
48

Improving Thread-level Parallelism in GPUs Through

Expanding Register File to Scratchpad Memory

CHAO YU, YUEBIN BAI, QINGXIAO SUN, and HAILONG YANG, Beihang University

Modern Graphic Processing Units (GPUs) have become pervasive computing devices in datacenters due to

their high performance with massive thread level parallelism (TLP). GPUs are equipped with large register

files (RF) to support fast context switch between massive threads and scratchpad memory (SPM) to support

inter-thread communication within the cooperative thread array (CTA). However, the TLP of GPUs is usually

limited by the inefficient resource management of register file and scratchpad memory. This inefficiency also

leads to register file and scratchpad memory underutilization. To overcome the above inefficiency, we propose

a new resource management approach EXPARS for GPUs. EXPARS provides a larger register file logically

by expanding the register file to scratchpad memory. When the available register file becomes limited, our

approach leverages the underutilized scratchpad memory to support additional register allocation. Therefore,

more CTAs can be dispatched to SMs, which improves the GPU utilization. Our experiments on representative

benchmark suites show that the number of CTAs dispatched to each SM increases by 1.28× on average. In

addition, our approach improves the GPU resource utilization significantly, with the register file utilization

improved by 11.64% and the scratchpad memory utilization improved by 48.20% on average. With better TLP,

our approach achieves 20.01% performance improvement on average with negligible energy overhead.

CCS Concepts: • Computer systems organization → Single instruction, multiple data; • Software and

its engineering → Compilers;

Additional Key Words and Phrases: GPU, register file, scratchpad memory, resource utilization

ACM Reference format:

Chao Yu, Yuebin Bai, Qingxiao Sun, and Hailong Yang. 2018. Improving Thread-level Parallelism in GPUs

Through Expanding Register File to Scratchpad Memory. ACM Trans. Archit. Code Optim. 15, 4, Article 48

(November 2018), 24 pages.

https://doi.org/10.1145/3280849

1 INTRODUCTION

During the past decade, modern Graphic Processing Units (GPUs) have been widely used for
high performance computing due to their massive thread level parallelism (TLP). For GPUs,
instruction stalls and memory accesses are hidden by fast switching among massive concurrent
threads, which is enabled by large register file (RF) holding contexts of all active threads. GPUs
are also equipped with scratchpad memory (SPM) to support inter-thread communication within

New Paper, Not an Extension of a Conference Paper.

This work is supported by the National Key Research and Development Program of China under Grant No. 2016YFB1000503

and the National Science Foundation of China under Grants No. 61572062 and No. 61502019.

Authors’ addresses: C. Yu, Y. Bai, Q. Sun, and H. Yang, Beihang University, School of Computer Science and Engineering,

Beijing, 100191, China; emails: {yuchao, byb, sunqingxiao, hailong.yang}@buaa.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

2018 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 1544-3566/2018/11-ART48

https://doi.org/10.1145/3280849

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.

https://doi.org/10.1145/3280849
https://doi.org/10.1145/3280849


48:2 C. Yu et al.

cooperative thread array (CTA). To explore the high TLP of GPUs, resources should be carefully
managed for better utilization. Recent works [9, 10, 35, 38, 41] have focused on improving the
TLP of GPUs by exploiting the management of register file to support more active threads.
WarpMan [38] uses a warp-level resource management to reduce register file fragmentation, thus
more warps can be dispatched to the streaming multiprocessor (SM) even when the available
resource is not enough for a full CTA. Yoon et al. [41] propose a virtual-thread architecture that
can dispatch more CTAs to make full use of the register file and scratchpad memory without
considering other restrictions such as the number of CTAs and thread slots. Jeon et al. [10], Jatala
et al. [9], and Vijaykumar et al. [35] adopt time sharing mechanisms for warps to use the same
registers at different time with increased TLP. However, all above works have taken register file
and scratchpad memory as two separate units of completely different purposes.

This work is motivated by the observation that the maximum number of CTAs is determined by
the most dominant GPU resources such as register file, whereas other resources such as scratchpad
memory are usually underutilized. For instance, given a SM with 32K (32K*4B = 128KB) register
file and 48KB scratchpad memory, if a CTA needs 5K register file and 2KB scratchpad memory,
then the maximum number of CTAs can be dispatched to a SM concurrently is 6 due to the
limited register file. Therefore, the remaining 2K register file and 36KB scratchpad memory is
underutilized. If we can use the scratchpad memory to expand the capacity of register file, then up
to 8 CTAs can be dispatched to a SM concurrently and the utilization of register file and scratchpad
memory are both improved to 100%. Although equipping each SM with a larger register file can
improve both the TLP and scratchpad memory utilization of GPUs, larger register file means
more energy consumption [5, 6, 17, 29] and researchers even explore to reduce the size of register
file [17].

In this article, we propose a new GPU resource management approach EXPARS, that expands
the register file to scratchpad memory to provide a larger register file logically. Instead of con-
sidering register file and scratchpad memory as two separate components, our approach is able
to use scratchpad memory as register file transparently when the available register file becomes
limited. By expanding register file to scratchpad memory, TLP can be effectively increased, which
in turn improves the performance of computation intensive applications. However, higher TLP
with more active threads may lead to severe contention on cache and global memory for memory
intensive applications. To address this issue, we use a Lazy Two-Level Warp Scheduler (LTLWS) in
our resource management approach to dynamically reduce the maximum number of active warps
in each SM, which is effective to mitigate the performance degradation due to resource contention.

In general, our work makes the following contributions:

• We propose a new resource management mechanism that expands register file to scratchpad
memory, which improves the utilization of both register file and scratchpad memory in
addition to increased TLP.

• We design a prefetching mechanism that uses co-design of compiler annotation and hard-
ware extension to alleviate the bandwidth mismatch between operand collector and scratch-
pad memory.

• We develop a lazy two-level warp scheduler to dynamically determine the optimal maxi-
mum number of active warps at runtime, which can effectively mitigate the resource con-
tention due to increased TLP.

• We evaluate our approach with representative benchmark suites. The evaluation results
demonstrate that EXPARS can significantly improve the utilization of register file and
scratchpad memory by 11.64% and 48.20% on average, respectively. It also improves the
application performance by 20.01% on average with negligible energy overhead.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



Improving Thread-level Parallelism in GPUs Through Expanding Register File 48:3

Fig. 1. Resource utilization of register file and scratchpad memory on baseline GPU.

The rest of the article is organized as follows: Section 2 introduces the motivation of this article
and the challenges should be addressed. Section 3 presents the main ideas of our approach. The
experimental setup and evaluations of our approach are described in Section 4. Related works are
discussed in Section 5. Section 6 concludes the article.

2 MOTIVATION AND CHALLENGES

2.1 Resource Underutilization

In GPUs, every 32 threads of a kernel are organized into a warp, and warps are further grouped
into CTAs. Before a CTA can be dispatched, it requires resource allocation such as register file,
scratchpad memory, thread slot, and CTA slot. Modern GPUs are equipped with a large register
file to store contexts of the massive threads; however, it is usually not fully utilized due to the
granularity of resource allocation for CTA. Figure 1 shows the resource utilization of register file
and scratchpad memory on baseline GPU (experimental setup see Section 4.1). The utilization of
register file is high across all applications with 88.21% on average, which becomes the dominant
factor to determine the maximum number of CTAs that can reside on a SM. However, we can see
that none of these applications can fully utilize the register file. This is because the remaining reg-
ister file is not sufficient to support one more CTA. Meanwhile, we also observe that the utilization
of scratchpad memory is usually low with 5.58% on average. The large amount of underutilized
scratchpad memory is the perfect candidate to expand the limited register file.

To expand the register file to scratchpad memory, register allocation strategy for CTA needs to
be changed. For instance, if part of the registers for a CTA can be allocated in scratchpad mem-
ory, then the register file requirement of that CTA is satisfied and more CTAs can be dispatched.
Figure 2 shows the comparison of overall resource utilization (combining register file and scratch-
pad memory) and the number of CTAs resided on each SM between baseline and oracle approach
that expands register file to scratchpad memory. In Figure 2, the number of CTAs per SM increases
by 29.84% on average and the overall utilization improves from 65.68% to 88.26% on average.

2.2 Challenges in Expanding Register File

Expanding the register file to scratchpad memory presents several difficult challenges that are
elaborated as follows.

Challenge 1: Coordination of register placement. To expand the register file to scratchpad
memory, the first thing to determine is how to manage the register allocation for CTAs between
the register file and scratchpad memory. One approach is to allocate the registers in scratchpad
memory whenever the register requirement of a CTA is beyond the available capacity of the regis-
ter file, which we refer as horizontal approach in Figure 3(a). The benefit of the horizontal approach

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



48:4 C. Yu et al.

Fig. 2. Comparison of the overall resource utilization and CTA number between baseline and oracle

approach.

