoS can effectively improve the
throughput of batch tasks and reduce system power
consumption while satisfying the QoS of LS tasks.

II. RELATED WORK

GPU Sharing Mechanisms. Existing works focus on exe-
cuting multiple tasks on GPU to improve resource utilization
[1], [10], [11], [13], [19], [20], [22], [24], [29], [31]. Lee
et al. [13] propose mixed concurrent kernel execution that
enables multiple kernels to be allocated to the same core to978-1-7281-4734-5/19/$31.00 ©2019 IEEE
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maximize resource utilization. Kim et al. [10] propose Pipeline
Parallelism-aware CTA Scheduler to overlap the execution of
dependent kernels by exploiting implicit pipeline parallelism.
Spatial Multitasking (SMT) [1] enables concurrent applica-
tions to share GPUs at SM granularity, whereas Simultaneous
Multikernel (SMK) [29] has finer-grained resource manage-
ment than SMT, where multiple applications share a single
SM. Maestro [22] combines SMT and SMK to achieve better
performance for sharing GPU resources. However, all above
methods fail to support QoS requirement on GPU.

QoS Management on GPU. Existing research works pro-
vide QoS guarantee on GPU can be mainly divided into two
categories: 1) Extending GPU task execution model [3], [6],
[9], [23], [28], [32]. Baymax [6] provides QoS by predicting
the execution time of the kernel. SMGuard [32] implements
resource reservation on the SM and preempts batch tasks if
the reserved resources fail to meet the QoS of LS tasks.
Above approaches cannot effectively handle the performance
interference during runtime. 2) Hardware extensions to the
GPU [2], [15], [21], [27], [30]. Aguilera et al. [2] propose a
runtime mechanism to dynamically partition GPU resources
between concurrently running applications. Wang et al. [30]
propose to control the kernel execution on a per cycle basis
and the amount of thread-level parallelism to meet QoS.
However, all above approaches fail to exploit the computing
characteristics of batch tasks for reducing power consumption.

GPU Power Saving Techniques. Hong et al. [8] propose an
empirical power model that relies on dynamic power events to
reduce runtime GPU energy consumption. Zhao et al. [33] pro-
pose a reconfigurable 3D die-stacking memory design that in-
tegrates wide-interface graphics DRAMs to optimize the GPU
energy efficiency. Lee et al. [12] exploit model/architecture
co-optimization to utilize large on-chip caches of GPUs with
improved energy efficiency. Tabbakh et al. [26] propose a
sharing-aware TB scheduler that assigns data sharing TBs to
the same SM in order to reduce data movements. All the above
works are orthogonal to our paper.

III. SMQOS METHODOLOGY

A. Design Overview

Figure 1 shows the design overview of SMQoS. The gray
modules are designed or extended by SMQoS. The GPU
kernels from multiple applications are interpreted into co-
running GPU tasks through the Code Interpretation module
( 1 and 2 ). We add a new API call cudaSetQoS, which
is used to specify the LS task and its QoS target. cudaSetQoS
has two parameters: ∗kernel and IPCtarget. ∗kernel is
used to identify the LS task when invoking cudaSetQoS. In
addition, IPCtarget is used as the QoS target for LS tasks
by cudaSetQoS. In SMQoS, IPCtarget is the average IPC that
the LS task needs to achieve during runtime.

After cudaSetQoS is invoked ( 3 ), the GPU tasks are
offloaded to GPU and pushed into one of the two task pools
according to their task types ( 4 ). The task pools are used
to manage LS and batch tasks. The SM Manager manages the
task pools through two sub-modules ( 5 ), the Profiling Data
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Fig. 1: The Design Overview of SMQoS.