Fig. 3. Different register allocation approaches.

is that the number of CTAs originally allocated in register file (default CTAs) remains unchanged.
The operands of default CTAs are accessed directly from the register file, with the performance
equal to the baseline approach on GPU. In addition, the horizontal approach is easy to implement
and the performance can be guaranteed no worse than the baseline approach if schedule the default
CTAs with higher priority. However, this approach can cause pipeline stalls in the operand read-
ing stage, especially when all source operands of instructions are allocated in scratchpad memory,
which degrades the pipeline utilization severely.

To reduce the probability that all source operands need to be read from scratchpad memory, our
approach distributes register allocations between the register file and scratchpad memory at per-
register basis instead of at CTA or warp basis used in horizontal approach. We refer our approach
for register allocation as vertical approach shown in Figure 3(b). With vertical approach, only a
portion of registers of each warp/thread is allocated in scratchpad memory, and the rest are still
allocated in the register file, which can efficiently mitigate the pipeline stalls as well as improve
resource utilization.

Challenge 2: Alleviating the bandwidth mismatch between operand collector and

scratchpad memory. Unlike register file, which can service multiple architectural register ac-
cess per cycle, the scratchpad memory can only service one architectural register access per cy-
cle in the baseline GPU architecture without bank conflicts (see Section 3.3.2). That will lead to
bandwidth mismatch between operand collector and scratchpad memory. Although the vertical

approach can cut down the number of access to scratchpad memory during instruction execution,
it cannot eliminate all access to scratchpad memory for instruction operands. In addition, if there
is more than one instruction waiting for operands to be fetched to collector units, and at least
one operand of each of these instructions resides in scratchpad memory, then all these operands
need to be read from scratchpad memory to collector units sequentially. Obviously, the sequential

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



Improving Thread-level Parallelism in GPUs Through Expanding Register File 48:5

access to scratchpad memory leaves the SIMD execution unit underutilized due to the lack of ready
instructions.

To alleviate the bandwidth mismatch, EXPARS proposes a small capacity operand cache (OC)
to hold the required registers resided in scratchpad memory. Before instructions can be issued,
their operands stored in scratchpad memory are first fetched to OC. The OC has multiple banks so
that multiple operands can be read in a single cycle, which is similar to the register file. With the
help of OC, accessing operands in scratchpad memory is as fast as register file. To avoid overhead
of operand prefetching for each instruction, we use a batch mechanism to prefetch operands for
a bundle of instructions, similar to the region-based preloading mechanism [17]. However, the
difference is that our prefetching mechanism only preloads a small portion of operands stored in
scratchpad memory while Reference [17] needs to preload all operands for all threads from global
memory. When the first instruction of a bundle is to be scheduled, all registers of that bundle are
already resided in either the register file or OC through our prefetching mechanism.

3 EXPARS METHODOLOGY

In this section, we describe EXPARS, an application-transparent mechanism to increase TLP of
GPUs by expanding register file to scratchpad memory. If the available register file is not enough
to support one more CTA, then part of the scratchpad memory is used as register file so that more
concurrent CTAs can be dispatched.

3.1 Design Overview

To effectively increase TLP by exploiting the above ideas, EXPARS employs a compiler-hardware
co-design. Figure 4 depicts the design overview of EXPARS on each SM. All the colored components
are extended or modified by EXPARS to fulfill the idea of expanding register file to scratchpad
memory. We will walk through each component to give a detailed description on how EXPARS

works.
When the GPU assembler compiles the Parallel Thread Execution (PTX) instructions of a kernel

into the low-level GPU Shader ASSembly (SASS) instructions , it divides the instructions into
bundles and analyzes the live registers of each bundle. After that, the Compiler Assisted Annotation

component inserts an annotation before each bundle of instructions and generates the correspond-
ing .cubin . At runtime, the kernel in the generated .cubin is launched into GPU for execution

and a large number of CTAs are created. Then the CTA scheduler analyzes the maximum num-
ber of CTAs per SM and dispatches these CTAs to SMs that have enough resources (register file
and scratchpad memory, etc.) . When a CTA is to be dispatched to a SM, the Resource Allocator

analyzes the current resource utilization of the SM, determines where each register should be allo-
cated, and allocates resources for that CTA. If there are registers allocated in scratchpad memory,
then the Register Allocation Table is updated to record the allocation information. After the
needed resources are allocated, all warps of that CTA are put into the warp pool and wait to be
scheduled. Warps whose bundles are to be executed next and having registers allocated in scratch-
pad memory are put in the prefetching queue. The first warp in prefetching queue is checked in
every cycle by Register Prefetcher to see if all registers allocated in scratchpad memory for
the next bundle of that warp can be accommodated in the remaining space of Operand Cache

. If there is enough space, then the needed registers are fetched from scratchpad memory to
Operand Cache and that warp is moved from prefetching queue to schedulable queue.

Because not all warps can be scheduled during each cycle, EXPARS uses a two-level [5]
(TL)-based warp scheduler to schedule warps in schedulable queue (active warps) with greedy-
then-oldest (GTO) or loose-round-robbin (LRR) algorithm . If all instructions of a warp bundle
have been scheduled, then that warp is moved to the prefetching queue again to check if all live

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



48:6 C. Yu et al.

Fig. 4. Design overview of EXPARS. The colored components are extended beyond baseline.

registers of next bundle are ready. When an instruction is scheduled, a collector unit in operand
collector is allocated for it to read operands. Then the warp ID and architectural register index
are sent to Bank Arbitrator to fetch data either from register file or operand cache. The bank ar-
bitrator checks the warp ID and architectural register index according to Register Allocation Table

to see whether the register is in register file or scratchpad memory. If the register is in register
file, then it is read from register file directly . Otherwise, the read request is sent to operand
cache and the corresponding data is fetched to operand collector . After all operands are
ready in collector unit, the instruction can be dispatched to the SIMD unit for execution.

3.2 Compiler Assisted Annotation

EXPARS relies on compiler to get information about which registers to prefetch for a bundle of
instructions. The first capability the compiler provides is to identify all instruction bundles. Al-
though the region creation algorithm [17] can appropriately partition a kernel in its own case, it
cannot be applied to EXPARS directly. The reason is that which registers will be allocated in regis-
ter file or scratchpad memory is unknown at compile stage due to the vertical approach of register
allocation used by EXPARS.

In this article, we use a modified version of region creation algorithm to define a bundle, which
is based on five rules to identify boundaries of instruction bundles. (1) barrier or fence operation,
a warp that is waiting at barrier or fence operation can resume execution only when other warps
arrives at this point; (2) long latency operation such as global load, a long latency operation from a
warp can block other warps from prefetching due to the limited capacity of OC; (3) a bundle should

not contain registers may cause line conflicts in OC (see Section 3.3.4); (4) the maximum number of

registers in a bundle should not exceed a predefined value to avoid occupying too much capacity of

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



Improving Thread-level Parallelism in GPUs Through Expanding Register File 48:7

Table 1. Parameters for TLP Calculation

Parameter Description

R Register file capacity on a SM

S Scratchpad memory capacity (in words, four bytes) on a SM

RCTA Register file capacity required by a CTA

SCTA Scratchpad memory capacity (in words, four bytes) required by a CTA

τ Threshold of maximum # registers allocated in scratchpad memory for a CTA, 0 < τ < 1

CTARF Number of CTAs with all registers are allocated in register file

CTAMix Number of CTAs with part of registers allocated in scratchpad memory

CTA Maximum number of CTAs to be dispatched on a SM

OC; (5) a bundle should not span beyond a basic block, which avoids a single bundle belonging to
different control flows.

To record the register information of each bundle, we define a new operation PREF, which is ac-
companied with a bit-vector. The length of bit-vector is equal to the maximum number of registers
that GPU functions can use, which is 63 for Fermi architecture [24] and 255 for Maxwell archi-
tecture [26]. Each bit in the bit-vector represents an architectural register with the corresponding
index. The PREF instruction is inserted at the start of each bundle by compiler. Prior work [29]
with similar technique shows that code size and performance overhead are negligible with the
inserted annotations.

To further reduce the ratio of live registers in a bundle to be allocated in scratchpad memory, we
sort the register declarations of each kernel according to the weight of each register. The weight
of each register is estimated at compile time by counting the reference number of that register. If a
register is referenced frequently, then it means this register is likely to be a hot register and should
be allocated at register file. Otherwise, it can be allocated in scratchpad memory.

3.3 Hardware Extension

The bottom part of Figure 4 shows the hardware components of EXPARS with the colored ones ex-
tended beyond baseline. When a kernel is launched to GPU, the hardware manages resources used
by that kernel according to compiler annotations and resource status. The CTA scheduler first an-
alyzes the maximum number of CTAs per SM can hold and dispatches CTAs to each SM. Resource
allocator (RA) determines where registers should be allocated and stores the allocation results in
register allocation table (RAT). When a bundle of a warp is to be scheduled, the register prefetcher
(RP) preloads all live registers of that bundle allocated in scratchpad memory into operand cache
(OC). Warp scheduler dispatches all schedulable warps to execute and bank arbitrator (BA) decides
where the operands of the issued instructions are to be read based on RAT.

3.3.1 Determining the Max Number of CTAs per SM. To describe how the CTA scheduler deter-
mines the maximum number of CTAs per SM can hold with EXPARS, we define several notations
shown in Table 1. There are two types of CTAs using EXPARS, CTARF and CTAMix . Since resource
requirements of all dispatched CTAs cannot exceed the available capacity, the two types of CTAs
have to meet the following conditions defined by Equations (1) and (2):

CTARF × RCTA + CTAMix × RCTA × (1 − τ ) ≤ R, (1)

CTARF × SCTA + CTAMix × (SCTA + RCTA × τ ) ≤ S . (2)

On the baseline GPU, up to � R
RCTA
� CTAs can be dispatched to each SM. To ensure that the number

of CTAs dispatched by EXPARS is no less than that of baseline (CTALower ), CTARF and CTAMix need

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



48:8 C. Yu et al.

to satisfy Equation (3):

CTARF + CTAMix ≥ CTALower =

⌊
R

RCTA

⌋
. (3)

Based on Equations (1), (2), and (3), we can derive the relation in Equation (4):⌊
R

RCTA

⌋
≤ CTARF + CTAMix ≤

⌊
R + S

RCTA + SCTA

⌋
. (4)

Although EXPARS can improve the number of dispatched CTAs by expanding the register file to
scratchpad memory, other factors such as maximum number threads per SM could also limit the
actual value of CTA. We use the minimum value generated by above factors as the upper bound
(CTAUpper ) of CTA in Equation (5):

CTALower ≤ CTARF + CTAMix ≤ CTAUpper . (5)

To get the maximum number of CTAs that can be dispatched by EXPARS to each SM, the sum
of CTARF and CTAMix should be maximized in Equation (6):

f (x ) = CTARF + CTAMix ,

CTA = max f (x ).
(6)

The above problem can be transformed into a linear programming problem, which explores the
maximum value of Equation (6) satisfying Equations (1), (2), and (5). The results can be divided
into three cases as shown in Equations (7), (8), and (9).

(1) If CTALower ≥ CTAUpper , then

⎧⎪⎨⎪⎩
CTARF =

⌊
R

RCTA

⌋
,

CTAMix = 0.
(7)

(2) If CTALower < CTAUpper and � R
RCTA (1−τ ) � ≤ CTAUpper , then

⎧⎪⎨⎪⎩
CTARF =

⌊
R

RCTA

⌋
−
⌊
� R

RCTA (1−τ ) � (1 − τ )
⌋
,

CTAMix =
⌊

R
RCTA (1−τ )

⌋
.

(8)

(3) If CTALower < CTAUpper and � R
RCTA (1−τ ) � > CTAUpper , then

⎧⎪⎪⎨⎪⎪⎩
CTARF =

⌊
R

τ RCTA

⌋
+ CTAUpper −

⌊
CTAUpper

τ

⌋
,

CTAMix =
⌊

CTAUpper

τ

⌋
−
⌊

R
τ RCTA

⌋
.

(9)

When a kernel is launched, the above conditions are evaluated and the corresponding values of
CTARF , CTAMix , and CTA are calculated. Before such number (CTA) of CTAs is dispatched to each
SM, all registers of the CTAs (CTARF ) are allocated in register file, and at most τRCTA registers of
the CTAs (CTAMix ) are allocated in scratchpad memory and the remaining registers of the CTAs
(CTAMix ) are allocated in register file. It should be noted that the CTAs will be scheduled using the
default approach (baseline) if CTA is not larger than CTALower , thus no extra overhead incurs.

3.3.2 Resource Allocator. The resource allocator is mainly responsible for coordinating the reg-
ister allocation in register file and scratchpad memory. By expanding the register file to scratchpad
memory, we can increase the number of CTAs resided in each SM whenever the register file be-
comes a dominant resource. Figure 5 shows how EXPARS coordinates the allocation of registers
to increase the number of CTAs resided in each SM. Assuming that each SM has a 32K (128KB)
register file and a 48KB scratchpad memory. Each CTA contains 10 warps and requires 10K register

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



Improving Thread-level Parallelism in GPUs Through Expanding Register File 48:9

Fig. 5. Resource allocation of register file and scratchpad memory in Baseline and EXPARS approach.

file and 4KB scratchpad memory. Thus, at most three CTAs can be dispatched on each SM with
the baseline resource management approach (shown in Figure 5(a) as the baseline), which leads to
2K register file and 36KB scratchpad memory unused. That is because the remaining 2K register
file is not enough to accomodate a complete CTA.

The underutilized resources in Figure 5(a) can be reduced by using our resource allocation ap-
proach shown in Figure 5(b). To accommodate one more CTA, there should be 8K more register
file. We can observe that there are 36KB scratchpad memory unused, of which we can use 32KB to
accommodate the additional 8K register file allocation. In addition to the 8K register file, another
4KB scratchpad memory is also needed according to the resource requirement of a CTA, which is
exactly our case in Figure 5(b) that at most 4 CTAs can reside on each SM with our approach.

In GPUs, scratchpad memory is shared at CTA granularity and each CTA allocates a consecutive
region in the scratchpad memory. The scratchpad region allocated to each CTA is indexed accord-
ing to the scratchpad memory base register (SBR) of each CTA, which records the base address
for each scratchpad memory region. To store registers in scratchpad memory, another consecutive
region in the scratchpad memory is allocated for each CTA. In this article, we use a two-way allo-
cation policy for scratchpad memory, which allocates different resources (scratchpad and register)
from top to bottom and from bottom to top, respectively. The free space of scratchpad memory
only exists between the scratchpad regions and register regions. Figure 6 illustrates the two-way
allocation policy for scratchpad memory allocation.

The scratchpad memory on our baseline GPU has 32 banks and the width of each entry is
32 bits. The 32 successive entries of the 32 banks make up a line. Thus, each line can store one
architectural register, which contains 32 registers with the same register index for the 32 threads
of a warp. Architectural registers belonging to the same warp are laid out consecutively by the
order of register index. Warps belonging to the same CTA are laid out consecutively by the order
of warp ID. Registers stored in scratchpad memory are accessed by addresses. Register address
is computed based on SBR, warp ID, architectural register index, and so on (see Section 3.3.3).
When an architectural register is to be accessed, 32 scratchpad memory addresses are generated
for access. These 32 scratchpad memory addresses span across 32 distinct banks, thus they can be
accessed simultaneously within a cycle without bank conflicts.

3.3.3 Register Allocation Table. The purpose of the Register Allocation Table (RAT), shown in
Figure 7, is to maintain metadata for CTAs to control the register prefetching process and find
the addresses of registers allocated in scratchpad memory. The RAT maintains four variables,

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



48:10 C. Yu et al.

Fig. 6. Two-way allocation policy for scratchpad memory. CTA0 and CTA1 are default CTAs with all their

registers allocated in register file, whereas CTA2 and CTA3 are additional CTAs enabled by EXPARS, with

part of their registers allocated in scratchpad memory.

Fig. 7. Register allocation table.

Start_CTA, Start_Reg, Max_Reg, and Warps_Per_CTA, and one table, SBR. Start_CTA, which is
equal to CTARF in Section 3.3.1, records the starting physical ID of CTAs that have registers al-
located in scratchpad memory, and Start_Reg records the starting architectural register index al-
located in scratchpad memory. Start_Reg is calculated by resource allocator using Equation (10):

Start_Reg =

⌊
R − (CTARF × RCTA)

CTAMix

⌋
. (10)

Max_Reg records the maximum architectural register index of the CTA and Warps_Per_CTA

records the warp number of each CTA. The SBR table records the values of scratchpad memory
base registers, which are the base addresses of the consecutive regions allocated to CTAs to store
their registers. The SBR table is indexed by relative CTA ID (CTA_ID minus Start_CTA). Accord-
ing to the baseline configuration in Table 2, because the maximum number of concurrent CTAs
and threads in each SM is 8 and 1,536, respectively, Start_CTA takes 3 bits, Warps_Per_CTA takes
6 bits, and SBR table has eight entries (each entry is 16 bits in width to cover the 48KB scratchpad
memory in each SM); because the maximum number of available architectural registers for each
warp is 63, registers Start_Reg and Max_Reg need 6 bits each. In EXPARS, register declarations are
sorted based on their reference weights in descending order by compiler. If m registers are allo-
cated in scratchpad memory, then these m registers are the last m registers with least reference
weights. This means the registers starting from Start_Reg in a CTA are all allocated in scratchpad