Management (PDM) module and the Dynamic SM Adjustment
(DSMA) module. SMQoS determines whether to dynamically
adjust SM allocation of LS tasks on an epoch-by-epoch basis.
To collect the IPC of each task during the epoch, we extend
the TB Scheduler with the Data Collector (DC) module. The
DC module accumulates the number of instructions executed
by the task and divides by the number of cycles to obtain
the average IPC of the task during each epoch. At the end
of each epoch, the DC module sends the IPC of each task to
the PDM module in SM Manager. The PDM module records
the IPC of each task as well as current SM allocation, and
then sends the information to the DSMA module. The DSMA
module determines the SM allocation for next epoch using our
proposed SM allocation algorithm (Section III-B and III-C).
After that, the SM manager informs the TB scheduler to re-
allocate the SMs according to the decision from the DSMA
module. If the SMs need to be re-allocated, the TB scheduler
swaps out/in the TBs on the SMs.

B. Maintaining QoS for LS Tasks

Algorithm 1 Dynamic SM adjustment to maintain QoS.
Input: Nepoch, IPCave, IPCtarget, IPCepoch

Output: SMk

1: // Calculate whether the LS task needs to swap in or swap out an SM
2: if IPCave < IPCtarget or IPCepoch < IPCtarget then
3: // The LS task fails to meet QoS target
4: kernelto swapin ⇐ true
5: else
6: if

IPCave×Nepoch
Nepoch+1 > IPCtarget and IPCepoch > IPCtarget then

7: // The LS task will meet QoS target in the next epoch
8: kernelto swapout ⇐ true
9: end if

10: end if
11: // The LS task requires swapping operation
12: if kernelto swapin == true then
13: // The LS task swaps in an SM
14: SMk ⇐ SMk + 1
15: else
16: if kernelto swapout == true then
17: // The LS task swaps out an SM
18: SMk ⇐ SMk − 1
19: end if
20: end if

In SMQoS, IPCtarget is the average IPC that the LS task
needs to reach during runtime. When the LS task needs more
resources by swapping in SMs, the idle SMs are selected first
to avoid swapping out SMs from the batch task. If there are no
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idle SMs available, the batch task is selected to swap out SMs,
which are then re-allocated to the LS task. Algorithm 1 shows
the SM allocation algorithm for the LS task, where the IPCave

is the average IPC of the task, Nepoch is the number of epoches
elapsed for the task, SMk is the number of SMs allocated to
the task, and IPCepoch is the IPC of the task during current
epoch. The kernelto swapin and kernelto swapout are two
boolean type variables that specify the type of operation to
be performed on the GPU task.

As illustrated in Algorithm 1, when the LS task fails to meet
its QoS target (IPCave or IPCepoch is less than IPCtarget)
(line 2), it immediately requires an SM to swap in (line 4).
To avoid the QoS oscillation, only one SM is swapped at a
time. To satisfy the QoS of the LS task, the conditions for
swapping out are more restricted (both IPCave and IPCepoch

are greater than IPCtarget) (line 6). The SM swapped out
by the LS task (line 8) can be allocated to the batch task
to increase GPU utilization, or power gated to reduce power
consumption. If the SMs need to be re-allocated, the TB
scheduler swaps in/out the TBs on the SM (line 11-20).

C. Determining Optimal Resource Allocation for Batch Tasks

Algorithm 2 Adaptive resource allocation for batch task.
Input: optk , SMk , upperk , lowerk
Output: SMk

Precondition: LS task swaps out an SM
1: // Determine whether the batch task needs to swap in an SM
2: if SMk < optk then
3: // The number of SMs allocated is less than optk
4: kernelto swapin ⇐ true
5: else
6: if upperk == false then
7: // optk does not reach the upper bound
8: kernelto swapin ⇐ true
9: else

10: if lowerk == false then
11: // optk does not reach the lower bound
12: kernelto swapout ⇐ true
13: end if
14: end if
15: end if
16: // The batch task requires swapping operation
17: if kernelto swapin == true then
18: // The batch task swaps in the SM
19: SMk ⇐ SMk + 1
20: else
21: if kernelto swapout == true then
22: // The batch task swaps out an SM
23: Power gate the SM
24: SMk ⇐ SMk − 1
25: else
26: Power gate the SM
27: end if
28: end if