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



Improving Thread-level Parallelism in GPUs Through Expanding Register File 48:11

Table 2. Major Parameters of the Simulated System

Parameter Configuration

System 15 SMs, 1.4GHz

SM Fermi: 1536 threads/SM, 8 CTAs/SM; Maxwell: 2,048 threads/SM, 32 CTAs/SM

Warp scheduler LRR/GTO/TL (2 schedulers per SM)

Registers / SM Fermi: 32,678 (32,678*4B = 128KB); Maxwell: 65,536 (65,536*4B = 256KB)

Scratchpad / SM Fermi: 48KB; Maxwell: 64KB

On-chip cache L1: 16KB, L2: 768KB

GDDR memory 6 MCs, 16 banks, 924MHz, TRRD=6, TRCD=12, TRP=12, TRC=40, TCL=12, TWR=12

memory. Therefore, the RAT cannot only be used to determine whether a register is allocated in
register file or scratchpad memory but also to calculate the register addresses in scratchpad mem-
ory. When allocating a scratchpad memory region for a CTA (CTA_ID), the value of SBR of that
region is calculated using Equation (11). In Equation (11), S is the capacity of scratchpad memory:

SBR = S − (CTA_ID − Start_CTA + 1) × (Max_Reg − Start_Reg + 1) ×Warps_Per_CTA × 128.
(11)

When a warp (Warp_ID) accesses the register (Reg) allocated in scratchpad memory, Equa-
tion (12) is used first to calculate the CTA (CTA_ID) it belongs to. The SBR indexed by (CTA_ID −
Start_CTA) can be extracted from the table. Then the first register address (Address) is calculated
using Equation (13). Based on the first register address, the remaining 31 addresses are generated
by increasing their preceding addresses by 4:

CTA_ID =

⌊
Warp_ID

Warps_Per_CTA

⌋
, (12)

Address = SBR + (Max_Reg − Start_Reg + 1) × (Warp_ID mod

Warps_Per_CTA) × 128 + (Reg − Start_Reg) × 128. (13)

3.3.4 Register Prefetcher and Operand Cache. When a warp reaches a PREF instruction, the
instruction decoder sends the register information of the instruction to the RP. The RP keeps the
register information in the corresponding position of its register bit-vector table. The register bit-
vector table maintained by RP is indexed by warp ID. Before a warp becomes schedulable, the RP
guarantees all registers, which are parsed from the corresponding bit-vector, needed by the warp’s
next bundle are either in register file or OC. If the registers are allocated in the register file, then
they are already there. Otherwise, registers need to be fetched from scratchpad memory to OC. In
EXPARS, the warp pool maintains three queues (schedulable, prefetching and pending) to track the
status of all supervised warps. If all registers of the next bundle of a warp are allocated in register
file, then that warp will be put in the schedulable queue. Otherwise, it is put in the prefetching
queue. Warps in the schedulable queue can be scheduled directly by scheduler for execution. When
a bundle of a warp completes, if the next bundle contains registers allocated in scratchpad memory,
it is moved to the front of prefetching queue.

In each cycle, the RP checks the head warp of the prefetching queue to see if there is enough free
space in OC to hold all registers allocated in scratchpad memory for the next bundle of that warp.
If there is enough space in OC, then the addresses of all registers are calculated by OC and these
registers are fetched from scratchpad memory to OC. Otherwise, registers of previously completed
bundles will be evicted from OC. Figure 8 shows the architecture of OC. The OC maintains a
similar structure as the register file that multiple registers in different banks of OC can be accessed

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



48:12 C. Yu et al.

Fig. 8. Operand cache architecture.

Fig. 9. Judgement logic of bank arbitrator.

simultaneously. In Figure 8, the OC has four banks and the four ways of each set are distributed
in the four banks. Each line of OC is 1,024 bits to hold one architectural register for a warp. The
tag, which takes 10 bits for each cache line, is composed of 6 bits of Warp_ID, the higher 2 bits
of Reg, 1 bit valid flag, and 1 bit dirty flag. To preserve the compiler assigned bank information,
registers prefetched from scratchpad memory are put to the same bank of OC as the register file.
After all registers required by next bundle are ready in OC or register file, the warp is moved to the
schedulable queue and waits to be scheduled. If the number of active warps in schedulable queue
has reached the maximum value, then that warp will be moved to pending queue.

3.3.5 Bank Arbitrator. The bank arbitrator (BA) contains a read request queue for each register
file bank to hold all access requests (Warp_ID, Reg#) until they are granted. During each cycle,
the BA selects a group of non-conflicting accesses to send to the register file. To read registers
allocated in scratchpad memory, we extend the BA with a judgement logic (illustrated in Figure 9).
When an access request arrives, the BA checks the RAT to decide whether the needed register
is allocated in register file or scratchpad memory. The BA first computes the CTA_ID according
to Warp_ID using Equation (12). If Start_CTA is greater than CTA_ID, then it means all registers
of that CTA are allocated in register file and the access request will be sent to register file. If
Start_CTA is not greater than CTA_ID and the architectural register index Reg# is not less than
Start_Reg, then the access request will also be sent to register file. Otherwise, the access request
will be sent to the OC. When a register access request will be sent to the OC, the bank arbitrator
first determines the OC bank of requested register according to the lowest 2 bits of Reg#, then sends
the request to the corresponding set of the determined bank according to the middle 2 bits of Reg#
(illustrated in Figure 8). Because all registers allocated in scratchpad memory are serviced by the
OC during the execution of a bundle, the tag lookup can be eliminated during operand reading.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



Improving Thread-level Parallelism in GPUs Through Expanding Register File 48:13

However, when the content of an architectural register changes or an architectural register should
be evicted during the prefetching stage, the corresponding tag will be looked up.

3.3.6 A Lazy Two-Level Warp Scheduler. EXPARS can improve TLP by enabling more CTAs per
SM through expanding register file to scratchpad memory. However, previous works [5, 13, 19,
43] have shown that higher TLP does not always mean higher performance due to resource con-
tention. To alleviate the contention, we propose a Lazy Two-Level Warp Scheduler (LTLWS), which
is inspired by Reference [19], to control the maximum number of schedulable warps (active warps)
during runtime. LTLWS is designed based on the two-level (TL) scheduler that schedules warps into
three queues such as schedulable queue, prefetching queue, and pending queue with its outer level
scheduler. Warps in the schedulable queue can be scheduled for execution, whereas warps stalled
by long latency operations or exceeding the maximum number of active warps are queued in the
pending queue. Warps with registers to be preloaded for the next bundle of instructions are put in
the prefetching queue.

Warps in the schedulable queue are scheduled by the inner level scheduler of LTLWS using ei-
ther GTO (LTLWS-GTO) or LRR (LTLWS-LRR) algorithm. Different from Reference [5], where the
number of entries (active warps) for the inner level scheduler is fixed, our approach dynamically
adjusts the number of active warps during runtime, which achieves higher TLP without degrad-
ing the performance due to severe resource contention. When a kernel is launched, the maximum
number of CTAs dispatched to each SM can be calculated using the approach presented in Sec-
tion 3.3.1. Initially, the maximum number of active (schedulable) warps for LTLWS is not set and
all warps with registers ready in register file or OC for the next instruction bundles are put in the
schedulable queue.

The instructions issued for each warp are recorded until the first warp finishes execution. We
define WMax as the number of warps involved in the LTLWS scheduler and Insti as the number
instructions issued for warp i (Wi) when the first warp finishes execution. The InstMax is defined
as the number of instructions issued from the first completed warp. To be optimal, the maximum
number (WOpt ) of active warps that can be scheduled by the inner level scheduler of LTLWS is
obtained using Equation (14). After WOpt is obtained, the maximum number of active warps for
LTLWS is set to WOpt . Then, LTLWS degenerates into TL, which introduces negligible overhead,
and the kernel keeps on running to completion with up to WOpt warps can be scheduled in each
cycle:

WOpt =

⎢⎢⎢⎢⎢⎣
∑WMax

i=1 Insti

InstMax

⎥⎥⎥⎥⎥⎦ . (14)

3.3.7 Hardware Cost. EXPARS requires a small OC, which has the same number of banks with
register file, for each SM to cache registers allocated in scratchpad memory. By default, it is set to
2KB and partitioned into four sets, and each set has four lines distributed in four banks (illustrated
in Figure 8) if the register file has four banks. Each line needs a 10-bit tag, thus, the total tags for
each SM take 20B storage. Besides, there also need a RAT for each SM to maintain metadata for
CTAs to control the register prefetching process and find the addresses of registers allocated in
scratchpad memory. The RP maintains a register bit-vector table, which supports 48 warps with
63 registers per warp in our baseline configuration, and its storage overhead is 378B. The RAT
contains a SBR table to record base addresses of scratchpad memory regions allocated to CTAs
to store registers. In our baseline configuration, the SBR table has eight entries and each entry
needs 2B and the total storage overhead of SBR table for each SM is 16B. In addition, the RAT
also maintains one 3-bit variable Start_CTA and three 6-bit variables Start_Reg, Max_Reg and

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



48:14 C. Yu et al.

Warps_Per_CTA. Also, with LTLWS scheduler, each warp requires one 4B counter to record the
number of executed instructions and there is also a 6-bit variable to record the optimal number of
active warps. In addition to above storage cost, EXPARS needs an arithmetic circuit to determine the
maximum number of CTAs using Equations (7), (8), and (9) for each SM before CTAs are dispatched
to SMs. Meanwhile, the modified bank arbitrator needs two additional comparator circuits to judge
the position of needed registers.

3.4 Compiler-Only Approach vs. EXPARS Approach

Although the compiler can also spill registers to scratchpad memory, the compiler cannot deter-
mine how many and which architectural registers should be spilled to scratchpad memory. That
is because whether the TLP is limited by register file or not depends not only on required register
file and scratchpad memory but also on CTA size. For example, assuming that each thread of a ker-
nel needs 20 registers and each CTA needs 10KB scratchpad memory. If the CTA size is 512, then
the TLP will be limited by register file in the baseline architecture and registers can be spilled to
scratchpad memory to increase TLP. If the CTA size is changed to 256, then the TLP of the kernel
will be limited by scratchpad memory and no registers need to be spilled to scratchpad memory;
otherwise, unnecessary performance loss will occur. However, the compiler is usually unaware of
the CTA size, which may be changed with the input. Thus, it is infeasible to rely on compiler-only
approach to spill registers to scratchpad memory efficiently, whereas EXPARS spills registers to
scratchpad memory efficiently to increase TLP according to runtime information. Besides, even
if the CTA size can be passed to the compiler with certain methods, the challenge of bandwidth
mismatch discussed in Section 2.2 still needs to be addressed by the hardware.

4 EVALUATION

4.1 Experimental Setup

We model EXPARS with GPGPU-Sim v3.2.2 [1]. Table 2 presents the major parameters of the sim-
ulated system. Except for Section 4.6, all results are generated using the Fermi [24] configuration,
which is the mostly targeted configuration for GPU research even in recent publications [9, 10,
12, 16, 31, 35, 41]. Note that although the simulations are based on Fermi architecture, the princi-
ples behind EXPARS are also applicable to newer architectures such as Kepler, Maxwell and Pascal.
The evaluation of EXPARS for newer GPU architecture is presented in Section 4.6. Since the PTX
assembler (ptxas) is closed-source for CUDA applications, we implement the compiler extension
based on the PTXPlus, which relies on ptxas for register allocation, of GPGPU-Sim compilation
system. We use GPUWatch [21] to model the GPU power consumption. The die area overhead
of EXPARS is estimated by using CACTI v7.0 [37] with 40nm technology. The overhead including
logic, operand cache, and register allocation table is considered. The total area overhead is about
0.861mm2 for all 15 SMs, which is only 0.163% of the die area of the GTX 480.

We evaluate EXPARS on several widely adopted benchmark suites including Rodinia [2], Nvidia
CUDA-SDK [25], and Parboil [30] to cover a wide range of application domains. This article mainly
targets on register-sensitive workloads such as workloads in References [9, 10, 38]. For each se-
lected workload from these benchmark suites, we report the number of warps per CTA, the number
of CTAs per SM, the register file, and scratchpad memory usage per CTA in Table 3. Since PTX-
Plus is currently only compatible with CUDA Compute Capability less than 2.0, all the workloads
are compiled with CUDA 4.2 and GCC 4.4 for Compute Capability 1.3. We set τ to be 0.8 based
on empirical studies and the size of OC is 2KB. We compare EXPARS with two other approaches:
Baseline and Warpman [38]. Baseline represents the default GPU implementation, whereas Warp-

man is the state-of-the-art approach to improve the utilization of register file as well as increase

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



Improving Thread-level Parallelism in GPUs Through Expanding Register File 48:15

Table 3. Benchmarks Description

Application Kernel Abbr. CTAs/SM Warps/CTA SPM/CTA RF/CTA

lbm [30] performStreamCollide_kernel LBM 7 4 0 4608

stencil [30] block2D_hybrid_coarsen_x ST 2 16 0 14,436

mri-q [30] ComputeQ_GPU MQ 4 8 0 7,168

sgemm [30] mysgemmNT SGE 5 4 512 5,632

b+tree [2] findRangeK BT 2 16 0 12,288

hotspot [2] calculate_temp HS 3 8 3,072 9,216

leukocyte [2] GICOV_kernel LEUK 7 6 0 4,608

MonteCarlo [25] MonteCarloOneBlockPerOption MC 5 8 2,048 6,144

convolutiontexture [25] convolutionRowsKernel CONV 7 6 0 4,608

EstimatePiInlineP [25] initRNGP17curandState EST 5 8 0 6,144

mergeSort [25] mergeSortSharedKernel MERG 2 16 8,192 12,288

quasirandomGenerator [25] quasirandomGeneratorKernel QUA 2 12 0 12,288

singleAsianOptionP [25] initRNGP17curandState SING1 5 8 0 6,144

singleAsianOptionP [25] generatePathsIfEvPT_P17curandStante SING2 4 8 0 7,168

Fig. 10. Comparison of resource utilization among Baseline, Warpman, and EXPARS.

the TLP by scheduling threads at the warp level. We evaluate each approach with three different
warp schedulers: LRR, GTO, and TL.

4.2 Resource Utilization

Figure 10 compares the resource utilization of Baseline, Warpman, and EXPARS. We show the regis-
ter file utilization, scratchpad memory utilization, and overall resource utilization for each bench-
mark. The overall resource utilization is the total utilization of register file and scratchpad memory.
It is observed in Figure 10 that EXPARS can make full utilization (100%) of the register file for al-
most all benchmarks. The average register file utilization of Baseline, Warpman, and EXPARS is
88.21%, 98.62%, and 99.85%, respectively. The high register file utilization can be attributed to the
vertical approach of register allocation in EXPARS, which uses the allocation granularity smaller
than Warpman and thus leads to less resource fragmentation in most cases.

In addition, the average utilization of scratchpad memory has also been significantly improved,
which increases from 5.58% (Baseline) to 53.78% (EXPARS). Whereas, Warpman can only im-
prove the average utilization of scratchpad memory to 7.59%. Moreover, with EXPARS, the over-
all resource utilization for each benchmark is more than 80%, whereas for Warpman, only one

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



48:16 C. Yu et al.

Fig. 11. The ratio of registers allocated in register file and scratchpad memory of each mix CTA.

Fig. 12. Comparison of TLP among Baseline, Warpman, and EXPARS.

benchmark exceeds 80% (MERG). In general, the average utilization of overall resource for Baseline,
Warpman, and EXPARS is 65.68%, 73.80%, and 87.28%, respectively. The result shows that EXPARS

can effectively improve the resource utilization on GPUs.
As described in Section 3.3.1, The value of CTARF and CTAMix are calculated by EXPARS under the

restriction of threshold τ . Figure 11 demonstrates the ratio of registers allocated in register file and
scratchpad memory of each mix CTA in each benchmark. We can see that all benchmarks satisfy
the threshold τ (0.8 in our experiments) and the average ratio of registers allocated in register file
of each mix CTA is 47.39%, which means that nearly half of registers in each mix CTA can remain
allocated in register file.

4.3 Thread Level Parallelism

Figure 12 shows the TLP comparison among Baseline, Warpman, and EXPARS, which includes the
maximum number of CTAs per SM and the maximum number of warps per SM. In Figure 12,
the maximum number of CTAs for all benchmarks has increased with EXPARS compared to Base-

line and Warpman. We notice that with EXPARS, for LBM, HS, LEUK, and CONV, the number of
CTAs whose registers are entirely allocated in register file (CTARF ) is one less than Baseline. The
reason is that for these benchmarks, either the register file utilization in Baseline (see Figure 10)
or the register requirement for each CTA (see Table 3) is relatively high. There is not enough
register file for increasing the number of CTAs while satisfying the threshold τ . Therefore, with
EXPARS, the number of CTARF is reduced to free enough register file for dispatching more CTAs.
On average, the maximum number of CTAs for Baseline, Warpman, and EXPARS is 4.29, 5.07, and
5.50, respectively.

However, when comparing the maximum number of warps, we can see that EXPARS can dis-
patch more warps for all benchmarks than Baseline and Warpman. With Warpman, although it
can dispatch one more CTA for each SM when resources are not fully utilized, the additional CTA
is a partial CTA and only part of the warps can be allocated with resources to execute on each

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



Improving Thread-level Parallelism in GPUs Through Expanding Register File 48:17

Fig. 13. Comparison of performance improvement between Warpman and EXPARS with different warp

schedulers. The results are normalized to Baseline.