When the LS task swaps out an SM, whether to allocate
the idle SM to the batch task depends on its computing
characteristics. The challenge is how to determine the optimal
number of SMs (optk) allocated to the batch task during
runtime. SMQoS introduces upperk, lowerk, and threshold
to determine optk. The upperk and lowerk are bool-type
variables that indicate whether the SM allocation reaches the
bounds of the optimal allocation. The threshold controls the
sensitivity of LS task to the SM changes. When the batch task
performs the swapping operation, SMQoS records SMk, optk,

upperk and lowerk as history information to determine optk
for next epoch. The history information also includes the IPC
of the task during the last epoch (IPClast).

Assuming that the batch task swaps in an SM at Epoch 0,
then SMk increases by one. When Epoch 1 ends, the SM man-
ager analyzes the profiling data and updates upperk, lowerk
and SMk: 1) If IPCepoch ≤ IPClast × (1 + threshold),
then upperk = true, in such case optk reaches the upper
bound; 2) If IPCepoch > IPClast × (1 + threshold), then
lowerk = true and optk = SMk, in such case optk reaches
the lower bound. Accordingly, assuming that the batch task
swaps out an SM at Epoch 0, SMk reduces by one. When
Epoch 1 ends, the SM manager updates upperk, lowerk and
SMk: 1) If IPCepoch < IPClast × (1 − threshold), then
upperk = true; 2) If IPCepoch ≥ IPClast×(1−threshold),
then lowerk = true and optk = SMk. When both lowerk =
true and upperk = true, it indicates current SMk is the
optimal value for optk. To avoid the impact of frequent SM
swapping of the batch tasks, the optk remains unchanged
during the rest of the execution.

The detailed SM allocation policy for the batch task is
illustrated in Algorithm 2. When the number of SMs allocated
to the batch task is less than optk (line 2), the idle SM is
allocated to the batch task (line 4). Otherwise, it determines
whether the upper bound is reached (line 6). If not, the idle
SM is still allocated to the batch task (line 8), otherwise it
determines whether the lower bound is reached (line 10). If
not, the batch task swaps out an SM (line 12). If the batch task
swaps in the SM (line 17), then the TB scheduler schedules
the TBs on the SM (line 19). Otherwise, the SM is power-
gated to reduce power consumption (line 21-27). The SMQoS
restricts that the GPU task can only swap in/out one SM at
a time. Therefore, the value of optk is uniquely determined
when optk reaches the upper and lower bounds.

IV. EVALUATION

A. Experimental Setup

To evaluate SMQoS, we use GPGPU-Sim v3.2.2 [4] with the
simulation configuration same to [34]. Meanwhile, we rely on
GPUWattch [14] to measure power consumption. We select 12
benchmarks including six computation-intensive (CI) tasks and
six memory-intensive (MI) tasks with details listed in Table I.
We select two tasks to co-run as a task mix, which consists of
one LS task and one batch task. We divide the task co-running
into four categories based on the computing characteristics of
the task mixes: CI-CI, CI-MI, MI-CI, and MI-MI. For instance,
CI-MI indicates that the LS task is CI and the batch task is
MI. We run 2M cycles for each task mix according to [30].
The length of one epoch is 10k cycles. Initially, the SMs are
evenly partitioned between LS task and batch task.

We use the percentage of QoS targets that are reached
(QoSreach) as our metric. We use IPC to represent the QoS,
and compare with two state-of-the-art works Spart [2] and
Rollover [30]. The QoSreach is defined as #of SucessCases

#of Total Cases .
We define the QoS target (IPCtarget) as the percentage
(specified by the QoS policy) of IPC when the LS task runs
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TABLE I: Benchmarks used for evaluation.