SM. Different from Warpman, EXPARS can dispatch more CTAs through expanding register file to
scratchpad memory, and all CTAs dispatched to each SM by EXPARS are full CTAs. This means all
warps of dispatched CTAs can get the required resources to execute on SMs. In the cases of ST, MQ,

and SING2, EXPARS can dispatch 48 warps, which reaches the warp limit (see Table 2), whereas
Baseline and Warpman can only dispatch at most 32 and 36 warps, respectively. In addition, 10 out
of the 14 benchmarks with EXPARS can make full use of the 1,536 thread slots, whereas none of the
Baseline and Warpman approach can achieve that large number of warps. On average, the maxi-
mum number of warps for Baseline, Warpman, and EXPARS is 32.86, 36.64, and 43.43, respectively.

4.4 Performance Improvement

In this section, we evaluate the performance impact of EXPARS with results shown in Figure 13.
To avoid the bias toward a particular scheduling strategy, we evaluate EXPARS with three different
state-of-the-art warp schedulers (LRR, GTO, and TL). As seen from Figure 13, EXPARS achieves bet-
ter performance improvement over Warpman for most benchmarks due to the increased TLP. For
BT, its performance improvement with EXPARS using all three schedulers is about 30%, whereas
with Warpman the performance improvement is less than 20%. Moreover, SGE achieves about 52%
and 40% performance improvement using GTO and LRR/TL scheduler, respectively, with EXPARS.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



48:18 C. Yu et al.

Fig. 14. Performance improvement of EXPARS with two optimized warp schedulers. The results are normal-

ized to Baseline.

Note that for benchmarks EST and SING1 using LRR scheduler, Warpman even losses performance
significantly compared to Baseline. The reason is that although Warpman can dispatch a partial
CTA to improve TLP, scheduling partial warps of CTA may destroy the intra-CTA locality, and
thus causes performance degradation, especially when the LRR scheduler is used. On average,
EXPARS achieves 12.01%, 9.34%, and 7.55% performance improvement with LRR, GTO, and TL
scheduler, respectively.

It is observed that although the TLP of MQ is better with EXPARS than Warpman, the perfor-
mance is, on the contrary, better with Warpman using LRR/TL scheduler. The reason is that higher
TLP may lead to severe contention on shared resources such as cache and memory bandwidth. The
above reason also applies to LEUK with GTO/TL scheduler, and MERG and SING2 with LRR sched-
uler. To alleviate the resource contention caused by the increased TLP, we use the LTLWS sched-
uler to optimize the warp scheduling. Warpman can use the SM-dueling approach [18] or a simple
static threshold to avoid the same resource contention problem; however, it is not evaluated in
this article. Figure 14 shows the results of performance improvement using LTLWSs (LTLWS-LRR
and LTLWS-GTO). Both LTLWS-LRR and LTLWS-GTO can effectively alleviate the resource con-
tention. Especially for benchmark MQ, it achieves 37.54% and 62.18% performance improvement
when using LTLWS-LRR and LTLWS-GTO, respectively. On average, LTLWS-LRR and LTLWS-
GTO improve performance by 12.53% and 20.01%, respectively. We have also expanded the register
file of both Baseline and Warpman by 2KB, which is the size of operand cache, and we find that the
increased capacity has no effect on the performance of Baseline and the performance improvement
of Warpman is less than 1% on average.

4.5 Energy Consumption

There are two components may cause additional energy overhead: Scratchpad Memory and
Operand Cache. First, because part of the scratchpad memory is used as register file, the number
of scratchpad memory access is increased to fetch register data stored in it for operand collector.
Second, EXPARS introduces an operand cache between scratchpad memory and operand collector
to address the bandwidth mismatch. Each register stored in scratchpad memory is first fetched
from scratchpad memory to operand cache before it can be read by operand collector, thus the
number of both scratchpad memory and operand cache accesses increases. When there is not
enough free space in operand cache, registers of inactive warps need to be evicted, and the eviction
also increases the number of both scratchpad memory and operand cache accesses. Although the
two components can generate additional energy consumption compared to the Baseline, the per-
formance improvement with EXPARS offsets the energy cost and reading operands from the small
operand cache instead of the large register file can also reduce energy consumption to a certain

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



Improving Thread-level Parallelism in GPUs Through Expanding Register File 48:19

Fig. 15. The total energy consumption of EXPARS with different warp schedulers. The results are normalized

to Baseline.

Table 4. The Average Capacity of On-chip Memory (Register File and Scratchpad

Memory) Required to Maximize TLP for All Benchmarks in Rodinia [2] and Parboil [30]

on the Fermi and Maxwell Architectures

Average required RF Average required SPM
Benchmark suite Fermi Maxwell Fermi Maxwell

Rodinia
All 1.60× 1.30× 0.57× 0.57×

Register-Sensitive 1.86× 2.07× 0.46× 0.61×

Parboil
All 1.64× 1.27× 0.37× 0.37×

Register-Sensitive 1.82× 1.94× 0.43× 0.34×

extend, thus the overall energy consumption actually reduces apparently. As shown in Figure 15,
on average, the energy consumption with EXPARS is less than both Baseline and Warpman. Espe-
cially when the LTLWS-LRR scheduler is used with EXPARS, MQ reduces energy consumption by
27%, whereas ST, EST and SING1 achieve about 10% energy saving. In general, EXPARS introduces
negligible energy consumption compared to Baseline and Warpman. We also note that the energy
consumption can be reduced further by appropriately optimizing the replacement strategy of OC
through operand-liveness analysis. We leave this exploration to future work.

4.6 Evaluation for Advanced Architecture

To evaluate the effectiveness of applying EXPARS to advanced architecture, we first report the
impact of on-chip memory (register file and scratchpad memory) capacity on TLP on Fermi and
Maxwell architectures. To get the register and shared memory usage, we compile all benchmarks in
Rodinia [2] and Parboil [30] for Fermi (with “-arch=sm_13 –resource-usage” option) and Maxwell
(with “-arch=sm_52 –resource-usage” option) architectures with the recent released CUDA com-
piler.1 Then, we calculate the capacities of register file and scratchpad memory benchmarks would
require if there are no register file and scratchpad memory size constraints. Table 4 shows the av-
erage capacity of register file and scratchpad memory needed to maximize TLP for all benchmarks
in Rodinia [2] and Parboil [30] on Fermi and Maxwell architectures. This experiment illustrates
that the larger register file on Maxwell architecture does not alleviate the problem that the TLP
of benchmarks, especially register-sensitive ones, is limited by the insufficient register file. The

1The maximum amount of registers that GPU functions can use are 63 and 255 for Fermi and Maxwell architecture,

respectively.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



48:20 C. Yu et al.

Fig. 16. The TLP of register-sensitive benchmarks in Rodinia and Parboil using the resource allocation strat-

egy in EXPARS on Maxwell architecture. The results are normalized to Baseline.

Fig. 17. The overall resource utilization of register-sensitive benchmarks in Rodinia and Parboil on Nvidia

Maxwell architecture.

reason for that is more registers can be provided to each kernel on the Maxwell architecture and
the CUDA compiler employs more optimization technologies to make full use of the provided reg-
isters for higher performance. Similar results have been observed in References [22, 29]. Table 4
also shows that the required capacity of register file is far more than the required capacity of
scratchpad memory to maximize the TLP on average, and the utilization of scratchpad memory
is quite low even when the TLP is maximized. The results imply that the capacity of register file
still remains as one of the major factors limiting TLP even on Maxwell architecture. Thus, it is still
effective to expand register file to the underutilized scratchpad memory using EXPARS to improve
both the TLP and utilization of on-chip memory.

To further understand the advantages of applying EXPARS to advanced architecture, we use
the resource allocation strategy in EXPARS to see how the TLP and overall utilization of on-chip
memory are improved on Maxwell architecture. Figure 16 shows the normalized TLP of all register
file sensitive benchmarks in Rodinia and Parboil. We can see that the normalized TLPs of Rodinia
and Parboil are improved to 1.14 and 1.21, respectively. In Figure 17, we can see that the overall
utilization of on-chip memory for Rodinia and Parboil is increased from 77.13% to 95.48% and from
75.11% to 95.61% on average, respectively. From above results, we can conclude that both Fermi
and advanced architecture have similar problem that the capacity of register file is one of the major
factors limiting the TLP, whereas the scratchpad memory is usually underutilized, which makes
EXPARS still effective to address such problem.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



Improving Thread-level Parallelism in GPUs Through Expanding Register File 48:21

5 RELATED WORK

GPU resource underutilization: Yang et al. [40] propose software and hardware approaches to
maximize the utilization of scratchpad memory by allocating and de-allocating scratchpad memory
dynamically. Xiang et al. [38] present a fine-grained warp-level resource management approach
by dispatching one partial CTA to alleviate the resource fragmentation problem. Jatala et al. [9]
introduce a resource sharing mechanism to minimize register and scratchpad wastage and re-
sources are shared between CTAs through a time-multiplexing manner. Vijaykumar et al. [35]
propose a software-hardware codesign resource virtualization framework to enable dynamic and
fine-grained control over resource management. Yoon et al. [41] breakthrough the scheduling limit
to propose a virtual thread architecture to assign CTAs up to the capacity limit, which is comple-
mentary to EXPARS. GPUDuet [22] is a recent work that leverages context switching to achieve
higher levels of TLP. There are two key differences between GPUDuet and EXPARS. First, if the
TLP is limited by register file, GPUDuet switches out stalled warps to underutilized on-chip re-
sources (L1 D-cache and scratchpad memory) and launches new warps. Whereas EXPARS expands
register file to underutilized scratchpad memory to increase the logic capacity of register file and
accomodate more CTAs. Second, in GPUDuet, no warp in extra CTAs can be scheduled until one
active warp is switched out or finished. Whereas EXPARS can schedule all warps in all launched
CTAs. Erez et al. [27, 28] put forward novel solutions (SIMD lane permutation and dual-path execu-

tion) to the control flow divergence problem to improve SIMD resource utilization. There are also
works [3, 4, 42] targeting at improving resource utilization of multitasking GPUs.

GPU register file management: Through register lifetime analyzing, Jeon et al. [10] propose
a register file virtualization mechanism that can dynamically release dead registers from one warp
and allocate them to another warp to shrink the register file capacity. Hayes et al. [8] propose
an unified on-chip memory allocation framework for compilers to offload register pressure to
scratchpad memory. Xie et al. [39] propose a similar compiler-based framework to coordinate reg-
ister allocation and spill variables to global memory and scratchpad memory to satisfy the register
per-thread limit. Gebhart et al. [5] introduce a register file cache between the main register file
and SIMD unit to reduce the number of accesses to the main register file. To minimize the energy
consumed by the large register file, Kloosterman et al. [17] replace the large register file with a
small operand staging unit to only cache live registers of active regions. To improve the hit rate of
register file cache and tolerate large register file latency, Sadrosadati et al. [29] partition instruc-
tions into intervals and prefetch register working-set from the main register file to the register file
cache at the beginning of each interval, which is similar to Reference [17]. In this article, we also
adopt a similar register file cache (operand cache), the main difference is that EXPARS targets im-
proved resource utilization and TLP, and EXPARS only prefetchs registers allocated in scratchpad
memory to the operand cache before each instruction bundle can be scheduled.

GPU memory unification: Different applications have different requirements for different
on-chip memories. Nvidia Fermi [24] and Kepler [15] are equipped with a 64KB unified on-chip
memory for each SM that can be configured either as 48KB of scratchpad memory and 16KB cache
or 16KB of scratchpad memory and 48KB cache. However, above method still needs to statically
divide the unified memory into separate memories before launching a kernel in a coarse-grained
way, which cannot make full use of the precious on-chip memories. Furthermore, EXPARS can
be easily extended to spill registers to both scratchpad memory and L1 cache. Although Gebhart
et al. [7] propose an unified on-chip memory structure that the capacity of register file, scratchpad
memory, and L1 cache can be partitioned at runtime according to the requirement of applications
in a fine-grained way, there are still two shortcomings. First, the unified structure lacks flexibility;
register file is one of the main contributors to GPU energy consumption and various power saving

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



48:22 C. Yu et al.

technologies [11, 14, 23, 32–34] are proposed for register file to save energy, which can be hard to
apply to the unified structure due to the different access characteristics between register file and
L1 cache. Second, the unified structure increases bank conflicts between register file, scratchpad
memory and L1 cache; they use software-managed hierarchical register file [6] to reduce the re-
quired bandwidth to the main register file, however, that technology focuses on energy efficiency
and may lead to resource underutilization and suboptimal performance [29, 35]. Jing et al. [12]
introduce an integrated architecture that enables the register file to support the function of cache,
which also has above weaknesses.

GPU warp scheduling: GPU warp scheduling is a hot research point in recent years [19, 20, 31,
36, 43]. Lee et al. [20] first propose a profiling algorithm to find the critical warps and then schedule
these critical warps more frequently than others. Yu et al. [43] analyze the pipeline efficiency and
propose a stall-aware warp scheduler to determine the optimal number of CTAs at runtime. Lee
et al. [19] propose an alternative scheduler based on GTO, which is the closest to ours among
the above works, to dynamically determine the maximum number of CTAs assigned to each SM.
Others [31, 36] propose schedulers mainly targeting on data locality. In this article, we propose a
TL-based scheduler whose maximum number of active warps is determined at runtime.

6 CONCLUSION

In this article, we present a new resource management approach EXPARS for GPUs to increase
TLP. When the register file is not enough for dispatching one more CTA, we expand the reg-
ister file to scratchpad memory in a vertical approach so that more CTAs can be dispatched to
SMs. In addition, we propose a lazy two-level warp scheduler to mitigate the resource contention
due to the increased TLP. Our experiment results show that with EXPARS the number of CTAs
dispatched to each SM increases by 1.28× on average. In addition, the register file utilization in-
creases by 11.64%, and the scratchpad memory utilization increases by 48.20% on average. With
better TLP, our approach achieves 20.01% performance improvement on average with negligible
energy overhead.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their valuable feedback and suggestion. Hailong Yang is
the corresponding author.

REFERENCES

[1] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M. Aamodt. 2009. Analyzing CUDA workloads

using a detailed GPU simulator. In Proceedings of the IEEE International Symposium on Performance Analysis of Systems

and Software (ISPASS’09). IEEE, 163–174.

[2] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009.

Rodinia: A benchmark suite for heterogeneous computing. In Proceedings of the IEEE International Symposium on

Workload Characterization (IISWC’09). IEEE, 44–54.

[3] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason Mars, and Lingjia Tang. 2017. Prophet: Precise

qos prediction on non-preemptive accelerators to improve utilization in warehouse-scale computers. ACM SIGARCH

Comput. Architect. News 45, 1 (2017), 17–32.

[4] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Baymax: Qos awareness and increased utilization

for non-preemptive accelerators in warehouse scale computers. ACM SIGARCH Comput. Architect. News 44, 2 (2016),

681–696.

[5] Mark Gebhart, Daniel R. Johnson, David Tarjan, Stephen W. Keckler, William J. Dally, Erik Lindholm, and Kevin

Skadron. 2011. Energy-efficient mechanisms for managing thread context in throughput processors. In ACM

SIGARCH Computer Architecture News, Vol. 39. ACM, 235–246.

[6] Mark Gebhart, Stephen W. Keckler, and William J. Dally. 2011. A compile-time managed multi-level register file

hierarchy. In Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’11).

ACM, 465–476.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.



Improving Thread-level Parallelism in GPUs Through Expanding Register File 48:23

[7] Mark Gebhart, Stephen W. Keckler, Brucek Khailany, Ronny Krashinsky, and William J. Dally. 2012. Unifying primary

cache, scratch, and register file memories in a throughput processor. In Proceedings of the 45th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO’12). IEEE Computer Society, 96–106.

[8] Ari B. Hayes and Eddy Z. Zhang. 2014. Unified on-chip memory allocation for SIMT architecture. In Proceedings of

the 28th ACM International Conference on Supercomputing (ICS’14). ACM, 293–302.

[9] Vishwesh Jatala, Jayvant Anantpur, and Amey Karkare. 2016. Improving GPU performance through resource sharing.

In Proceedings of the 25th ACM International Symposium on High-Performance Distributed Computing (HPDC’16). ACM,

203–214.

[10] Hyeran Jeon, Gokul Subramanian Ravi, Nam Sung Kim, and Murali Annavaram. 2015. GPU register file virtualiza-

tion. In Proceedings of the 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’15). ACM,

420–432.

[11] Naifeng Jing, Yao Shen, Yao Lu, Shrikanth Ganapathy, Zhigang Mao, Minyi Guo, Ramon Canal, and Xiaoyao Liang.

2013. An energy-efficient and scalable eDRAM-based register file architecture for GPGPU. In ACM SIGARCH Com-

puter Architecture News, Vol. 41. ACM, 344–355.

[12] Naifeng Jing, Jianfei Wang, Fengfeng Fan, Wenkang Yu, Li Jiang, Chao Li, and Xiaoyao Liang. 2016. Cache-emulated

register file: An integrated on-chip memory architecture for high performance GPGPUs. In Proceedings of the 49th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’16). IEEE, 1–12.