Benchmark Source Type
BinomialOptions (BINO) CUDA SDK [16]

CI

MergeSort(MERGE)
Coulombic Potential (CP) Parboil [25]TPACF (TPACF)

HOTSPOT (HS) Rodinia [5]PATHFINDER (PF)
ATAX (ATAX) PolyBench [7]

MI

BICG (BICG)
GESUMMV (GESUMMV)
Libor Monte Carlo (LIB) ISPASS-2009 [4]

Lattice-Boltzmann Method (LBM) Parboil [25]MRI-Gridding (MRI-G)

isolated (IPCisolated). The QoS policy sets the QoS target
ranging from 80% to 95%, with a stride of 5%.

B. Results for Achieving QoS

In this section, we evaluate the efficiency of SMQoS to meet
QoS target. Figure 2 shows the percentage of task co-runnings
with QoS satisfied under different QoS policies. As seen,
SMQoS achieves the highest percentage of task co-runnings
with QoS satisfied across all QoS policies compared to Spart
and Rollover. In general, the QoSreach of SMQoS under all
cases is 92.4%, which is higher than Spart and Rollover
by 1.70% and 3.03% respectively. Especially when the QoS
policy is 95%, SMQoS enables 2.27% and 7.58% more task
co-runnings reach the QoS target than Spart and Rollover
respectively. This demonstrates SMQoS is effective even when
the QoS policy is tight for the LS task. The reason is that
Spart adopts the linear prediction model that leads to frequent
SM re-allocation and thus degrades the QoS. Whereas, the SM
allocation in Rollover introduces intra-SM resource contention
and thus hurts the QoS.

C. Results for Improving Throughput

Figure 3 shows the normalized throughput of batch tasks.
Overall, SMQoS achieves the highest throughput in most
task mixes, which is higher than Spart and Rollover by
10.4% and 16.5% respectively. Rollover performs worst due
to the intra-SM resource contention. Compared to Spart, the
proposed algorithms in SMQoS ensure that it can allocate more
computing resources to the batch task. For instance, under the
MI-CI mixes, when the QoS policy is set to 80%, SMQoS
achieves 23.9% and 32.3% higher throughput than Spart and
Rollover respectively. This is because SMQoS allocates more
SM resources to CI batch tasks for better GPU utilization.

When the QoS policy is set to 95%, the throughput degrades
more significantly with Spart than SMQoS. This indicates that
SMQoS achieves better throughput even at tight QoS target.

D. Results for Reducing Power Consumption
Figure 4 shows the power consumption of SMQoS and Spart

normalized to Rollover. When the batch task is MI, SMQoS
consumes less power than Spart and Rollover. Especially
when the task mixes are MI-MI and the QoS policy is set
to 85%, SMQoS consumes 25.7% and 10.1% less power than
Spart and Rollover respectively. This demonstrates that when
the co-running tasks are both memory intensive, SMQoS can
efficiently reduce the power consumption while ensuring the
throughput of the batch task (Section IV-C). However, when
the batch task is CI, SMQoS achieves comparable power
consumption as Spart, which is higher than Rollover. This
is due to the design philosophy of SMQoS to increase GPU
utilization whenever possible.

E. Overhead Analysis
As illustrated in Figure 1, the extra hardware introduced in

SMQoS consists of 1) the DC module that collects profiling
data for each task, and 2) SM Manager that records SM
and task information, and decides the SM allocation during
each epoch. In addition, two 16-bit registers are used to store
IPClast and IPCave. Two 8-bit registers are used to store
optk and SMk. Four 1-bit registers are used to store upperk,
lowerk, kernelto swapin and kernelto swapout. A bit vector
is used to specify LS tasks. In sum, the hardware overhead of
SMQoS is acceptable.

V. CONCLUSION

In this paper, we propose a new runtime mechanism SMQoS.
During runtime, SMQoS monitors the performance of LS tasks
and dynamically adjusts the SM allocation in order to meet
the QoS target. In the meanwhile, based on the mixes of the
co-running tasks, SMQoS can either allocate more SMs to the
batch tasks for higher throughput, or power gate idle SMs to
reduce power consumption. The experimental results show that
SMQoS is more effective than the state-of-the-art approaches.
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