[13] Onur Kayıran, Adwait Jog, Mahmut Taylan Kandemir, and Chita Ranjan Das. 2013. Neither more nor less: Optimizing

thread-level parallelism for GPGPUs. In Proceedings of the 22nd International Conference on Parallel Architectures and

Compilation Techniques (PACT’13). IEEE, 157–166.

[14] Onur Kayiran, Adwait Jog, Ashutosh Pattnaik, Rachata Ausavarungnirun, Xulong Tang, Mahmut T. Kandemir, Gabriel

H. Loh, Onur Mutlu, and Chita R. Das. 2016. μC-States: Fine-grained GPU datapath power management. In Proceed-

ings of the International Conference on Parallel Architecture and Compilation Techniques (PACT’16). IEEE, 17–30.

[15] Nvidia Kepler. 2012. NVIDIA’s Next Generation CUDATM Compute Architecture: Kepler TM GK110. Retrieved from

https://www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-architecture-whitepaper.pdf.

[16] Farzad Khorasani, Hodjat Asghari Esfeden, Amin Farmahini-Farahani, Nuwan Jayasena, and Vivek Sarkar. 2018. Reg-

Mutex: Inter-warp GPU register time-sharing. In Proceedings of the ACM/IEEE 45th Annual International Symposium

on Computer Architecture (ISCA’18). IEEE.

[17] John Kloosterman, Jonathan Beaumont, D. Anoushe Jamshidi, Jonathan Bailey, Trevor Mudge, and Scott Mahlke.

2017. Regless: Just-in-time operand staging for GPUs. In Proceedings of the 50th Annual IEEE/ACM International Sym-

posium on Microarchitecture (MICRO’17). ACM, 151–164.

[18] Jaekyu Lee and Hyesoon Kim. 2012. TAP: A TLP-aware cache management policy for a CPU-GPU heterogeneous

architecture. In Proceedings of the IEEE 18th International Symposium on. IEEE, 91–102.

[19] Minseok Lee, Seokwoo Song, Joosik Moon, John Kim, Woong Seo, Yeongon Cho, and Soojung Ryu. 2014. Improving

GPGPU resource utilization through alternative thread block scheduling. In Proceedings of the 20th IEEE International

Symposium on High Performance Computer Architecture (HPCA’14). IEEE, 260–271.

[20] Shin-Ying Lee and Carole-Jean Wu. 2014. CAWS: Criticality-aware warp scheduling for GPGPU workloads. In Pro-

ceedings of the 23rd International Conference on Parallel Architectures and Compilation Techniques (PACT’14). ACM,

175–186.

[21] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim, Tor M. Aamodt, and Vijay

Janapa Reddi. 2013. GPUWattch: Enabling energy optimizations in GPGPUs. In ACM SIGARCH Computer Architecture

News, Vol. 41. ACM, 487–498.

[22] Zhen Lin, Michael Mantor, and Huiyang Zhou. 2018. GPU performance vs. thread-level parallelism: Scalability anal-

ysis and a novel way to improve TLP. ACM Trans. Architect. Code Optim. 15, 1 (2018), 15.

[23] Majid Namaki-Shoushtari, Abbas Rahimi, Nikil Dutt, Puneet Gupta, and Rajesh K. Gupta. 2013. ARGO: Aging-aware

GPGPU register file allocation. In Proceedings of the 9th IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis. IEEE Press, 30.

[24] Nvidia. 2009. Nvidia’s next generation cuda compute architecture: Fermi. Retrieved from https://www.nvidia.com/

content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf.

[25] Nvidia. 2011. CUDA C/C++ SDK code samples. Retrieved from https://developer.nvidia.com/cuda-toolkit-40.

[26] Nvidia. 2014. Nvidia GeForce GTX 980 whitepaper. Retrieved from https://international.download.nvidia.com/

geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF.

[27] Minsoo Rhu and Mattan Erez. 2013. Maximizing SIMD resource utilization in GPGPUs with SIMD lane permutation.

In Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA’13). ACM, 356–367.

[28] Minsoo Rhu and Mattan Erez. 2013. The dual-path execution model for efficient GPU control flow. In Proceedings of

the IEEE 19th International Symposium on High Performance Computer Architecture (HPCA’13). IEEE, 591–602.

[29] Mohammad Sadrosadati, Amirhossein Mirhosseini, Seyed Borna Ehsani, Hamid Sarbazi-Azad, Mario Drumond,

Babak Falsafi, Rachata Ausavarungnirun, and Onur Mutlu. 2018. LTRF: Enabling high-capacity register files for GPUs

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.

https://www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-architecture-whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://developer.nvidia.com/cuda-toolkit-40
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF


48:24 C. Yu et al.

via hardware/software cooperative register prefetching. In Proceedings of the 23rd International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS’18). ACM, 489–502.

[30] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang, Nasser Anssari, Geng Daniel Liu,

and Wen-Mei W. Hwu. 2012. Parboil: A revised benchmark suite for scientific and commercial throughput computing.

Center Reliable High-perform. Comput. 127 (2012).

[31] Abdulaziz Tabbakh, Murali Annavaram, and Xuehai Qian. 2017. Power efficient sharing-aware GPU data manage-

ment. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS’17). IEEE, 698–707.

[32] Jingweijia Tan and Xin Fu. 2015. Mitigating the susceptibility of GPGPUs register file to process variations. In Pro-

ceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS’15). IEEE, 969–978.

[33] Jingweijia Tan, Zhi Li, and Xin Fu. 2015. Soft-error reliability and power co-optimization for GPGPUS register file

using resistive memory. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition. EDA

Consortium, 369–374.

[34] Jingweijia Tan, Shuaiwen Leon Song, Kaige Yan, Xin Fu, Andres Marquez, and Darren Kerbyson. 2016. Combating

the reliability challenge of GPU register file at low supply voltage. In Proceedings of the International Conference on

Parallel Architectures and Compilation. ACM, 3–15.

[35] Nandita Vijaykumar, Kevin Hsieh, Gennady Pekhimenko, Samira Khan, Ashish Shrestha, Saugata Ghose, Adwait

Jog, Phillip B. Gibbons, and Onur Mutlu. 2016. Zorua: A holistic approach to resource virtualization in GPUs. In

Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’16). IEEE, 1–14.

[36] Jin Wang, Norm Rubin, Albert Sidelnik, and Sudhakar Yalamanchili. 2016. Laperm: Locality aware scheduler for

dynamic parallelism on gpus. In Proceedings of the 43rd International Symposium on Computer Architecture (ISCA’16).

IEEE, 583–595.

[37] Steven J. E. Wilton and Norman P. Jouppi. 1996. CACTI: An enhanced cache access and cycle time model. IEEE Journal

of Solid-State Circuits 31, 5 (1996), 677–688.

[38] Ping Xiang, Yi Yang, and Huiyang Zhou. 2014. Warp-level divergence in GPUs: Characterization, impact, and mitiga-

tion. In Proceedings of the 20th IEEE International Symposium on High Performance Computer Architecture (HPCA’14).

IEEE, 284–295.

[39] Xiaolong Xie, Yun Liang, Xiuhong Li, Yudong Wu, Guangyu Sun, Tao Wang, and Dongrui Fan. 2015. Enabling co-

ordinated register allocation and thread-level parallelism optimization for GPUs. In Proceedings of the 48th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO’15). ACM, 395–406.

[40] Yi Yang, Ping Xiang, Mike Mantor, Norm Rubin, and Huiyang Zhou. 2012. Shared memory multiplexing: A novel

way to improve GPGPU throughput. In Proceedings of the 21st International Conference on Parallel Architectures and

Compilation Techniques (PACT’12). IEEE, 283–292.

[41] Myung Kuk Yoon, Keunsoo Kim, Sangpil Lee, Won Woo Ro, and Murali Annavaram. 2016. Virtual thread: Maximizing

thread-level parallelism beyond GPU scheduling limit. In Proceedings of the 43rd ACM/IEEE International Symposium

on Computer Architecture (ISCA’16). IEEE, 609–621.

[42] Chao Yu, Yuebin Bai, Hailong Yang, Kun Cheng, Yuhao Gu, Zhongzhi Luan, and Depei Qian. 2018. SMGuard: A

flexible and fine-grained resource management framework for GPUs. IEEE Trans. Parallel Distrib. Syst. (2018). DOI:
https://doi.org/10.1109/TPDS.2018.2848621.

[43] Yulong Yu, Weijun Xiao, Xubin He, He Guo, Yuxin Wang, and Xin Chen. 2015. A stall-aware warp scheduling for dy-

namically optimizing thread-level parallelism in GPGPUs. In Proceedings of the 29th ACM on International Conference

on Supercomputing (ICS’15). ACM, 15–24.

Received May 2018; revised August 2018; accepted September 2018

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 48. Publication date: November 2018.

https://doi.org/10.1109/TPDS.2018.2848621

